Exploiting IoT and Its Enabled Technologies for Irrigation Needs in Agriculture
Abstract
:1. Introduction
1.1. Evolution of Irrigation
1.2. Factors to Be Considered for Effective Irrigation
- Soil moisture.
- pH value.
- Electrical conductivity.
- Crop growth metrics.
- Climate data.
- Crop canopy.
- Evapotranspiration.
1.3. Irrigation Optimization
1.4. Remote Monitoring and Control of Irrigation for Optimized Irrigation
2. Architecture or Deployment Models for IoT in Agriculture Irrigation Management
Three-Layer and Four-Layer Architectures
- The sensor and actuator layer (physical layer) has the sensors and actuators connected to it, allowing sensing to gather information from the environment and to control the actuators
- The network layer (data management layer) connects other devices, servers, and things in the IoT application. This layer is sometimes called the communication layer, as it merges some of the functions, such as data aggregation and preprocessing.
- The application layer delivers application-driven services or functions to the end users. The functions and process differ based on the application in which it is used, such as smart homes, smart cities, and smart agriculture.
3. Commonly Used Cloud Platforms in IoT
4. Commonly Used Sensors and Controllers in Agriculture
4.1. Sensors in Agriculture
- Soil moisture sensor.
- Weather station.
- CO2 sensor.
- DHT11 digital.
- TGS 813 sensor for SO2 gas.
- PIR motion sensor.
- Soil pH sensor.
4.2. Hardware Platforms in the IoT
5. Artificial Neural Networks and Machine Learning for Irrigation
6. Tools or Software Available for Irrigation Management
6.1. CROPWAT 8.0
6.2. Aqua-Crop
6.3. SAPWAT
7. Observations and Discussions
8. Future Challenges
8.1. Standard Protocols
8.2. Security in IoT-Based Systems
8.3. Connectivity
8.4. Reliability of the Devices Involved
9. Conclusions
- The IoT has facilitated the accumulation of information over a long duration, and since data are available, the implementation of machine learning and neural networks can result in identifying several insights that lead to the solution for a complex problem.
- The initial deployment cost for IoT enabled solution is an important concern for small scale farmers.
- Development of more agriculture specific sensors (soft or hard) needs to be undertaken. Hard sensors are traditional sensors that are available as physical hardware to sense the data, whereas soft sensors are a process/formula that converts the available various sensor data into intricate output data that require a very complex sensor to sense it. The development of soft sensors will reduce the cost and serve as an affordable alternative for expensive hard sensors.
- The service layer adds more modularity by acting as a middleware between the network and application layers. As IoT handles heterogeneous data and diverse services, the service layer adds more adaptability in developing applications.
- IoT-based cloud platforms increase the effectiveness of the applications developed, but cost effectiveness, resource management, security, and configuration of IoT empowered devices need enhancement.
- Most of the test cases test only one crop cycle and are not applied to different crops.
- Labor and operation costs were not considered in most of the work.
- Machine learning and neural network approaches need to be provided with adequate data for effective analysis.
- The irrigation scheduling tools are effective but need to be provided with an ample quantity of data for useful results. Area-specific tools need to be developed.
- Irrigation management tools should be developed with direct access to sensor data from the field.
