Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use
Abstract
:1. Introduction
2. Study Area
2.1. Geographical and Hydrogeological Settings
2.2. Land Use and Human Activity Characteristics
3. Materials and Methods
3.1. Sampling and Analysis
3.2. Fuzzy Synthetic Evaluation Method (FSEM)
3.3. Principal Components Analysis (PCA)
4. Results
4.1. Hydrogeochemical Characteristics in the Coastal Alluvial Aquifer
4.2. Groundwater Quality in the Coastal Alluvial Aquifer
5. Discussion
5.1. PC1 (Factor 1)—Release from Marine Sediments and Infiltration of Domestic and Septic Sewage
5.2. PC2 (Factor 2)—Agricultural Activities
5.3. PC3 (Factor 3)—Industrial Pollution Related to Heavy Metals and Acid Deposition
5.4. PC4 (Factor 4)—Reductive Dissolution of As-Loaded Fe Minerals and Denitrification
5.5. PC5 (Factor 5)—I− Contamination
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Huang, G.; Liu, C.; Sun, J.; Zhang, M.; Jing, J.; Li, L. A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta. Sci. Total Environ. 2018, 625, 510–518. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Xin, L. Assessment of the efficiency of cultivated land occupied by urban and rural construction land in China from 1990 to 2020. Land 2022, 11, 941. [Google Scholar] [CrossRef]
- Small, C.; Nicholls, R.J. A global analysis of human settlement in coastal zones. J. Coast. Res. 2003, 19, 584–599. [Google Scholar]
- Umarani, P.; Ramu, A.; Kumar, V. Hydrochemical and statistical evaluation of groundwater quality in coastal aquifers in Tamil Nadu, India. Environ. Earth Sci. 2019, 78, 452. [Google Scholar] [CrossRef]
- Chucuya, S.; Vera, A.; Pino-Vargas, E.; Steenken, A.; Mahlknecht, J.; Montalván, I. Hydrogeochemical characterization and identification of factors influencing groundwater quality in coastal aquifers, case: La Yarada, Tacna, Peru. Int. J. Environ. Res. Public Health 2022, 19, 2815. [Google Scholar] [CrossRef]
- Armengol, S.; Ayora, C.; Manzano, M.; Bea, S.A.; Martínez, S. The role of loess weathering in the groundwater chemistry of the Chaco-Pampean Plain (Argentina). J. Hydrol. 2020, 587, 124984. [Google Scholar] [CrossRef]
- Kanellopoulos, C.; Argyraki, A. Multivariate statistical assessment of groundwater in cases with ultramafic rocks and anthropogenic activities influence. Appl. Geochem. 2022, 141, 105292. [Google Scholar] [CrossRef]
- Mason, J.P. Groundwater, Surface-Water, and Water-Chemistry Data, Black Mesa Area, northeastern Arizona—2018–2019. U.S. Geological Survey Open-File Report; 2022–1086; USGS: Reston, VI, USA, 2022. [CrossRef]
- Elumalai, V.; Rajmohan, N.; Sithole, B.; Li, P.; Uthandi, S.; Tol, J. Geochemical evolution and the processes controlling groundwater chemistry using ionic ratios, geochemical modelling and chemometric analysis in uMhlathuze catchment, KwaZulu-Natal, South Africa. Chemosphere 2023, 312, 137179. [Google Scholar] [CrossRef]
- Han, D.; Currell, M.J. Review of drivers and threats to coastal groundwater quality in China. Sci. Total Environ. 2022, 806, 150913. [Google Scholar] [CrossRef]
- Sellamuthu, S.; Joseph, S.; Gopalakrishnan, S.; Sekar, S.; Khan, R.; Shukla, S. Appraisal of groundwater quality for drinking and irrigation suitability using multivariate statistical approach in a rapidly developing urban area, Tirunelveli, India. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Xing, L.; Guo, H.; Zhan, Y. Groundwater hydrochemical characteristics and processes along flow paths in the North China Plain. J. Asian Earth Sci. 2013, 70–71, 250–264. [Google Scholar] [CrossRef]
