Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams
Abstract
:1. Introduction
2. Materials and Methods
3. Skimming Flow on Steep Slopes: Main Regions and Flow Properties
4. Results and Application
4.1. Pressure Development and Duration of Negative Pressures
4.2. Mean and Fluctuating Pressures
4.3. Extreme Pressures
4.4. Risk of Cavitation: Application to Prototypes
5. Conclusions
- The pressure development along the chutes indicates a distinct behavior of the pressure field in the non-aerated and self-aerated flow regions, generally with an overall increase of the modulus of the mean, fluctuating, and extreme pressure coefficients up to the vicinity of the point of inception of air entrainment, and a decrease further downstream. This result is in agreement with the findings of [21,22,27,28].
- The fluctuating and extreme pressure coefficients near the outer edge of the vertical face of the steps along the spillway are fitted by an empirical formula in function of L′ for a broad range of relative critical depths, similarly to the findings of [21,22] for C′p and Cp0.1%, and by [27] for all related pressure coefficients.
- The empirical formula developed for Cp0.1%, Cp1.0%, and Cp5.0%, based on all data near the outer edge of the vertical face of the steps, is generally valid even if only data that satisfy Re ≥ 2 × 105 and dc/h ≥ 1.78 are considered; on the other hand, the data scatter for the maximum extreme pressure coefficients Cp95.0%, Cp99.0%, and Cp99.9% near the outer edge of the horizontal face of the steps is considerably reduced for Re ≥ 2 × 105 and dc/h ≥ 1.78.
- When considering the model results near the outer edge of the horizontal face of the steps, for Re ≥ 2 × 105 and dc/h ≥ 1.78, Cp99.9% ranges between 0.8 and 1.4 near the point of inception, hence the corresponding pressure head generally surpasses the mean kinetic head of the flow. Further downstream, in the gradually varied flow region, the extreme pressure coefficients are dampened due to the significant air entrainment and increased flow velocity, approaching 0.8 (Cp99.9%), 0.6 (Cp99%), and 0.4 (Cp95%).
- Based on the minimum extreme pressure coefficient analysis (Cp0.1%) applied to prototypes, the critical cavitation index in the vicinity of the point of inception varied typically between 0.75 to 0.80, which is fairly similar to the values obtained from [21] (σc ~ 0.8) and larger than those predicted by [27] (σc ~ 0.6).
- From the correlation between the cavitation index and the friction factor, the cavitation index in the vicinity of the point of inception at prototypes varied typically between 0.55 and 0.60, hence lower than that predicted from Cp0.1%.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chanson, H. The Hydraulics of Stepped Chutes and Spillways; Balkema: Lisse, The Netherlands, 2002. [Google Scholar]
- Matos, J.; Meireles, I. Hydraulics of stepped weirs and dams spillways: Engineering challenges, labyrinths of research. In Proceedings of the 5th IAHR International Symposium on Hydraulic Structures (ISHS2014), Brisbane, Australia, 25–27 June 2014; Chanson, H., Toombes, L., Eds.; [Google Scholar]
- Frizell, K.W.; Frizell, K.H. Guidelines for hydraulic design of stepped spillways. In Hydraulic Laboratory Report HL-2015-06; Bureau of Reclamation: Denver, CO, USA, 2015. [Google Scholar]
