Has Technological Progress Contributed to the Bias of Green Output in China’s Marine Economy?
Abstract
:1. Introduction
- using the directional distance function based on RDM, the Chinese marine GTFP was measured and decomposed to obtain the OBTC index of each coastal province from 2006 to 2018, to judge whether there is obvious output-biased technological progress in the development process of China’s marine economy.
- analyzing the rationality of the current output-biased technological progress, and judging whether the technological progress of each province in each year has promoted the green output bias of China’s marine economy from the two dimensions of time and space, and then identifying the non-efficient areas and providing guidance for them to improve the input–output structure and optimize resource allocation.
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Nonparametric Methods Based on the DEA (Data Envelopment Analysis)
2.2.2. The Direction Distance Function Based on the RDM
2.2.3. Measurement of the OBTC Index
2.2.4. The Method of Judging Output Bias
2.3. Data Acquisition
2.3.1. Input Indicator
- Non-quantitative processing of indicators. The original indicator data matrix is , wherein the is the value of the regional i indicator j, the proportion of this value is . Therefore, the original matrix can be converted into a scaleless matrix .
- Calculate the entropy value of indicator j:.
- Calculate the difference coefficient of indicator . Given the indicator , the smaller the difference between the of each sample, the greater the entropy value , the smaller the role of indicator in the comprehensive evaluation. We define , So, the bigger the , the more important the indicator is in the comprehensive evaluation.
- Calculate the objective weight of indicator j:.
- Calculate the composite index of resource inputs h:.
2.3.2. Output Indicator
3. Results
3.1. Dynamic Evolution of GTFP and Decomposition Components
3.2. Regional Distribution of the Marine Green OBTC Index
3.3. Analysis of Specific Output Biases for Technological Progress
4. Discussion
4.1. Analysis of the Existence and Trend of Output-Biased Technological Progress
4.2. The Role of Technological Progress in Promoting the Bias of Green Output
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, J.; Wang, Y.; Song, M.; Zhao, R. Analyzing the decoupling relationship between marine economic growth and marine pollution in China. Ocean Eng. 2017, 137, 1–12. [Google Scholar] [CrossRef]
- Jiang, X.Z.; Liu, T.Y.; Su, C.W. China’s marine economy and regional development. Mar. Policy 2014, 50, 227–237. [Google Scholar] [CrossRef]
- Ji, J.Y.; Sun, X.W. Research on connotation and evaluation framework of the transformation and upgrading of marine industry. J. Ocean. Univ. China (Soc. Sci.) 2021, 11, 33–40. [Google Scholar] [CrossRef]
- Yuan, Q.M.; Zhang, W.L.; Feng, D. An analysis of Chinese marine economic efficiency change and productivity change under constraints of resources and environment. Econ. Surv. 2016, 33, 13–18. [Google Scholar] [CrossRef]
- Wang, S.H.; Sun, X.L.; Song, M.L. Environmental regulation, resource misallocation, and ecological efficiency. Emerg. Mark. Financ. Trade 2021, 57, 611–630. [Google Scholar] [CrossRef]
