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Abstract: Groundwater monitoring and water level predictions have been a challenging issue due
to the complexity of groundwater movement. Simplified numerical simulation models have been
used to represent the groundwater system; these models however only provide the conservative
approximation of the system and may not always capture the local variations. Several other efforts
such as coupling groundwater models with hydrological models and using geostatistical methods
are being practiced to accurately predict the groundwater levels. In this study, we present a novel
application of a geostatistical tool on residuals of the groundwater model. The kriging method was
applied on the residuals of the numerical model (MODFLOW) generated by the TWDB (Texas Water
Development Board) for the Edwards–Trinity (Plateau) aquifer. The study was done for the years
1995 through 2000 where 90% of the observation data was used for model simulation followed by
cross-validation with the remaining 10% of the observations. The kriging method reduced the average
absolute error of approximately 31 m (for MODFLOW simulation) to less than 5 m. Furthermore,
the residuals’ average standard error was reduced from 9.7 to 4.7. This implies that the mean value
of residuals over the entire period can be a good estimation for each year separately. The use of the
kriging technique thus can provide improved monitoring of groundwater levels resulting in more
accurate potentiometric surface maps.

Keywords: groundwater monitoring; modeling; MODFLOW; kriging; residuals; water levels;
Edwards–Trinity aquifer

1. Introduction

The exponential growth of population, rapid socio-economic development, increasing
food demand, and changing climatic factors have led to a decline in both the quality and
quantity of freshwater resources. The decreasing available resources have posed serious
challenges in the agricultural sector with limited water available for irrigation. As an
alternative resource, the reuse of wastewater in irrigation has been increasingly recognized
as an essential, and economical strategy [1–3]. However, only a small fraction of wastewater
with less than 6% in the US [4] and less than 3% globally [5] is reclaimed; and the irrigation
largely relies on groundwater sources. Groundwater is one of the primary sustainable water
resources, especially during the high demand seasons, due to its lower susceptibility to
sudden changes. About 70% of groundwater withdrawal worldwide is used for agriculture
while irrigating nearly 38% of irrigated lands [6]. Likewise, nearly 50% of irrigated lands in
the United States are based on groundwater sources [6].

Over the past centuries, extreme drought events have significantly affected both
surface and groundwater resources [7,8]. While low surface water levels might be an
immediate indicator of drought, changes to groundwater levels indicate long-term water
scarcity. Further, it is straightforward to monitor and assess surface water changes while
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measuring variations in groundwater resources is very challenging and time-consuming.
Water movement in porous media is sufficiently complex to simulate and even the most
elaborate models cannot estimate all details of this complexity, even if attempted, it ends
with a parsimonious estimation of the reality.

The most common approach which has been used for decades is to estimate the
groundwater head variable, mostly by using numerical models [9–11]. The numerical
models use mathematical equations to describe the physics of the groundwater flow; the
model accuracy thus depends on how precisely the conceptual models describe the real-
world system. These models largely rely on the available water-level data [12,13]. However,
groundwater-level data are often irregularly sampled, leading to temporal gaps in the
record, and are not adequately distributed spatially across an aquifer [14–16]. The spatial
sparseness of data presents challenges when spatially interpolating potentiometric surfaces
and creating groundwater maps [14,17,18].

In addition to numerical models, statistical-based or regression-based approaches like
kriging, spline interpolation, and neural networks have also been used in predicting water
levels [19,20]. The most vivid method applied in the spatially auto-correlated variable
like groundwater level is the kriging method namely, the ordinary kriging technique.
Aboufirassi et al. [21] employed the universal kriging to estimate the water table for the
Souss aquifer in central Morocco. Pucci and Murashige [22] used kriging for optimizing
data collection and utility in a regional groundwater investigation in central New Jersey and
confirmed that kriging is a useful tool especially in areas lacking enough data for developing
a water table management network. Hoeksema et al. [23] applied the co-kriging method
to estimate the groundwater level at unknown points. A similar study was done by other
researchers where the kriging method was used to estimate the water levels at wells [24,25].
Theodossiou and Latinopoulos [13] used the kriging method on 31 wells in evaluating
and optimizing the groundwater level observation networks. Ahmadi and Sedghamiz [26]
evaluated the spatial and temporal variations of groundwater level of 39 observation wells
using kriging. In their later article [27], the kriging and co-kriging methods were applied for
groundwater depth mapping in southern Iran. Tapoglou et al. [12] used Artificial Neural
Networks (ANNs) to estimate the temporal prediction of the water level and applied
the kriging method to spatial parts. Ruybal et al. [17] used spatiotemporal kriging in
evaluating groundwater levels in the Arapahoe aquifer. These approaches come with a
major limitation in that they fail to explain the physics of the groundwater flow [28].