- Guo, J.; Liu, Z.; Lu, Y. Field observation on the RCC stepped spillways with the flaring pier gate on the Dachaoshan Project. In Proceedings of the 30th IAHR Biennial Congress, Thessaloniki, Greece, 24–29 August 2003; Ganoulis, J., Prinos, P., Eds.; Volume B, pp. 473–478. [Google Scholar]
- He, G.; Zeng, X. The integral RCC dam design characteristics and optimization of its energy dissipater in Shuidong Hydropower Station. In Proceedings of the International Symposium on RCC Dams, Santander, Spain, 2–4 October 1995; pp. 405–412. [Google Scholar]
- Chanson, H.; Bung, D.B.; Matos, J. Stepped spillways and cascades. In Energy Dissipation in Hydraulic Structures; Chanson, H., Ed.; CRC Press: Leiden, The Netherlands, 2015. [Google Scholar]
- Novakoski, C. Análise da macroturbulência do escoamento sobre vertedouro em degraus com aeração induzida por defletor e câmara de ar. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2021. (In Portuguese). [Google Scholar]
- Bollaert, E.; Lesleighter, E.; McComber, S.; Bozorgmehr, P.; Fahey, L.; Scriven, D. Rock scour in Australia: Some latest Queensland experiences. In Proceedings of the 8th International Conference on Scour and Erosion, Oxford, UK, 12–15 September 2016; Harris, J., Whitehouse, R., Moxon, S., Eds.; CRC Press: Boca Raton, FL, USA. [Google Scholar]
- Stojnic, I.; Pfister, M.; Matos, J.; Schleiss, A.J. Effect of 30-degree sloping smooth and stepped chute approach flow on the performance of a classical stilling basin. J. Hydr. Eng. 2021, 147, 04020097. [Google Scholar] [CrossRef]
- Chen, Q.; Dai, G.; Liu, H. Volume of fluid model for turbulence numerical simulation of stepped spillway overflow. J. Hydr. Eng. 2002, 128, 683–688. [Google Scholar] [CrossRef]
- Takahashi, M.; Ohtsu, I. Aerated flow characteristics of skimming flow over stepped chutes. J. Hydr. Res. 2012, 50, 51–60. [Google Scholar] [CrossRef]
- Zhang, J.M.; Chen, J.G.; Wang, Y. Experimental study on time-averaged pressure in stepped spillway. J. Hydr. Res. 2012, 50, 236–240. [Google Scholar] [CrossRef]
- Tozzi, M.J. Caracterização/Comportamento de Escoamentos em Vertedouros com Paramento em Degraus. Ph.D. Thesis, Escola Politécnica da Universidade de São Paulo (USP), São Paulo, Brazil, 1992. (In Portuguese). [Google Scholar]
- Mateos, C.; Elviro, V. Stepped spillway studies at CEDEX. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zürich, Switzerland, 22–24 March 2000; Minor, H.E., Hager, W.H., Eds.; Balkema: Rotterdam, The Netherlands, 2000; pp. 87–94. [Google Scholar]
- Olinger, J.C. Contribuição ao Estudo da Distribuição de Pressões nos Vertedouros em Degraus. Ph.D. Thesis, Escola Politécnica da Universidade de São Paulo (USP), São Paulo, Brazil, 2001. (In Portuguese). [Google Scholar]
- Olinger, J.C.; Brighetti, G. Distribuição de Pressões em Vertedouros em Degraus. Rev. Bras. Recur. Hídricos 2004, 9, 67–83. [Google Scholar] [CrossRef]
- Sánchez-Juny, M. Comportamiento Hidráulico de los Aliviaderos Escalonados en Presas de Hormigón Compactado. Análisis del Campo de Presiones. Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2001. (In Spanish). [Google Scholar]