- A complete framework for the IoT in agriculture, starting from sensor deployment, analytics, and recommendation, has to be developed.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Clothier, B.E. Soil pores. In Encyclopedia of Soil Science; Springer: Dordrecht, The Netherlands, 2008; pp. 693–699. [Google Scholar]
- Ahmed, J.; van Bavel, C.H.M.; Hiler, E.A. Optimization of crop irrigation strategy under a stochastic weather regime: A simulation study. Water Resour. Res. 1976, 12, 1241–1247. [Google Scholar] [CrossRef]
- Bhalage, P.; Jadia, B.; Sangale, S. Case Studies of Innovative Irrigation Management Techniques. Aquat. Procedia 2015, 4, 1197–1202. [Google Scholar] [CrossRef]
- Foster, T.; Brozović, N.; Butler, A.P.; Neale, C.M.U.; Raes, D.; Steduto, P.; Fereres, E.; Hsiao, T.C. AquaCrop-OS: An open source version of FAO’s crop water productivity model. Agric. Water Manag. 2017, 181, 18–22. [Google Scholar] [CrossRef]
- Nikolaou, G.; Neocleous, D.; Christou, A.; Kitta, E.; Katsoulas, N. Implementing Sustainable Irrigation in Water-Scarce Regions under the Impact of Climate Change. Agronomy 2020, 10, 1120. [Google Scholar] [CrossRef]
- Mendoza-Fernández, A.J.; Peña-Fernández, A.; Molina, L.; Aguilera, P.A. The Role of Technology in Greenhouse Agriculture: Towards a Sustainable Intensification in Campo de Dalías (Almería, Spain). Agronomy 2021, 11, 101. [Google Scholar] [CrossRef]
- Moghazy, N.H.; Kaluarachchi, J.J. Sustainable Agriculture Development in the Western Desert of Egypt: A Case Study on Crop Production, Profit, and Uncertainty in the Siwa Region. Sustainability 2020, 12, 6568. [Google Scholar] [CrossRef]
- Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Batlles-Delafuente, A.; Fidelibus, M.D. Rainwater Harvesting for Agricultural Irrigation: An Analysis of Global Research. Water 2019, 11, 1320. [Google Scholar] [CrossRef] [Green Version]
- Gu, Z.; Qi, Z.; Burghate, R.; Yuan, S.; Jiao, X.; Xu, J. Irrigation Scheduling Approaches and Applications: A Review. J. Irrig. Drain. Eng. 2020, 146, 04020007. [Google Scholar] [CrossRef]
- Hussain, I.; Khan, F.; Ahmad, I.; Khan, S.; Saeed, M. Power Loss Reduction via Distributed Generation System Injected in a Radial Feeder. Mehran Univ. Res. J. Eng. Technol. 2021, 40, 160–168. [Google Scholar] [CrossRef]
- Holzapfel, E.A.; Mariño, M.A.; Chavez-Morales, J. Surface Irrigation Optimization Models. J. Irrig. Drain. Eng. 1986, 112, 1–19. [Google Scholar] [CrossRef]
- Gao, X.; Lu, C.; Luan, Q.; Zhang, S.; Liu, J.; Han, D. Mapping Farmland-Soil Moisture at a Regional Scale Using a Distributed Hydrological Model: Case Study in the North China Plain. J. Irrig. Drain. Eng. 2016, 142, 04016029. [Google Scholar] [CrossRef]
- Karim, F.; Karim, F.; Frihida, A. Monitoring system using web of things in precision agriculture. Procedia Comput. Sci. 2017, 110, 402–409. [Google Scholar] [CrossRef]
- Popović, T.; Latinović, N.; Pešić, A.; Zečević, Ž.; Krstajić, B.; Djukanović, S. Architecting an IoT-enabled platform for precision agriculture and ecological monitoring: A case study. Comput. Electron. Agric. 2017, 140, 255–265. [Google Scholar] [CrossRef]
- Veerachamy, R.; Ramar, R. Agricultural Irrigation Recommendation and Alert (AIRA) system using optimization and machine learning in Hadoop for sustainable agriculture. Environ. Sci. Pollut. Res. 2021, 1–20. [Google Scholar] [CrossRef]
- Yang, H.; Du, T.; Qiu, R.; Chen, J.; Wang, F.; Li, Y.; Wang, C.; Gao, L.; Kang, S. Improved water use efficiency and fruit quality of greenhouse crops under regulated deficit irrigation in northwest China. Agric. Water Manag. 2017, 179, 193–204. [Google Scholar] [CrossRef]
- Zaman, S.; Hussain, I.; Singh, D. Fast Computation of Integrals with Fourier-Type Oscillator Involving Stationary Point. Mathematics 2019, 7, 1160. [Google Scholar] [CrossRef] [Green Version]
- Talavera, J.M.; Tobon, L.; Gómez, J.A.; Culman, M.; Aranda, J.; Parra, D.T.; Quiroz, L.A.; Hoyos, A.; Garreta, L.E. Review of IoT applications in agro-industrial and environmental fields. Comput. Electron. Agric. 2017, 142, 283–297. [Google Scholar] [CrossRef]
- Fazlali, A.; Shourian, M. A Demand Management Based Crop and Irrigation Planning Using the Simulation-Optimization Approach. Water Resour. Manag. 2017, 32, 67–81. [Google Scholar] [CrossRef]