- Wang, S.H.; Wang, X.Q.; Lu, B.B. Is Resource Abundance a Curse for Green Economic Growth? Evidence from Developing Countries. Resour. Policy 2021, 75, 102533. [Google Scholar] [CrossRef]
- Wang, B.H.; Zhang, X. Measurement and analysis of industrial biased technological progress in China based on SBM directional distance function. Sci. Technol. Manag. Res. 2021, 13, 107–116. [Google Scholar] [CrossRef]
- Zhang, X.H.; Wu, L.L.; Shi, P.; Li, N.; Liu, X.F. Research on the countermeasures of green development of “Blue Economy” in Guangdong-Hong Kong-Macao greater bay area. Ecol. Econ. 2021, 37, 59–63. [Google Scholar]
- Wang, S.H.; Chen, S.S.; Zhang, H.Y.; Song, M.L. The Model of Early Warning for China’s Marine Ecology-Economy Symbiosis Security. Mar. Policy 2021, 128, 104476. [Google Scholar] [CrossRef]
- Ding, L.L.; Zhu, L.; He, G.S. Measurement and influencing factors of green total factor productivity of marine economy in China. Forum Sci. Technol. China 2015, 2, 72–78. [Google Scholar] [CrossRef]
- Wang, S.H.; Lu, B.B.; Yin, K.D. Financial development, productivity, and high-quality development of the marine economy. Mar. Policy 2021, 130, 104553. [Google Scholar] [CrossRef]
- Soug, M.; Wang, S. Measuring environment-biased technological progress considering energy saving and emission reduction. Process Saf. Environ. Prot. 2018, 116, 745–753. [Google Scholar] [CrossRef]
- Zha, D.; Kavuri, A.S.; Si, S. Energy-biased technical change in the Chinese industrial sector with CES production functions. Energy 2018, 148, 896–903. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.H.; Chen, M.; Song, M.L. Energy constraints, green technological progress, and business profit ratios: Evidence from big data of Chinese enterprises. Int. J. Prod. Res. 2018, 56, 2963–2974. [Google Scholar] [CrossRef]
- Khalid, B.; Naumova, E. Digital transformation SCM in view of Covid-19 from Thailand SMEs perspective. In Global Challenges of Digital Transformation of Markets; Nova Science Publishers, Inc.: New York, NY, USA, 2021; pp. 49–66. [Google Scholar]
- Barykin, S.Y.; Kapustina, I.V.; Sergeev, S.M.; Kalinina, O.V.; Vilken, V.V.; de la Poza, E.; Putikhin, Y.Y.; Volkova, L.V. Developing the physical distribution digital twin model within the trade network. Acad. Strateg. Manag. J. 2021, 20, 1–18. [Google Scholar]
- Zhang, C.; Quan, Y.; Zhong, H. The building of marine ecological civilization and sustainable development: Conference report. Mar. Policy 2019, 110, 103627. [Google Scholar] [CrossRef]
- Unger, S.; Müller, A.; Rochette, J.; Schmidt, S.; Shackeroff, J.; Wright, G. Achieving the Sustainable Development Goal for the Oceans; IASS Policy Brief; Institute for Advanced Sustainability Studies: Potsdam, Germany, 2017; Volume 1. [Google Scholar] [CrossRef]
- Wang, L.; Zhang, H. The impact of marine tourism resources development on sustainable development of marine economy. J. Coast. Res. 2019, 94, 589–592. [Google Scholar] [CrossRef]
- Suris-Regueiro, J.C.; Garza-Gil, M.D.; Varela-Lafuente, M.M. Marine economy: A proposal for its definition in the European Union. Mar. Econ. 2013, 42, 111–124. [Google Scholar] [CrossRef]
- Morrissey, K.; O’Donoghue, C. The Irish marine economy and regional development. Mar. Policy 2012, 36, 358–364. [Google Scholar] [CrossRef]