- Sánchez-Juny, M.; Dolz, J. Experimental study of transition and skimming flows on stepped spillways in RCC dams. Qualitative analysis and pressure measurements. J. Hydr. Res. 2005, 43, 540–548. [Google Scholar] [CrossRef]
- Sánchez-Juny, M.; Bladé, E.; Dolz, J. Pressures on a stepped spillway. J. Hydr. Res. 2007, 45, 505–511. [Google Scholar] [CrossRef]
- Sánchez-Juny, M.; Bladé, E.; Dolz, J. Analysis of pressures on a stepped spillway. J. Hydr. Res. 2008, 46, 410–414. [Google Scholar] [CrossRef]
- Amador, A. Comportamiento Hidráulico de los Aliviaderos Escalonados en Presas de Hormigón Compactado. Ph.D. Thesis, Universitat Politècnica de Catalunya (UPC), Barcelona, Spain, 2005. (In Spanish). [Google Scholar]
- Amador, A.; Sánchez-Juny, M.; Dolz, J. Developing flow region and pressure fluctuations on steeply sloping stepped spillways. J. Hydr. Eng. 2009, 135, 1092–1100. [Google Scholar] [CrossRef]
- André, S. High Velocity Aerated Flows over Stepped Chutes with Macro-Roughness Elements. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2004. [Google Scholar]
- André, S.; Matos, J.; Boillat, J.-L.; Schleiss, A. Energy dissipation and hydrodynamic forces of aerated flow over macro-roughness linings for overtopped embankment dams. In Proceedings of the International Conference on Hydraulics of Dams and River Structures, Tehran, Iran, 26–28 April 2004; Yazdandoost, F., Attari, J., Eds.; Taylor & Francis Group: London, UK; pp. 189–196. [Google Scholar]
- André, S.; Schleiss, A.J. Discussion of “Pressures on a stepped spillway”. J. Hydr. Res. 2008, 46, 574–576. [Google Scholar] [CrossRef]
- Sanagiotto, D. Características do Escoamento Sobre Vertedouros em Degraus de Declividade 1V:0,75H. Master’s Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2003. (In Portuguese). [Google Scholar]
- Gomes, J.F. Campo de Pressões: Condições de Incipiência à Cavitação em Vertedouros em Degraus com Declividade 1V:0,75H. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2006. (In Portuguese). [Google Scholar]
- Gomes, J.F.; Amador, A.T.; Marques, M.; Matos, J.; Sánchez-Juny, M. Hydrodynamic pressure field on steeply sloping stepped spillways. In Proceedings of the International Junior Researcher and Engineer Workshop on Hydraulic Structures (IJREWHS’06), Montemor-o-Novo, Portugal, 2–4 September 2006; Matos, J., Chanson, H., Eds.; University of Queensland: Brisbane, Australia, 2006; pp. 71–80. [Google Scholar]
- Gomes, J.; Marques, M.; Matos, J. Predicting cavitation inception on steeply sloping stepped spillways. In Proceedings of the 32nd IAHR Congress, Venice, Italy, 1–6 July 2007. [Google Scholar]
- Conterato, E. Escoamento Sobre Vertedouro em Degraus com Declividade 1V:0,75H: Caracterização das Pressões e Condições de Aeração. Bachelor’s Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2011. (In Portuguese). [Google Scholar]
- Ostad Mirza, M.J. Experimental Study on the Influence of Abrupt Slope Changes on Flow Characteristics over Stepped Spillways. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2016. [Google Scholar]
- Canellas, A.V.B. Pressões Extremas Atuantes nas Proximidades das Quinas dos Degraus de Vertedouros. Ph.D. Thesis, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil, 2020. (In Portuguese). [Google Scholar]
- Frizell, K.W.; Renna, F.M.; Matos, J. Cavitation potential of flow on stepped spillways. J. Hydr. Eng. 2013, 139, 630–636. [Google Scholar] [CrossRef]