- Montesano, F.F.; van Iersel, M.; Boari, F.; Cantore, V.; D’Amato, G.; Parente, A. Sensor-based irrigation management of soilless basil using a new smart irrigation system: Effects of set-point on plant physiological responses and crop performance. Agric. Water Manag. 2018, 203, 20–29. [Google Scholar] [CrossRef]
- Difallah, W.; Benahmed, K.; Draoui, B.; Bounaama, F. Linear Optimization Model for Efficient Use of Irrigation Water. Int. J. Agron. 2017, 2017, 5353648. [Google Scholar] [CrossRef] [Green Version]
- Dang, T.; Pedroso, R.; Laux, P.; Kunstmann, H. Development of an integrated hydrological-irrigation optimization modeling system for a typical rice irrigation scheme in Central Vietnam. Agric. Water Manag. 2018, 208, 193–203. [Google Scholar] [CrossRef]
- Zhang, H.; Xiong, Y.; Huang, G.; Xu, X.; Huang, Q. Effects of water stress on processing tomatoes yield, quality and water use efficiency with plastic mulched drip irrigation in sandy soil of the Hetao Irrigation District. Agric. Water Manag. 2017, 179, 205–214. [Google Scholar] [CrossRef]
- Ghosh, S.; Sayyed, S.; Wani, K.; Mhatre, M.; Hingoliwala, H.A. Smart irrigation: A smart drip irrigation system using cloud, android and data mining. In Proceedings of the 2016 IEEE International Conference on Advances in Electronics, Communication and Computer Technology (ICAECCT), Pune, India, 2–3 December 2016; Institute of Electrical and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2016; pp. 236–239. [Google Scholar]
- Karimi, N.; Arabhosseini, A.; Karimi, M.; Kianmehr, M.H. Web-based monitoring system using Wireless Sensor Networks for traditional vineyards and grape drying buildings. Comput. Electron. Agric. 2018, 144, 269–283. [Google Scholar] [CrossRef]
- Ullah, H.; Khan, M.; Hussain, I.; Ullah, I.; Uthansakul, P.; Khan, N. An Optimal Energy Management System for University Campus Using the Hybrid Firefly Lion Algorithm (FLA). Energies 2021, 14, 6028. [Google Scholar] [CrossRef]
- Yu, S.; Lu, H. An integrated model of water resources optimization allocation based on projection pursuit model—Grey wolf optimization method in a transboundary river basin. J. Hydrol. 2018, 559, 156–165. [Google Scholar] [CrossRef]
- Verma, R.D. Environmental Impacts of Irrigation Projects. J. Irrig. Drain. Eng. 1986, 112, 322–330. [Google Scholar] [CrossRef]
- Jimenez-Carvajal, M.C.; García-Bañón, A.J.; Vera-Repullo, J.A.; Jimenez-Buendia, M.; Ruiz-Peñalver, L.; Martínez, J.M.M. Cloud-based monitoring system for lysimetric and agroclimatic data. Precis. Agric. 2017, 18, 1069–1084. [Google Scholar] [CrossRef]
- Seelan, S.K.; Laguette, S.; Casady, G.M.; Seielstad, G.A. Remote sensing applications for precision agriculture: A learning community approach. Remote Sens. Environ. 2003, 88, 157–169. [Google Scholar] [CrossRef]
- Liu, H.; Wang, X.; Zhang, X.; Zhang, L.; Li, Y.; Huang, G. Evaluation on the responses of maize (Zea mays L.) growth, yield and water use efficiency to drip irrigation water under mulch condition in the Hetao irrigation District of China. Agric. Water Manag. 2017, 179, 144–157. [Google Scholar] [CrossRef]
- Barrett, C.E.; Zotarelli, L.; Paranhos, L.G.; Dittmar, P.; Fraisse, C.W.; VanSickle, J. Optimization of irrigation and N-fertilizer strategies for cabbage plasticulture system. Sci. Hortic. 2018, 234, 323–334. [Google Scholar] [CrossRef]
- Fanuel, I.M.; Mushi, A.; Kajunguri, D. Irrigation water allocation optimization using multi-objective evolutionary algorithm (MOEA)—A review. Int. J. Simul. Multidiscip. Des. Optim. 2018, 9, A3. [Google Scholar] [CrossRef] [Green Version]
- Sawant, S.; Durbha, S.S.; Jagarlapudi, A. Interoperable agro-meteorological observation and analysis platform for precision agriculture: A case study in citrus crop water requirement estimation. Comput. Electron. Agric. 2017, 138, 175–187. [Google Scholar] [CrossRef]
- Hussain, I.; Ullah, M.; Ullah, I.; Bibi, A.; Naeem, M.; Singh, M.; Singh, D. Optimizing Energy Consumption in the Home Energy Management System via a Bio-Inspired Dragonfly Algorithm and the Genetic Algorithm. Electronics 2020, 9, 406. [Google Scholar] [CrossRef]
- Severino, G.; D’Urso, G.; Scarfato, M.; Toraldo, G. The IoT as a tool to combine the scheduling of the irrigation with the geostatistics of the soils. Future Gener. Comput. Syst. 2018, 82, 268–273. [Google Scholar] [CrossRef]