This study presents an integrated approach where the groundwater model is coupled
with a geo-spatial kriging tool. This way, we expect to integrate the strong aspects of both
approaches while reducing their demerits. The numerical model will explain the physics of
groundwater flow. The statistical interpolation method, kriging will then be used on the
numerical model’s errors with an expectation of improving our estimation by considering
the complexity not detected by a numerical model. In this study, the kriging method was
applied on the residuals of the numerical model (MODFLOW) generated by the TWDB
(Texas Water Development Board) for the Edwards–Trinity (Plateau) aquifer to improve
the estimation of the water table spatially. The study was done for the years 1995 through
2000 where 90% of the observation data was used for model simulation followed by cross-
validation with the remaining 10% of the observation data. To the authors’ knowledge, no
prior efforts have been done using the technique adopted in this paper. Most importantly,
the significant improvement in groundwater level predictions makes this study a promising
approach for the sustainable management of water resources.

2. Methodology
2.1. Study Area

The Edwards–Trinity (Plateau) Aquifer, as shown in Figure 1, expands over west-
central Texas between 97◦ and 105◦ west longitudes and between 29◦ and 33◦ north latitudes.
The topology of the aquifer is known as a plateau, lightly leveling from about 610 m (2000 ft)
above sea level in the southeast to about 915 m (3000 ft) in the northwest. The precipitation
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in the region ranges between 86 cm (34 in) in the east to 30 cm (12 in) in the west. The
maximum average annual temperature for the study area ranges between 23 ◦C (73◦ F) in
the Trans-Pecos uplands to 26 ◦C (79◦ F) in southern Val Verde County. The study area
had numerous drought events during the past hundred years [29]. Yet, the drought events
are expected to have minimal impacts for the study period (1995 through 2000) as the last
drought was during the 1950s.
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Figure 1. Location of the study area—Edwards–Trinity (Plateau) Aquifer.

2.2. Data

Data on groundwater levels, climate data, boundaries shapefiles, data on hydraulic
properties of the aquifer, elevation data, and MODFLOW simulated heads were required.
All these data were obtained from the TWDB website [30]. The water levels were obtained
from the Groundwater Database (GWDB:1, accessed on 1 April 2020 ) consisting of shape-
files with geospatial information on water level and quality for management, monitoring,
and characterization of the water in the Edwards–Trinity aquifers. The precipitation data
was gathered using raster data for the years 1995 through 2001. The boundaries and hy-
draulic properties were gathered from separate shapefiles consisting of aquifer boundaries,
model boundaries, Texas county boundaries, hydraulic conductivity for each one sq. km.
The elevation data was obtained from the raster files consisting of DEM (Digital Elevation
Model), top and bottom elevation of the Edwards and Trinity aquifers. Lastly, MODFLOW
generated heads were obtained as publicly accessible binary files produced from the MOD-
FLOW model developed by TWDB. Figure 2 shows the location of observation wells for all
the years (1995–2000). Not all years have observation data available for the same locations,
thus the locations for each year were selected randomly as can be seen in Figure 2.



Water 2022, 14, 426 4 of 16

Water 2022, 14, x  4 of 16 
 

 

from the MODFLOW model developed by TWDB. Figure 2 shows the location of obser-
vation wells for all the years (1995–2000). Not all years have observation data available for 
the same locations, thus the locations for each year were selected randomly as can be seen 
in Figure 2. 