- Arndt, R.E.A.; Ippen, A. Rough surface effects on cavitation inception. J. Basic Eng. 1968, 90, 249–261. [Google Scholar] [CrossRef]
- Matos, J.; Quintela, A.; Ramos, C. Sobre a protecção contra a erosão de cavitação em descarregadores de cheias em degraus. Recur. Hídricos 2000, 21, 91–96. (In Portuguese) [Google Scholar]
- Lopardo, R.A. Notas sobre fluctuaciones macroturbulentas de presión, medición, análisis y aplicación al resalto hidráulico. Rev. Lat.-Am. Hidráulica 1987, 2, 109–154. (In Spanish) [Google Scholar]
- Takahashi, M.; Yasuda, Y.; Ohtsu, I. Effect of Reynolds number on characteristics of skimming flows in stepped channels. In Proceedings of the 31st IAHR Congress, Seoul, Korea, 11–16 September 2005; pp. 2880–2889. [Google Scholar]
- Boes, R.M. Scale effects in modelling two-phase stepped spillway flow. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zürich, Switzerland, 22–24 March 2000; Minor, H.E., Hager, W.H., Eds.; Balkema: Rotterdam, The Netherlands; pp. 53–60. [Google Scholar]
- Boes, R.M.; Hager, W. Two-phase flow characteristics of stepped spillways. J. Hydr. Eng. 2003, 129, 661–670. [Google Scholar] [CrossRef]
- Pfister, M.; Chanson, H. Two-phase air-water flows: Scale effects in physical modeling. J. Hydrodyn. 2014, 26, 291–298. [Google Scholar] [CrossRef] [Green Version]
- Matos, J. Hydraulic design of stepped spillways over RCC dams. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zürich, Switzerland, 22–24 March 2000; Minor, H.E., Hager, W.H., Eds.; Balkema: Rotterdam, The Netherlands; pp. 187–194. [Google Scholar]
- Meireles, I.; Renna, F.; Matos, J.; Bombardelli, F.A. Skimming, nonaerated flow on stepped spillways over roller compacted concrete dams. J. Hydr. Eng. 2012, 138, 870–877. [Google Scholar] [CrossRef]
- Wood, I.R. Free surface air entrainment on spillways. In Air Entrainment in Free-Surface Flows; IAHR Hydraulic Structures Design Manual 4, Hydraulic Design Considerations; Balkema: Rotterdam, The Netherlands, 1991; pp. 55–84. [Google Scholar]
- Chanson, H. Hydraulic Design of Stepped Cascades, Channels, Weirs and Spillways; Pergamon: Oxford, UK, 1994. [Google Scholar]
- Pfister, M.; Hager, W. Self-entrainment of air on stepped spillways. Int. J. Multiph. Flow 2011, 37, 99–107. [Google Scholar] [CrossRef]
- Meireles, I.; Matos, J.; Frizell, K. Measuring air entrainment and flow bulking in skimming flow over steeply sloping stepped chutes. In Proceedings of the Hydraulic Measurements and Experimental Methods Conference, Lake Placid, NY, USA, 10–12 September 2007. [Google Scholar]
- Meireles, I.; Matos, J.; Melo, J.F. Modelação teórico-experimental do escoamento deslizante sobre turbilhões em descarregadores de cheias em degraus sobre barragens de betão. In Seminário: Barragens—Tecnologia, Segurança e Interação com a Sociedade; Comissão Nacional Portuguesa das Grandes Barragens (CNPGB): Lisbon, Portugal, 2005. (In Portuguese) [Google Scholar]
- Chamani, M.R.; Rajaratnam, N. Characteristics of skimming flow over stepped spillways. J. Hydr. Eng. 1999, 125, 361–368. [Google Scholar] [CrossRef]