- Akbari, M.; Gheysari, M.; Mostafazadeh-Fard, B.; Shayannejad, M. Surface irrigation simulation-optimization model based on meta-heuristic algorithms. Agric. Water Manag. 2018, 201, 46–57. [Google Scholar] [CrossRef]
- Hu, F.; Shao, L. Design of remote irrigation system in farmland based on the cloud platform. In Proceedings of the 2017 29th Chinese Control and Decision Conference (CCDC), Chongqing, China, 28–30 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1125–1129. [Google Scholar]
- Ullah, I.; Hussain, I.; Singh, M. Exploiting Grasshopper and Cuckoo Search Bio-Inspired Optimization Algorithms for Industrial Energy Management System: Smart Industries. Electronics 2020, 9, 105. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhang, J.; Li, L.; Zhang, Y.; Yang, G. Monitoring Citrus Soil Moisture and Nutrients Using an IoT Based System. Sensors 2017, 17, 447. [Google Scholar] [CrossRef]
- Tan, L. Cloud-based Decision Support and Automation for Precision Agriculture in Orchards. IFAC-PapersOnLine 2016, 49, 330–335. [Google Scholar] [CrossRef]
- Liao, M.S.; Chen, S.F.; Chou, C.Y.; Chen, H.Y.; Yeh, S.H.; Chang, Y.C.; Jiang, J.A. On precisely relating the growth of Phalaenopsis leaves to greenhouse environmental factors by using an IoT-based monitoring system. Comput. Electron. Agric. 2017, 136, 125–139. [Google Scholar] [CrossRef]
- Sethi, P.; Sarangi, S.R. Internet of Things: Architectures, Protocols, and Applications. J. Electr. Comput. Eng. 2017, 2017, 9324035. [Google Scholar] [CrossRef] [Green Version]
- Hussain, I.; Samara, G.; Ullah, I.; Khan, N. Encryption for End-User Privacy: A Cyber-Secure Smart Energy Management System. In Proceedings of the 2021 22nd International Arab Conference on Information Technology (ACIT), Muscat, Oamn, 21–23 December 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Miikkulainen, R.; Liang, J.; Meyerson, E.; Rawal, A.; Fink, D.; Francon, O.; Raju, B.; Shahrzad, H.; Navruzyan, A.; Duffy, N.; et al. Evolving Deep Neural Networks. In Artificial Intelligence in the Age of Neural Networks and Brain Computing; Academic Press: Cambridge, MA, USA, 2019; pp. 293–312. [Google Scholar]
- Jing, W.; Yaseen, Z.M.; Shahid, S.; Saggi, M.K.; Tao, H.; Kisi, O.; Salih, S.Q.; Al-Ansari, N.; Chau, K.-W. Implementation of evolutionary computing models for reference evapotranspiration modeling: Short review, assessment and possible future research directions. Eng. Appl. Comput. Fluid Mech. 2019, 13, 811–823. [Google Scholar] [CrossRef] [Green Version]
- Pour, O.M.R.; Piri, J.; Kisi, O. Comparison of SVM, ANFIS and GEP in modeling monthly potential evapotranspiration in an arid region (Case study: Sistan and Baluchestan Province, Iran). Water Supply 2018, 19, 392–403. [Google Scholar] [CrossRef] [Green Version]
- Feng, Y.; Cui, N.; Gong, D.; Zhang, Q.; Zhao, L. Evaluation of random forests and generalized regression neural networks for daily reference evapotranspiration modelling. Agric. Water Manag. 2017, 193, 163–173. [Google Scholar] [CrossRef]
- Yamaç, S.S.; Todorovic, M. Estimation of daily potato crop evapotranspiration using three different machine learning algorithms and four scenarios of available meteorological data. Agric. Water Manag. 2020, 228, 105875. [Google Scholar] [CrossRef]
- Sanikhani, H.; Kisi, O.; Maroufpoor, E.; Yaseen, Z.M. Temperature-based modeling of reference evapotranspiration using several artificial intelligence models: Application of different modeling scenarios. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2019, 135, 449–462. [Google Scholar] [CrossRef]
- Smith, M. CROPWAT: A Computer Program for Irrigation Planning and Management; No 46; FAO: Rome, Italy, 1992; p. 126. [Google Scholar]
- Pushpalatha, R.; Amma, S.S.; George, J.; Rajan, S.; Gangadharan, B. Development of optimal irrigation schedules and crop water production function for cassava: Study over three major growing areas in India. Irrig. Sci. 2020, 38, 251–261. [Google Scholar] [CrossRef]
- Vanuytrecht, E.; Raes, D.; Steduto, P.; Hsiao, T.C.; Fereres, E.; Heng, L.K.; Garcia-Vila, M.; Moreno, P.M. AquaCrop: FAO’s crop water productivity and yield response model. Environ. Model. Softw. 2014, 62, 351–360. [Google Scholar] [CrossRef]
- FAO. CropWat. Available online: http://www.fao.org/land-water/databases-and-software/cropwat/en/ (accessed on 10 October 2021).