 
Figure 2. Location of observation wells in the Edwards–Trinity aquifer. 

2.3. Modeling 
Figure 3 represents a schematic diagram of the research methodology adopted. As 

shown in the figure, the general scheme of this study consists of three major compo-
nents—(1) Data Preparation, (2) Calibration, and (3) Cross-Validation and includes a se-
ries of steps used interactively as listed below: 
• Mapping MODFLOW simulated groundwater heads (model imported from TWDB) 

into their corresponding coordinates and overlap with observation data to find the 
MODFLOW estimated values in the observation point. 

• Subtracting the observed groundwater head with MODFLOW simulated head and 
consider as the model residuals. 

Figure 2. Location of observation wells in the Edwards–Trinity aquifer.

2.3. Modeling

Figure 3 represents a schematic diagram of the research methodology adopted. As
shown in the figure, the general scheme of this study consists of three major components—
(1) Data Preparation, (2) Calibration, and (3) Cross-Validation and includes a series of steps
used interactively as listed below:

• Mapping MODFLOW simulated groundwater heads (model imported from TWDB)
into their corresponding coordinates and overlap with observation data to find the
MODFLOW estimated values in the observation point.

• Subtracting the observed groundwater head with MODFLOW simulated head and
consider as the model residuals.

• Dividing the residuals into two separate datasets, 90 percent of data for fitting kriging
methods (calibrating residuals) and 10 percent for validating part (validating residuals),
in a random selection.

• Pre-evaluating the calibrating residuals and fit kriging method to generate the esti-
mated residual map for the study domain.

• Comparing the validating residuals with an estimated one to evaluate the accuracy of
the kriging method.
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2.3.1. Data Preparation

To minimize the distortion of the area and appropriate evaluation of the data, the NAD
1983 Texas Centric Mapping System Albers was used. First, the data were categorized into
two groups—observed data and MODFLOW generated output. The observed data consists
of the mean values for the water tables during the winter season (winter months were
selected as the water tables are expected to be more stable during winter and thus minimize
the anthropogenic effects due to uncertainties in demand seasons). The observed data were
then provided with coordinates and transformed into a shapefile. For the MODFLOW
generated data, the model grid shapefile produced by the MODFLOW program was
employed in the study area and saved based on the needed attributes for future analysis.
The binary files consisting of groundwater head data were converted to a text file using
python programming. The extracted head data were matched with the corresponding
observed data by locating the observation data in the grid shapefile. Finally, the shapefile
of observation data was overlaid on the MODFLOW grid shapefile to determine the value
of the MODFLOW generated head for each observation point. The MODFLOW generated
heads were compared with the observed data for the corresponding locations thus obtaining
the residuals.

2.3.2. Kriging Method

Kriging is one of the well known methods of predicting spatial characteristics and it
has been used in a variety of fields (e.g., soil science, ecology, mining, and water resources)
to provide a robust unbiased estimation of geo-distributed variables from small scales like X-
ray scattering experiments [31] to large ones like traffic behavior pattern [32], soil properties’
profile [33], and anticipating the metrological variables [34]. The main advantage of the
kriging method over the other spatial interpolation techniques is that the method is driven
based on the statistical theory, comparing others that are mostly deterministic and they
have the lack of ability to use for prediction. Furthermore, studies over geo-dependent
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variables showed that kriging has outstanding performance compared with its similar
existing interpolation methods [35].

Equation (1) shows the stochastic function that is considered in the simple kriging
method:

Z(s) = µ + ε(s) (1)

where Z(s) is the estimating function—which is simulated groundwater head elevation in
our study, µ is a constant value representing the mean value of the groundwater head and
ε(s) is a random error function regarding the model error from the observed records.