- Ri, M.; Guo, H.; Kim, P.; Ri, K.; Ri, G. Influence of seawater intrusion on the hot springs in a coastal area: The case of the Anak-Sinchon Uplift, Korean Peninsula. J. Hydrol. 2022, 607, 127509. [Google Scholar] [CrossRef]
- Huang, G.; Han, D.; Song, J.; Li, L.; Pei, L. A sharp contrasting occurrence of iron-rich groundwater in the Pearl River Delta during the past dozen years (2006–2018): The genesis and mitigation effect. Sci. Total Environ. 2022, 829, 154676. [Google Scholar] [CrossRef] [PubMed]
- Huang, G.; Zhang, M.; Liu, C.; Li, L.; Chen, Z. Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. Sci. Total Environ. 2018, 635, 913–925. [Google Scholar] [CrossRef]
- Zhang, F.; Huang, G.; Hou, Q.; Liu, C.; Zhang, Y.; Zhang, Q. Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. J. Hydrol. 2019, 577, 124004. [Google Scholar] [CrossRef]
- Hou, Q.; Zhang, Q.; Huang, G.; Liu, C.; Zhang, Y. Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China. Sci. Total Environ. 2020, 701, 134777. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Li, L.; Zhang, F.; Chen, Z. Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: A case study of the Pearl River Delta. J. Hydrol. 2020, 585, 124860. [Google Scholar] [CrossRef]
- Huang, G.; Liu, C.; Zhang, Y.; Chen, Z. Groundwater is important for the geochemical cycling of phosphorus in rapidly urbanized areas: A case study in the Pearl River Delta. Environ. Pollut. 2020, 260, 114079. [Google Scholar] [CrossRef]
- Zhang, M.; Huang, G.; Liu, C.; Zhang, Y.; Chen, Z.; Wang, J. Distributions and origins of nitrate, nitrite, and ammonium in various aquifers in an urbanized coastal area, south China. J. Hydrol. 2020, 582, 124528. [Google Scholar] [CrossRef]
- Sun, J.; Jing, J.; Huang, G.; Liu, J.; Chen, X.; Zhang, Y. Report on the Investigation and Assessment of Groundwater Contamination in the Pearl River Delta Area; Chinese Academy of Geological Sciences; The Institute of Hydrogeology and Environmental Geology: Beijing, China, 2009. (In Chinese) [Google Scholar]
- General Administration of Quality Supervision Inspection and Quarantine of the People’s Republic of China (GAQSIQPRC). Standard for Groundwater Quality; Standards Press of China: Beijing, China, 2017. [Google Scholar]
- Bi, P.; Huang, G.; Liu, C.; Li, L. Geochemical factors controlling natural background levels of phosphate in various groundwater units in a large-scale urbanized area. J. Hydrol. 2022, 608, 127594. [Google Scholar] [CrossRef]
- Zong, Y.; Yim, W.W.S.; Yu, F.; Huang, G. Late Quaternary environmental changes in the Pearl River mouth region, China. Quat. Int. 2009, 206, 35–45. [Google Scholar] [CrossRef]
- Lancia, M.; Su, H.; Tian, Y.; Xu, J.; Andrews, C.; Lerner, D.N.; Zheng, C. Hydrogeology of the Pearl River Delta, southern China. J. Maps 2020, 16, 388–395. [Google Scholar] [CrossRef]
- Huang, G.; Pei, L.; Li, L.; Liu, C. Natural background levels in groundwater in the Pearl River Delta after the rapid expansion of urbanization: A new pre-selection method. Sci. Total Environ. 2022, 813, 151890. [Google Scholar] [CrossRef]
- Ye, Y.; Zhang, H.; Liu, K.; Wu, Q. Research on the influence of site factors on the expansion of construction land in the Pearl River Delta, China: By using GIS and remote sensing. Int. J. Appl. Earth Obs. 2013, 21, 366–373. [Google Scholar] [CrossRef]