- Boes, R.M.; Hager, W. Hydraulic design of stepped spillways. J. Hydr. Eng. 2003, 129, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Matos, J.; Sánchez-Juny, M.; Quintela, A.; Dolz, J. Air entrainment and safety against cavitation damage in stepped spillways over RCC dams. In Proceedings of the International Workshop on Hydraulics of Stepped Spillways, Zürich, Switzerland, 22–24 March 2000; Minor, H.E., Hager, W.H., Eds.; Balkema: Rotterdam, The Netherlands, 2000; pp. 69–76. [Google Scholar]
- Matos, J. Emulsionamento de ar e Dissipação de Energia do Escoamento em Descarregadores em Degraus. Ph.D. Thesis, IST, Lisbon, Portugal, 1999. (In Portuguese). [Google Scholar]
- Meireles, I. Caracterização do Escoamento Deslizante Sobre Turbilhões e Energia Específica Residual em Descarregadores de Cheias em Degraus. Master’s Thesis, IST, Lisbon, Portugal, 2004. (In Portuguese). [Google Scholar]
- Renna, F. Caratterizzazione Fenomenologica del Moto di un Fluido Bifasico Lungo Scaricatori a Gradini. Ph.D. Thesis, Politecnico di Bari, Cosenza, Italy, 2004. (In Italian). [Google Scholar]
- Lopardo, R.A.; De Lio, J.C.; Vernet, G.F. Physical modelling on cavitation tendency for macroturbulence of hydraulic jump. In Proceedings of the International Conference on the Hydraulic Modelling of Civil Engineering Structure, British Hydromechanics Research Association, Coventry, UK, 22–24 September 1982; Stephenson, H.S., Stapleton, C.A., Eds.; pp. 109–121. [Google Scholar]
- Lopardo, R.A.; Lopardo, M.C. Model-prototype correlation of pressure fluctuations on baffle blocks. In Proceedings of the 38th IAHR World Congress, Panama City, Panama, 1–6 September 2019. [Google Scholar] [CrossRef]
- Falvey, H.T. Cavitation in Chutes and Spillways; Technical Report 42; Bureau of Reclamation: Denver, CO, USA, 1990. [Google Scholar]
- Peterka, A.J. The effect of entrained air on cavitation pitting. In Proceedings of the Joint Meeting of the IAHR/ASCE, Minneapolis, MN, USA, 1–4 September 1953; pp. 507–518. [Google Scholar]
- Amador, A.; Sánchez-Juny, M.; Dolz, J. Characterization of the nonaerated flow region in a stepped spillway by PIV. J. Fluids Eng. 2006, 128, 1266–1273. [Google Scholar] [CrossRef] [Green Version]
- Boes, R.M. Guidelines on the design and hydraulic characteristics of stepped spillways. In Proceedings of the 24th ICOLD Congress on Large Dams, Kyoto, Japan, 6–8 June 2012; pp. 203–220. [Google Scholar]
- Pfister, M.; Boes, R.M. Discussion of “Skimming, nonaerated flow on stepped spillways over roller compacted concrete dams”. J. Hydr. Eng. 2014, 140, 07014012–1-2. [Google Scholar] [CrossRef]
- Pfister, M.; Hager, W.; Minor, H.-E. Bottom aeration of stepped spillways. J. Hydr. Eng. 2006, 132, 850–853. [Google Scholar] [CrossRef]
- Schiess-Zamora, A.; Pfister, M.; Hager, W.; Minor, H.-E. Hydraulic performance of step aerator. J. Hydr. Eng. 2008, 134, 127–134. [Google Scholar] [CrossRef]
- Terrier, S. Hydraulic Performance of Stepped Spillway Aerators and Related Downstream Flow Features. Ph.D. Thesis, EPFL, Lausanne, Switzerland, 2016. [Google Scholar]
- Terrier, S.; Pfister, M.; Schleiss, A.J. Performance and design of a stepped spillway aerator. Water 2022, 14, 153. [Google Scholar] [CrossRef]
- Chanson, H. Discussion of “Cavitation potential of flow on stepped spillways”. J. Hydr. Eng. 2015, 141, 07014025. [Google Scholar] [CrossRef] [Green Version]