Estimating the value of Z(s) relies on two primary assumptions of considering that
variables are randomly distributed, and they preserve second-order stationary condition
respect to the location [36], which means:

E[Z(s + h)] = E[Z(s)] (2)

cov[Z(s + h), Z(s)] = C[h] (3)

where h is a vector that connects point s to point s + h. Equation (2) implies that the
expected value E[Z(s)] is constant in all domains as represented in Equation (1) by the
constant µ. However, in reality, this value fluctuates from place to place due to inherent
trends and variability in data. To deal with this problem, it is usually assumed that the
estimating variable (groundwater head) comprises two components

Z(s) = m(s) + e(s) (4)

where m(s) presents the deterministic part and e(s) is the statistical component of the
estimating variable which includes the spatially correlated random variable. Since m(s)
is treated as a deterministic part, it can be determined in a separate process and summed
up with residuals random function component e(s). In this study, the deterministic part of
the head variable is estimated by existing numerical models. We then applied the ordinary
kriging (OK) to the residuals of the numerical model for the statistical part assuming the
mean value of error is not known and needs to be obtained over optimization process by
minimizing the variance of errors.

3. Results and Discussion
3.1. Data Investigation

In standard statistical problems, the first step before starting to model the phenomena
is to examine the data. In this study, a commonly used statistical tool, histogram, was
used to see if the MODFLOW residuals are normally distributed. As shown in Figure 4,
the residuals in general, follow the normality pattern. However, some level of negative
skewness and distortion of normality was observed in the data which could be attributed
to the complexity of nature.

Next, the residuals were checked for spatial correlation as the data tends to share some
information with their neighbors. A variogram method was used to estimate how strongly
data are related to each other. The variogram in space is usually implemented to check two
major assumptions in the application of the kriging method—stationary in space (variance
is independent of location) and isotropy (variance is independent of direction). Thus, a
semi-variogram cloud or plot was used to provide a better visual understanding of the
data distribution and to detect any possible trends or geometric anisotropic behavior.
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Figure 5 shows the semi-variogram clouds of water level residuals calculated from
subtraction between observation points and the MODFLOW outputs for the years 1995
to 2000. The difference squared (γ) in Figure 5 represents the MODFLOW residuals
dissimilarity which is defined as:

γ =
1
2
(
Z(si)− Z

(
sj
))2 (5)

where s is sample location and Z is the residual value.
The reddish circles in the figure indicate that there is a strong gradient observed at short

distances, as the value of the semi-variogram for each pair in these areas is significantly
high. This significant change can be an indication of non-stationarity in higher ranks caused
by neighboring drainage areas or rivers. However, to get a proper conclusion over the
sources that resulted in non-stationary, more investigation needs to be considered which is
beyond the scope of this study.
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The semi-variogram was further used for interpolation where semi-variance was used
to represent the expected value of the residuals’ dissimilarity. A theoretical model was
fit into the sample data. In this study, a commonly used Spherical function was used.
The spherical function shows a progressive decrease of spatial autocorrelation until some
distance (radius of influence), beyond which autocorrelation is zero [37]. As observed
from the sample variogram in Figure 6, the Nugget variance of 50 and range of 50,000 was
defined for fitted theoretical semi-variogram.
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Figure 6. Sample variogram and fitted model applied on Edwards aquifer dataset for years 1995
through 2000.

3.2. Model Simulation

The ordinary Kriging method was applied to the MODFLOW residuals. In the process,
the existing trend arising from uncertainties of the simulated model was removed using
first-order trend and the exponential Kernel function was applied to weight the values of
the neighbors closed to sampled values [38].

The spherical model was chosen to fit on a semi-variogram, and the maximum number
of neighbors affecting the predicted data was limited to ten points. The kriging then applied
as a single model resulted in a higher mean root square error (not presented in this paper),
thus the area was divided into four quadrants with 45 offsets to minimize the distortion
due to anisotropy as observed in Figure 5.