- Stebbings, E.; Papathanasopoulou, E.; Hooper, T.; Austen, M.C.; Yan, X.Y. The marine economy of the United Kingdom. Mar. Policy 2020, 116, 103905. [Google Scholar] [CrossRef]
- Sun, C.Z.; Li, M.Y. Spatial-Temporal change of coastline in Liaoning province and its driving factor analysis. Geogr. Geo-Inf. Sci. 2010, 3, 63–67. [Google Scholar]
- Antonell, C. Technological congruence and the economic complexity of technological change. Struct. Chang. Econ. Dyn. 2016, 38, 15–24. [Google Scholar] [CrossRef]
- Feder, C. The effects of disruptive innovations on productivity. Technol. Forecast. Soc. 2018, 126, 186–193. [Google Scholar] [CrossRef]
- Briec, W.; Peypoch, N. Biased technical change and parallel neutrality. J. Econ. 2007, 92, 281–292. [Google Scholar] [CrossRef]
- Chen, P.C.; Yu, M.M. Total factor productivity growth and directions of technical change bias: Evidence from 99 OECD and nonOECD countries. Ann. Oper. Res. 2014, 214, 143–165. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, J.C.; Zhao, X.; Mu, H.R. Exploring the affecting mechanism between environmental regulation and economic efficiency: New evidence from China′s coastal areas. Ocean Coast. Manag. 2020, 189, 105–114. [Google Scholar] [CrossRef]
- Yu, M.M.; Hsu, C.C. Service productivity and biased technological change of domestic airports in Taiwan. Int. J. Sustain. Transp. 2012, 6, 1–25. [Google Scholar] [CrossRef]
- Mizobuchi, H. Multiple Directions for Measuring Biased Technical Change; University of Queensland Press: Brisbane, Australia, 2015. [Google Scholar]
- Hampf, B.; Kruger, J.J. Estimating the bias in technical change: A nonparametric approach. Econ. Lett. 2017, 157, 88–91. [Google Scholar] [CrossRef]
- Di, Q.B.; Zhao, X.M.; Wang, M. Ecological efficiency evaluation of China coastal tourism based on undesired output: China coastal city case. Mar. Sci. Bull. 2020, 39, 160–168. [Google Scholar] [CrossRef]
- Fare, R.; Grifell-Tatjé, E.; Grosskopf, S.; Knox Lovell, C.A. Biased Technical Change and the Malmquist Productivity Index. Scand. J. Econ. 1997, 99, 119–127. [Google Scholar] [CrossRef]
- Weber, W.L.; Domazlicky, B.R. Total factor productivity growth in manufacturing: A regional approach using linear programming. Reg. Sci. Urban. Econ. 1999, 29, 105–122. [Google Scholar] [CrossRef]
- Portela, M.C.A.S.; Thanassoulis, E.; Simpson, G. Negative data in DEA: A directional distance approach applied to bank branches. J. Oper. Res. Soc. 2004, 55, 1111–1121. [Google Scholar] [CrossRef] [Green Version]
- Chen, L.M.; Wang, W.P.; Wang, B. Environmental regulation-induced environmental technological innovation and its bias. J. Ind. Eng. Eng. Manag. 2018, 32, 186–195. [Google Scholar] [CrossRef]
- Chung, Y.H.; Fare, R.; Grosskopf, S. Productivity and undesirable outputs: A directional distance function approach. J. Environ. Manag. 1997, 51, 229–240. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Chi, J.; Wu, H.Q. Measurement and analysis of industrial green biased technological progress based on water resources. China Popul. Resour. Environ. 2018, 28, 131–142. [Google Scholar] [CrossRef]
- Shan, H.J. Re-estimation of China’s capital stock K: 1952–2006. J. Quant. Tech. Econ. 2008, 10, 17–31. [Google Scholar]