- Huang, G.; Song, J.; Han, D.; Liu, R.; Liu, C.; Hou, Q. Assessing natural background levels of geogenic contaminants in groundwater of an urbanized delta through removal of groundwaters impacted by anthropogenic inputs: New insights into driving factors. Sci. Total Environ. 2023, 857, 159527. [Google Scholar] [CrossRef]
- Huang, G.; Chen, Z.; Liu, F.; Sun, J.; Wang, J. Impact of human activity and natural processes on groundwater arsenic in an urbanized area (South China) using multivariate statistical techniques. Environ. Sci. Pollut. R. 2014, 21, 13043–13054. [Google Scholar] [CrossRef]
- Güler, C.; Kurt, M.A.; Alpaslan, M.; Akbulut, C. Assessment of the impact of anthropogenic activities on the groundwater hydrology and chemistry in Tarsus coastal plain (Mersin, SE Turkey) using fuzzy clustering, multivariate statistics and GIS techniques. J. Hydrol. 2012, 414–415, 435–451. [Google Scholar] [CrossRef]
- Guangdong Hydrogeological Second Team (GHST). Regional Hydrogeological Survey Report; Guangdong Hydrogeological Second Team: Guangzhou, China, 1981. (In Chinese) [Google Scholar]
- Huang, G.; Sun, J.; Zhang, Y.; Chen, Z.; Liu, F. Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Sci. Total Environ. 2013, 463–464, 209–221. [Google Scholar] [CrossRef]
- Wang, Y.; Jiao, J.J. Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. J. Hydrol. 2012, 438–439, 112–124. [Google Scholar] [CrossRef]
- Larsen, F.; Tran, L.V.; Van Hoang, H.; Tran, L.T.; Christiansen, A.V.; Pham, N.Q. Groundwater salinity influenced by Holocene seawater trapped in incised valleys in the Red River delta plain. Nat. Geosci. 2017, 10, 376–381. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Yuan, D.; Huang, Y.; Ma, J.; Feng, S. A sensitive flow-batch system for on board determination of ultra-trace ammonium in seawater: Method development and shipboard application. Anal. Chim. Acta 2013, 794, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Jiao, J.; Wang, Y.; Cherry, J.A.; Wang, X.; Zhi, B.; Du, H.; Wen, D. Abnormally high ammonium of natural origin in a coastal aquifer-aquitard system in the Pearl River Delta, China. Environ. Sci. Technol. 2010, 44, 7470–7475. [Google Scholar] [CrossRef] [PubMed]
- Shamrukh, M.; Corapcioglu, M.Y.; Hassona, F.A.A. Modeling the Effect of Chemical Fertilizers on Ground Water Quality in the Nile Valley Aquifer, Egypt. Groundwater 2001, 39, 59–67. [Google Scholar] [CrossRef]
- Zhu, B.; Chen, Y.; Peng, J. Lead isotope geochemistry of the urban environment in the Pearl River Delta. Appl. Geochem. 2001, 16, 409–417. [Google Scholar]
- Yin, G.; Zhu, H.; Chen, Z.; Su, C.; He, Z.; Chen, X.; Qiu, J.; Wang, T. Spatial distribution and source apportionment of soil heavy metals in Pearl River Delta, China. Sustainability 2021, 13, 9651. [Google Scholar] [CrossRef]
- Liu, F.; Sun, J.; Wang, J.; Zhang, Y. Groundwater acidification in shallow aquifers in Pearl River Delta, China: Distribution, factors, and effects. Geochem. J. 2017, 51, 373–384. [Google Scholar] [CrossRef]
Item | AL | Total Area | Urban Area | Peri-Urban Area | Agricultural Area | Remaining Area | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Min. | Med. | Max. | PAL (%) | Min. | Med. | Max. | Min. | Med. | Max. | Min. | Med. | Max. | Min. | Med. | Max. | ||
pH | 3.5 | 6.8 | 7.6 | 4.4 | 6.9 | 7.5 | 3.5 | 6.6 | 7.3 | 4.7 | 6.5 | 7.6 | 5.5 | 6.1 | 6.3 | ||
DO (mg/L) | 0.6 | 2.8 | 8.2 | 0.6 | 2.6 | 8.2 | 1.2 | 2.9 | 5.9 | 1.4 | 3.3 | 6.9 | 3.1 | 4.4 | 5.7 | ||
Eh (mV) | −36 | 17 | 275 | −34 | 2 | 221 | −26 | 24 | 275 | −36 | 67 | 275 | 33 | 51 | 76 | ||
K+ (mg/L) | <DL | 20 | 88 | 1 | 23 | 88 | <DL | 14 | 71 | 1 | 22 | 44 | 2 | 12 | 22 | ||