Figure 7 shows the prediction for OK applied to Edwards–Trinity aquifer between the
years 1995 to 2000. High residuals (as shown by dark red and blue color) were observed
for the areas outside the boundary while the residual values are minimal inside the study
area. Furthermore, similar observations were observed in deviations as shown in Figure 8.
The high residuals or larger deviation (as shown by purple color) outside the boundary is
attributed to the missing observation data. Furthermore, some areas inside the study area
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showed relatively higher residuals with larger deviations which could also be due to the
missing observation data.
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3.3. Model Validation

As mentioned before, the entire dataset was divided into two sets—a simulation
dataset (90% data) and a validation dataset (remaining 10% data). First, kriging was
applied on 90% of the data where the validation was performed automatically using the
ArcGIS Geostatistical Analyst toolbar [38]. The Geostatistical Analyst toolbar provides
the measured and predicted values and the standard error for each point. During the
process, the software keeps any individual points separate from other data (referred to as
dataset) for estimating the spherical model parameters. The parameters are then estimated



Water 2022, 14, 426 12 of 16

using every such dataset and the process continues until optimal parameters that best fit
the entire datasets are obtained. Table 1 presents the average water head for observation
points along with predicted water heads using MODFLOW and kriging, while Table 2
provides a detailed summary of kriging application on the MODFLOW residuals. As
observed in Table 1, the residuals obtained from the MODFLOW simulation are much
higher as compared to the residuals obtained after the application of kriging. The residuals
significantly reduced from an average value of approximately 37 m to less than 1 m, with a
standard error of approximately 0.5 m.

Table 1. Average water heads using MODFLOW and kriging method (simulation dataset).

Year Observations 1

MODFLOW (m) MODFLOW + Kriging (m)

Mean a 2 Observed
Residuals 3

Standard
Error Mean b 4 Predicted

Residuals 5 Error 6 Standard
Error

1995 727.5 764.7 −37.2 3.1 728.7 −36 1.2 0.7
1996 665.5 706 −40.5 3.3 667.1 −38.9 1.6 0.4
1997 692.4 725.5 −33.1 2.9 693.5 −32 1.1 0.4
1998 682.4 716.6 −34.2 2.9 682.8 −33.8 0.4 0.5
1999 708.3 747.1 −38.8 2.9 708.6 −38.5 0.3 0.3
2000 686 724.7 −38.7 3.2 685.3 −39.4 −0.7 1.1

1 Observed average value for water level for the given year (winter season). 2 MODFLOW simulated average
value for water level for the given year (winter season). 3 Difference between observed values and the MODFLOW
simulated values (Observations—Mean a). 4 Simulated average value for water level for the given year after
application of kriging (Mean a + Predicted Residuals). 5 Residuals obtained after application of kriging on the
observed residuals. 6 Difference between predicted and observed residuals for each point.

Table 2. Detailed summary of kriging application on MODFLOW residuals (simulation dataset).

Year Min. 1st Qu. Median Mean 3rd Qu. Max.

1995

Observed Residuals −141.6 −53.1 −32.2 −37.2 −20.8 55.2
Predicted Residuals −147.1 −52.1 −31.9 −36 −22.5 52.3

Error −97.3 −6.7 −0.1 1.2 5.2 84.5
Standard Error 0.4 0.7 0.8 0.7 0.8 0.8

1996

Observed Residuals −137.1 −60.8 −40.9 −40.5 −16.1 30.4
Predicted Residuals −132.7 −56.8 −43.3 −38.9 −14.3 33.6

Error −49.6 −6.4 0.8 1.6 11.6 72.8
Standard Error 0.4 0.4 0.4 0.4 0.4 0.4

1997

Observed Residuals −135.4 −51.7 −32.6 −33.1 −11.3 62.5
Predicted Residuals −148.1 −47 −31.7 −32 −9.1 45.7

Error −59 −6.4 0.5 1 7.7 78
Standard Error 0.2 0.4 0.4 0.4 0.4 0.5

1998

Observed Residuals −131 −54.3 −32.3 −34.2 −16.9 64
Predicted Residuals −145.8 −53.2 −33.4 −33.8 −19.3 43.8

Error −50 −8.7 0.4 0.4 7.1 61.3
Standard Error 0.4 0.5 0.5 0.5 0.5 0.5

1999

Observed Residuals −144.6 −54 −31.7 −38.8 −18.4 52.5
Predicted Residuals −150 −53.1 −31.1 −38.5 −20.9 52.2