- Xu, X.X.; Zhou, J.M.; Shu, Y. Estimates of fixed capital stock by sector and region: 1978–2002. Stat. Res. 2007, 24, 6–13. [Google Scholar] [CrossRef]
- He, G.S.; Ding, L.L.; Song, W.L. The Theory, Method and Practice of Marine Economic Analysis and Evaluation; China Ocean Press: Beijing, China, 2014. [Google Scholar]
- Zhao, L.; Zhang, Y.S.; Wu, D.; Wang, Y.M.; Wu, D.T. Marine economic efficiency and spatio-temporal characteristics of inter-province based on undesirable outputs in China. Sci. Geogr. Sin. 2016, 36, 671–680. [Google Scholar] [CrossRef]
- Martínez-Vázquez, R.M.; Milán-García, J.; de Pablo Valenciano, J. Challenges of the Blue Economy: Evidence and research trends. Environ. Sci. Eur. 2021, 33, 61. [Google Scholar] [CrossRef]
- Cisneros-Montemayor, A.M.; Moreno-Báez, M.; Reygondeau, G.; Cheung, W.W.; Crosman, K.M.; González-Espinosa, P.C.; Lam, V.W.; Oyinlola, M.A.; Singh, G.G.; Swartz, W.; et al. Enabling conditions for an equitable and sustainable blue economy. Nature 2021, 591, 396–401. [Google Scholar] [CrossRef]
- Ding, L.L.; Zheng, H.H.; Liu, X.M. Production efficiency, environmental governance efficiency and comprehensive efficiency of marine economy in China. Forum Sci. Technol. China 2018, 3, 48–57. [Google Scholar] [CrossRef]
- Zang, C.Q.; Liu, Y. Analysis on total factor energy efficiency and its influencing factors of Shandong thinking about environmental pollution. China Popul. Resour. Environ. 2012, 12, 67–72. [Google Scholar] [CrossRef]
- Zeng, B.; Su, X.Y.; Li, C.P. Analysis on relation between Chinese energy consumption and changes of environmental quality. China Environ. Prot. Ind. 2007, 5, 29–33. [Google Scholar]
- Chen, Z.F.; Liu, T.F.; Yin, F.C.; Guo, C.Y. Scenario analysis of China’s regional carbon intensity target setting-taking Beijing city as an example. J. Beijing Inst. Technol. (Soc. Sci. Ed.) 2013, 5, 16–22. [Google Scholar] [CrossRef]
- Gai, M.; Zhu, Y.Y.; Zheng, X.X. Marine green and its influence mechanism of coastal cities. Acta Ecol. Sin. 2021, 41, 1–16. [Google Scholar]
- Li, G.Z.; Liu, J.R. Empirical research of property institution, financial development and opening on the contribution of TFP growth. Econ. Probl. 2011, 2, 4–9. [Google Scholar] [CrossRef]
Output Mix | OBTC > 1 | OBTC = 1 | OBTC < 1 |
---|---|---|---|
neutrality | |||
neutrality |
Indicator | Variable | Units | Mean | Std. Dev | Median | Min | Max | Number of Samples |
---|---|---|---|---|---|---|---|---|
Desirable output | GOP | RMB 100 million | 3644.188 | 232.584 | 2936.054 | 300.700 | 12,026.370 | 143 |
Resource input | Number of travel agencies in coastal areas | 1141.350 | 54.585 | 1116 | 147 | 2872 | 143 | |
Pier length | m | 57,312.350 | 3496.883 | 48426 | 5355 | 176,208 | 143 | |
Area of use in the sea | hectares | 23,634.275 | 3038.834 | 6150 | 12.800 | 173,633.800 | 143 | |
Labor input | Number of people involved in the sea | ten thousand | 309.9302 | 17.8635 | 209.8000 | 81.5000 | 900.5944 | 143 |
Capital investment | Marine capital stock | RMB 100 million | 9480.742 | 613.359 | 8297.697 | 475.508 | 35,703.378 | 143 |
Undesirable output | Marine wastewater | tons | 16,263.927 | 945.964 | 13,075.339 | 1090.931 | 43,807.600 | 143 |
Marine exhaust gas | 100 million cubic meters | 3764.741 | 211.642 | 3639.371 | 254.560 | 14,402.058 | 143 | |