- Frizell, K.W.; Renna, F.M.; Matos, J. Closure to “Cavitation potential of flow on stepped spillways”. J. Hydr. Eng. 2015, 141, 07015009. [Google Scholar] [CrossRef]
- Frizell, K.; Mefford, B. Designing spillways to prevent cavitation damage. Concr. Int. 1991, 13, 58–64. [Google Scholar]
Setup | H (m) | W (m) | h (m) | l (m) | NTH (−) | NTV (−) | y (mm) | z (mm) | y/l (−) | z/h (−) |
---|---|---|---|---|---|---|---|---|---|---|
LOH I | 2.45 | 0.40 | 0.06 | 0.0450 | 27 | 27 | 4.0 | 5.0 | 0.089 | 0.083 |
LOH II | 4.60 | 0.50 | 0.06 | 0.0450 | 26 | 23 | 8.0 | 8.0 | 0.178 | 0.133 |
LAHE | 2.30 | 1.15 | 0.09 | 0.0675 | 9 | 9 | 5.6 | 7.5 | 0.083 | 0.083 |
Setup | q (m2/s) | dc/h (-) | Re (-) | Fri (-) | Wei (-) |
---|---|---|---|---|---|
LOH I | 0.100 | 1.68 | 9.9 × 104 | 5.22 | 97 |
0.125 | 1.95 | 1.2 × 105 | 5.36 | 105 | |
0.150 | 2.20 | 1.5 × 105 | 5.47 | 115 | |
0.200 | 2.66 | 2.0 × 105 | 5.66 | 128 | |
0.250 | 3.09 | 2.5 × 105 | 5.80 | 141 | |
0.275 | 3.29 | 2.7 × 105 | 5.87 | 147 | |
0.330 | 3.72 | 3.3 × 105 | 5.99 | 158 | |
0.350 | 3.87 | 3.5 × 105 | 6.03 | 163 | |
LOH II | 0.054 | 1.11 | 5.3 × 104 | 4.87 | 75 |
0.082 | 1.47 | 8.1 × 104 | 5.11 | 91 | |
0.108 | 1.77 | 1.1 × 105 | 5.27 | 102 | |
0.150 | 2.20 | 1.5 × 105 | 5.47 | 115 | |
0.200 | 2.66 | 2.0 × 105 | 5.66 | 128 | |
0.300 | 3.49 | 3.0 × 105 | 5.93 | 153 | |
0.400 | 4.23 | 4.0 × 105 | 6.13 | 171 | |
0.500 | 4.90 | 5.0 × 105 | 6.29 | 186 | |
LAHE | 0.100 | 1.12 | 9.9 × 104 | 4.87 | 112 |
0.125 | 1.30 | 1.2 × 105 | 5.00 | 126 | |
0.150 | 1.47 | 1.5 × 105 | 5.10 | 134 | |
0.200 | 1.78 | 2.0 × 105 | 5.28 | 151 | |
0.275 | 2.19 | 2.7 × 105 | 5.47 | 171 | |
0.330 | 2.48 | 3.3 × 105 | 5.59 | 185 | |
0.356 | 2.61 | 3.5 × 105 | 5.64 | 189 |
Data | a | b | c | d | R2 | |
---|---|---|---|---|---|---|
Full data set (vertical face) −25 ≤ L′ ≤ 50 | C′p | 0.1313 | 0.0018 | 0.0410 | 0.0020 | 0.80 |
Cp0.1% | −0.6507 | −0.0094 | 0.0421 | 0.0024 | 0.80 | |
Cp1.0% | −0.4210 | −0.0072 | 0.0440 | 0.0024 | 0.79 | |
Cp5.0% | −0.2626 | −0.0054 | 0.0459 | 0.0023 | 0.76 | |
Re ≥ 2 × 105; dc/h ≥ 1.78 | Cp99.9% | 1.1759 | 0.0084 | 0.0304 | −0.0003 | 0.46 |
(horizontal face) | Cp99.0% | 0.8956 | −0.0012 | 0.0232 | −0.0003 | 0.58 |
0 ≤ L′ ≤ 50 | Cp95.0% | 0.6469 | −0.0040 | 0.0202 | −0.0003 | 0.62 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matos, J.; Novakoski, C.K.; Ferla, R.; Marques, M.G.; Dai Prá, M.; Canellas, A.V.B.; Teixeira, E.D. Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams. Water 2022, 14, 306. https://doi.org/10.3390/w14030306
Matos J, Novakoski CK, Ferla R, Marques MG, Dai Prá M, Canellas AVB, Teixeira ED. Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams. Water. 2022; 14(3):306. https://doi.org/10.3390/w14030306
Chicago/Turabian StyleMatos, Jorge, Carolina Kuhn Novakoski, Rute Ferla, Marcelo Giulian Marques, Mauricio Dai Prá, Alba Valéria Brandão Canellas, and Eder Daniel Teixeira. 2022. "Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams" Water 14, no. 3: 306. https://doi.org/10.3390/w14030306
APA StyleMatos, J., Novakoski, C. K., Ferla, R., Marques, M. G., Dai Prá, M., Canellas, A. V. B., & Teixeira, E. D. (2022). Extreme Pressures and Risk of Cavitation in Steeply Sloping Stepped Spillways of Large Dams. Water, 14(3), 306. https://doi.org/10.3390/w14030306