Error −55.2 −8.2 0.4 0.3 7.7 75.9
Standard Error 0.3 0.3 0.3 0.3 0.3 0.3

2000

Observed Residuals −141.1 −59.3 −35.7 −38.7 −15.8 48
Predicted Residuals −139.3 −56.4 −39.5 −39.4 −19.1 36.1

Error −79.7 −8.7 0 −0.7 8.3 66.2
Standard Error 0.4 1.2 1.2 1.1 1.2 1.3

As a next step, a manual cross-validation was adopted where the calibrated model
was applied to the remaining 10% of the data. Table 3 presents the average water heads
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for observation points along with predicted water heads using MODFLOW and kriging.
Similar to observations in Table 1, higher residuals were obtained for the MODFLOW
simulation for all the years. However, after the application of kriging on MODFLOW
residuals, the average absolute error of approximately 31 m (from MODFLOW simulation)
was reduced to less than 5 m. A similar reduction was observed in the residuals’ average
standard error where the values reduced from 9.7 to 4.7. The observed reduction in standard
error thus indicates that the average value of residuals over the entire period can be a good
estimation for each year separately. Table 4 provides a detailed summary of the kriging
application on the residuals.

Table 3. Average water heads using MODFLOW and kriging method (validation dataset).

Year Observations

MODFLOW (m) MODFLOW + Kriging (m)

Mean Observed
Residuals

Standard
Error Mean Predicted

Residuals Error Standard
Error

1995 758.7 802.1 −43.5 8.7 753.6 −48.5 −5.1 3
1996 697.6 729 −31.4 14.7 689.1 −39.9 −8.5 5.3
1997 683 707.6 −24.6 5.9 677.4 −30.1 −5.5 3.9
1998 694.8 733 −38.1 10.7 694.6 −38.3 −0.2 8.1
1999 716.5 744.8 −28.3 8.4 714 −30.8 −2.5 3.8
2000 644.7 665.5 −20.8 10 646.5 −19 1.8 4.6

Table 4. Detailed summary of kriging application on MODFLOW residuals (validation dataset).

Year Min. 1st Qu. Median Mean 3rd Qu. Max.

1995

Observed Residuals −131.8 −50 −33.9 −43.5 −24 −15
Predicted Residuals −132.5 −55 −31.8 −48.5 −24.8 −18.9

Error −7.1 −1.3 0.8 5.1 8.9 29.3
Standard Error - - - 3 - -

1996

Observed Residuals −138.1 −55.2 −30.1 −31.4 −1.8 61
Predicted Residuals −143.1 −46.5 −37.2 −40 −5.3 40.3

Error −20.5 −5.2 5 8.5 20.3 52.1
Standard Error - - - 5.3 - -

1997

Observed Residuals −82.3 −36.6 −28.1 −24.6 −6.9 16.2
Predicted Residuals −80.9 −44.9 −31.1 −30.2 −7.3 16.7

Error −18.5 −3.1 0 5.5 20.6 38.7
Standard Error - - - 3.9 - -

1998

Observed Residuals −134.5 −56.6 −33.7 −38.1 −25.2 62
Predicted Residuals −76.3 −51.7 −45 −38.3 −22.5 −10.1

Error −87.3 −6 0.8 0.2 10.4 72.9
Standard Error - - - 8.1 - -

1999

Observed Residuals −68.1 −54.8 −33.6 −28.3 −19.3 65.5
Predicted Residuals −71 −52.1 −39.1 −30.8 −22.8 32

Error −38.6 −2.7 0.3 2.5 9.7 35.8
Standard Error - - - 3.8 - -

2000

Observed Residuals −120.5 −46.4 −16.2 −20.8 −3.2 65.6
Predicted Residuals −71.7 −45.9 −20.4 −19.1 4.2 41

Error −48.9 −4 0.5 −1.7 10.2 24.7
Standard Error - - - 4.6 - -

For all the years, the water head for observation points obtained after kriging is much
closer to the observed values. However, for the year 2000, three observation points (11, 12,
and 15) showed higher residuals after the application of kriging as shown in Table 5. This
could possibly be due to the higher prediction accuracy of the MODFLOW simulation in
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those points. The table with water heads for all the years (1995 through 2000) has been
provided as a supplementary file in Table S1.