Marine solid waste | tons | 0.359 | 0.069 | 0.019 | 0 | 5.232 | 143 |
Region | Province | ML | OBTC |
---|---|---|---|
Bohai rim area | Tianjin | 1.0802 | 1.0156 |
Hebei | 0.9940 | 1.0076 | |
Liaoning | 1.0513 | 1.0020 | |
Shandong | 0.9368 | 0.9364 | |
East China Sea area | Shanghai | 1.1943 | 1.2017 |
Jiangsu | 1.0106 | 1.0025 | |
Zhejiang | 1.0085 | 1.0006 | |
South China Sea area | Fujian | 1.0030 | 1.0044 |
Guangdong | 0.9871 | 1.0105 | |
Guangxi | 0.9803 | 1.0086 | |
Hainan | 0.9948 | 1.0345 | |
Average for coastal areas | 1.0219 | 1.02039 |
Year | OBTC | Bias | |
---|---|---|---|
2006–2007 | 1.0741 | 0.8088 | |
2007–2008 | 1.0515 | 0.8596 | |
2008–2009 | 1.0069 | 0.8915 | |
2009–2010 | 1.1178 | 0.8625 | |
2010–2011 | 0.9491 | 0.9901 | |
2011–2012 | 0.9994 | 0.8627 | |
2012–2013 | 0.9900 | 0.9098 | |
2013–2014 | 1.0038 | 0.8976 | |
2014–2015 | 1.0525 | 0.9517 | |
2015–2016 | 1.0047 | 0.7971 | |
2016–2017 | 1.0370 | 0.9708 | |
2017–2018 | 0.9578 | 0.9659 |
2006–2009 | 2009–2012 | 2012–2015 | 2015–2018 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
OBTC | Bias | OBTC | Bias | OBTC | Bias | OBTC | Bias | |||||
Tianjin | 1.0059 | 0.8079 | 1.0267 | 0.9885 | 1.0081 | 0.9020 | 1.0215 | 0.9855 | ||||
Hebei | 1.0091 | 0.8143 | 1.0212 | 0.6070 | 1.0002 | 0.9857 | 1.0001 | 0.9313 | ||||
Liaoning | 0.9964 | 0.5983 | 1.0113 | 1.2654 | 1.0002 | 0.9415 | 0.9999 | 0.6181 | ||||
Shanghai | 1.2971 | 0.7471 | 1.3588 | 1.0597 | 1.1916 | 0.8679 | 0.9592 | 0.8785 | ||||
Jiangsu | 1.0032 | 0.9603 | 1.0032 | 0.9651 | 1.0094 | 0.9153 | 0.9941 | 0.8435 | ||||
Zhejiang | 0.9974 | 0.8553 | 1.0018 | 0.8672 | 1.0034 | 0.8726 | 0.9999 | 0.8799 | ||||
Fujian | 1.0002 | 0.9090 | 1.0054 | 0.7197 | 1.0102 | 0.9334 | 1.0016 | 1.1875 | ||||
Shandong | 1.0150 | 0.9765 | 0.7346 | 0.9567 | 0.9963 | 0.9869 | 0.9996 | 0.9253 | ||||
Guangdong | 1.0791 | 0.9579 | 0.9958 | 0.7444 | 0.9767 | 0.8687 | 0.9903 | 0.9065 | ||||
Guangxi | 1.0000 | 0.7819 | 1.0073 | 0.6040 | 1.0001 | 0.8048 | 1.0270 | 0.8642 | ||||
Hainan | 1.0829 | 0.9775 | 1.0771 | 1.1786 | 0.9733 | 1.0380 | 1.0046 | 1.0039 | ||||
All | 1.0442 | 0.8533 | 1.0221 | 0.9051 | 1.0154 | 0.9197 | 0.9998 | 0.9113 |
Region | Percentage of Provinces in Each Region over the Period Where OBTC Tend to Reduce Pollutant Emissions (%) | ||
---|---|---|---|
2006–2018 | 2006–2012 | 2012–2018 | |
Bohai rim area | 41.67 | 37.5 | 45.83 |
East China Sea area | 63.88 | 61.11 | 66.67 |
South China Sea area | 54.17 | 45.83 | 62.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, J.; Zhou, J.; Yin, X. Has Technological Progress Contributed to the Bias of Green Output in China’s Marine Economy? Water 2022, 14, 443. https://doi.org/10.3390/w14030443
Ji J, Zhou J, Yin X. Has Technological Progress Contributed to the Bias of Green Output in China’s Marine Economy? Water. 2022; 14(3):443. https://doi.org/10.3390/w14030443
Chicago/Turabian StyleJi, Jianyue, Jinglin Zhou, and Xingmin Yin. 2022. "Has Technological Progress Contributed to the Bias of Green Output in China’s Marine Economy?" Water 14, no. 3: 443. https://doi.org/10.3390/w14030443
APA StyleJi, J., Zhou, J., & Yin, X. (2022). Has Technological Progress Contributed to the Bias of Green Output in China’s Marine Economy? Water, 14(3), 443. https://doi.org/10.3390/w14030443