Ca2+ (mg/L) | 2 | 79 | 165 | 13 | 95 | 165 | 2 | 75 | 142 | 4 | 48 | 99 | 7 | 19 | 21 | ||
Mg2+ (mg/L) | <DL | 8 | 118 | 1 | 9 | 54 | <DL | 8 | 94 | 1 | 7 | 118 | 3 | 5 | 9 | ||
HCO3− (mg/L) | <DL | 248 | 641 | 3 | 295 | 641 | <DL | 187 | 616 | 6 | 147 | 459 | 20 | 45 | 55 | ||
TDS (mg/L) | 1000 | 45 | 568 | 3353 | 6.7 | 88 | 704 | 1420 | 45 | 527 | 3353 | 56 | 406 | 3152 | 123 | 182 | 208 |
Cl− (mg/L) | 250 | 5 | 50 | 1631 | 5.4 | 8 | 55 | 390 | 5 | 43 | 1631 | 5 | 37 | 1620 | 8 | 21 | 35 |
NO3− (mg/L) | 88.9 | 0.3 | 22.6 | 184.9 | 10.1 | 0.3 | 28.9 | 184.9 | 0.6 | 19.3 | 146.8 | 1.1 | 6.3 | 116.4 | 3.0 | 26.6 | 29.3 |
Na+ (mg/L) | 200 | 3 | 37 | 1009 | 4.0 | 4 | 42 | 222 | 4 | 28 | 1009 | 3 | 24 | 803 | 4 | 13 | 28 |
SO42− (mg/L) | 250 | <DL | 49 | 263 | 1.3 | <DL | 52 | 263 | <DL | 48 | 255 | <DL | 35 | 230 | 19 | 29 | 39 |
Fe (mg/L) | 0.3 | <DL | 0.11 | 26.16 | 33.6 | <DL | 0.10 | 16.20 | <DL | 0.11 | 26.16 | <DL | 0.24 | 11.13 | 0.02 | 0.06 | 0.37 |
Mn (mg/L) | 0.1 | <DL | 0.12 | 7.38 | 53.0 | <DL | 0.12 | 2.21 | <DL | 0.16 | 7.38 | <DL | 0.09 | 2.64 | 0.01 | 0.02 | 0.12 |
NH4+ (mg/L) | 0.64 | <DL | 0.04 | 60.00 | 26.8 | <DL | 0.08 | 45.00 | <DL | 0.03 | 60.00 | <DL | 0.02 | 40.00 | <DL | 0.02 | 0.02 |
NO2− (mg/L) | 3.3 | <DL | 0.03 | 33.20 | 6.0 | <DL | 0.04 | 14.72 | <DL | 0.03 | 33.20 | <DL | 0.02 | 6.90 | 0.01 | 0.01 | 0.04 |
Pb (mg/L) | 0.01 | <DL | 0.001 | 0.037 | 2.7 | <DL | 0.001 | 0.017 | <DL | 0.001 | 0.037 | <DL | 0.001 | 0.009 | <DL | 0.001 | 0.006 |
As (mg/L) | 0.01 | <DL | 0.004 | 0.303 | 17.4 | <DL | 0.004 | 0.303 | <DL | 0.003 | 0.172 | <DL | 0.001 | 0.030 | <DL | <DL | 0.001 |
I− (mg/L) | 0.08 | <DL | 0.01 | 0.76 | 12.1 | <DL | 0.01 | 0.76 | <DL | <DL | 0.32 | <DL | 0.03 | 0.22 | <DL | <DL | <DL |
Chemical Parameters | PCs | ||||
---|---|---|---|---|---|
PC1 | PC2 | PC3 | PC4 | PC5 | |
Cl− | 0.973 | −0.005 | 0.072 | 0.050 | 0.017 |
Na+ | 0.972 | 0.055 | 0.080 | 0.039 | 0.043 |
Mg2+ | 0.863 | 0.183 | 0.106 | 0.123 | −0.094 |
TDS | 0.850 | 0.488 | 0.079 | 0.092 | 0.082 |
NH4+ | 0.622 | 0.137 | 0.205 | 0.123 | 0.497 |
Ca2+ | 0.020 | 0.932 | 0.030 | 0.074 | 0.021 |
HCO3− | 0.304 | 0.797 | −0.062 | 0.416 | 0.133 |
SO42− | 0.074 | 0.578 | 0.447 | −0.404 | −0.165 |
K+ | 0.266 | 0.570 | −0.085 | −0.334 | 0.007 |
Pb | 0.160 | −0.094 | 0.894 | −0.099 | −0.016 |
Mn | 0.028 | 0.084 | 0.840 | 0.181 | 0.094 |
NO3− | 0.003 | 0.094 | −0.078 | −0.796 | 0.073 |
Fe | 0.311 | 0.008 | 0.453 | 0.472 | −0.009 |
As | 0.220 | 0.177 | −0.031 | 0.444 | 0.121 |
NO2− | 0.092 | 0.191 | 0.029 | −0.235 | 0.768 |
I− | −0.049 | −0.124 | −0.013 | 0.176 | 0.571 |
Eigenvalue | 4.1 | 2.6 | 2.0 | 1.7 | 1.3 |
Explained variance (%) | 25.6 | 16.0 | 12.5 | 10.5 | 7.8 |
Cumulative % of variance | 25.6 | 41.6 | 54.1 | 64.6 | 72.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, C.; Hou, Q.; Chen, Y.; Huang, G. Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use. Water 2022, 14, 4131. https://doi.org/10.3390/w14244131
Liu C, Hou Q, Chen Y, Huang G. Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use. Water. 2022; 14(24):4131. https://doi.org/10.3390/w14244131
Chicago/Turabian StyleLiu, Chunyan, Qinxuan Hou, Yetao Chen, and Guanxing Huang. 2022. "Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use" Water 14, no. 24: 4131. https://doi.org/10.3390/w14244131
APA StyleLiu, C., Hou, Q., Chen, Y., & Huang, G. (2022). Hydrogeochemical Characteristics and Groundwater Quality in a Coastal Urbanized Area, South China: Impact of Land Use. Water, 14(24), 4131. https://doi.org/10.3390/w14244131