Table 5. Predicted water heads for observation points for the year 2000.

Observation
Well

Observed
Head (m)

MODFLOW (m) MODFLOW + Kriging (m)

Simulated
Head Residuals Predicted

Head Residuals

1 769 786.9 −17.9 764.4 4.6
2 745.7 760.1 −14.4 741.8 3.8
3 748.3 868.8 −120.5 797.2 −48.9
4 1059.2 993.6 65.6 1034.6 24.7
5 662.2 713.2 −50.9 652.3 10
6 548.9 595.9 −47 552.5 −3.6
7 586.6 608.2 −21.6 574.7 12
8 648.8 695 −46.2 647.2 1.6
9 585 617.7 −32.6 570.1 14.9

10 616.1 663.8 −47.7 618.4 −2.3
11 613.4 619.5 −6.2 602.2 11.1
12 618.5 623.3 −4.8 629.4 −10.9
13 623.6 620.6 3 624.1 −0.5
14 588.9 568.3 20.5 594 −5.1
15 555.1 568.4 −13.3 593 −37.8
16 346.3 344.7 1.6 347.4 −1.2

3.4. Comparison to Other Studies

The integrated approach used in this study satisfactorily described the general pattern
of residuals generated by numerical model MODFLOW, thereby improving the prediction
of the groundwater level at ungauged areas. Results showed that the integrated kriging
and MODFLOW method can be used as an alternative approach in improving the existing
numerical models whilst reducing the underlying model uncertainties. Most of the previous
studies focused on decreasing the uncertainties by improving the resolution, or/and
including local hydraulic variables like pumping and recharge/discharge to the large-
scaled models [39].

However, the uncertainties in residuals can have sources of randomness that the
improvements in the modeling process may not address, and rather could be represented
by statistical methods such as kriging. The applied ordinary kriging in this study showed
that the MODFLOW model’s residuals are locally correlated noises and can be estimated
from their neighbors to some extent (with the range of 50 km) by using the spherical method
as a correlation function. The numerical model used in this study was developed and
improved by Anaya & Jones [29] and is the MODFLOW model approved by TWDB for the
Edwards–Trinity Aquifer. In this study, MODFLOW was used as a deterministic part and
the model uncertainties were presented as trends during the kriging model. The use of
kriging reduced the average absolute error from approximately 31 m (from MODFLOW
simulation) to less than 5 m after the application of kriging, which aligns with the findings
from a previous study by Liu et al., [40]. They calibrated the MODFLOW model and were
able to reduce the average absolute error from 7.7 m to 3.44 m through updates in the
numerical modeling process. During the calibration process, they revised the recharge and
used the actual value for pumping. However, the improvement was only performed for a
smaller region (only the San Antonio segment of the aquifer) in contrast to improvement
over the entire Edwards–Trinity as in the study presented by the authors.

4. Conclusions

The kriging method was applied to improve spatial confidence in groundwater-level
predictions at unsampled locations. Kriging was applied on the MODFLOW residuals
for the groundwater levels in the Edwards–Trinity aquifer in Texas. The study was done
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for the years 1995 through 2000 where 90% of the observation data was used for model
simulation followed by validation with the remaining 10% of the observations. The kriging
method significantly improved water level predictions. The average absolute error of
approximately 31 m (from MODFLOW simulation) was reduced to less than 5 m after
the application of kriging on MODFLOW residuals. Furthermore, the average residuals’
standard error decreased from 9.7 to 4.7, which indicates that the average value of residuals
over the entire period can be a good estimation for each year separately. With improved
water level predictions, geostatistical tools such as kriging can be used to produce more
accurate potentiometric surface maps. Such improved results and accurate monitoring of
groundwater resources will lead to the sustainable use of groundwater resources while
also aiding in efficient and effective conjunctive management of surface and groundwater
resources.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/w14030426/s1, Table S1: Predicted water head for observation points for the the years 1995
through 2000.
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