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO irrigation and drainage, crop evapotranspiration. Guidel. Comput. Crop Water Requir. 1998, 56, 1–156. [Google Scholar]
- Tousi, E.G.; Duan, J.G.; Gundy, P.M.; Bright, K.R.; Gerba, C.P. Evaluation of E. coli in sediment for assessing irrigation water quality using machine learning. Sci. Total Environ. 2021, 799, 149286. [Google Scholar] [CrossRef]
- Møller, A.; Mulder, V.; Heuvelink, G.; Jacobsen, N.; Greve, M. Can We Use Machine Learning for Agricultural Land Suitability Assessment? Agronomy 2021, 11, 703. [Google Scholar] [CrossRef]
- Paudel, D.; Boogaard, H.; de Wit, A.; Janssen, S.; Osinga, S.; Pylianidis, C.; Athanasiadis, I.N. Machine learning for large-scale crop yield forecasting. Agric. Syst. 2021, 187, 103016. [Google Scholar] [CrossRef]
- Agricultural Economics. Precision Agriculture Usage and Big Agriculture Data. Available online: https://agecon.unl.edu/cornhusker-economics/2015/precision-agriculture-usage-and-big-agriculture-data (accessed on 31 December 2021).
- Corps, P. Irrigation Reference Manual; Information Collection & Exchange: Washington, DC, USA, 1990. [Google Scholar]
- Ullah, I.; Hussain, I.; Uthansakul, P.; Riaz, M.; Khan, M.N.; Lloret, J. Exploiting Multi-Verse Optimization and Sine-Cosine Algorithms for Energy Management in Smart Cities. Appl. Sci. 2020, 10, 2095. [Google Scholar] [CrossRef] [Green Version]
- Yousif, J.H.; Abdalgader, K. Experimental and Mathematical Models for Real-Time Monitoring and Auto Watering Using IoT Architecture. Computers 2022, 11, 7. [Google Scholar] [CrossRef]
- Alibabaei, K.; Gaspar, P.D.; Assunção, E.; Alirezazadeh, S.; Lima, T.M. Irrigation optimization with a deep reinforcement learning model: Case study on a site in Portugal. Agric. Water Manag. 2022, 263, 107480. [Google Scholar] [CrossRef]
- Abioye, E.A.; Hensel, O.; Esau, T.J.; Elijah, O.; Abidin, M.S.Z.; Ayobami, A.S.; Yerima, O.; Nasirahmadi, A. Precision Irrigation Management Using Machine Learning and Digital Farming Solutions. AgriEngineering 2022, 4, 70–103. [Google Scholar] [CrossRef]
- Sami, M.; Khan, S.Q.; Khurram, M.; Farooq, M.U.; Anjum, R.; Aziz, S.; Qureshi, R.; Sadak, F. A Deep Learning-Based Sensor Modeling for Smart Irrigation System. Agronomy 2022, 12, 212. [Google Scholar] [CrossRef]
- Cordeiro, M.; Markert, C.; Araújo, S.S.; Campos, N.G.; Gondim, R.S.; da Silva, T.L.C.; da Rocha, A.R. Towards Smart Farming: Fog-enabled intelligent irrigation system using deep neural networks. Futur. Gener. Comput. Syst. 2021, 129, 115–124. [Google Scholar] [CrossRef]
- Zaman, S.; Khan, L.U.; Hussain, I.; Mihet-Popa, L. Fast Computation of Highly Oscillatory ODE Problems: Applications in High-Frequency Communication Circuits. Symmetry 2022, 14, 115. [Google Scholar] [CrossRef]
- Verma, A.; Bodade, R. Low-Cost IoT Framework for Indian Agriculture Sector: A Compressive Review to Meet Future Expectation. In Proceedings of the Second International Conference on Computer Networks and Communication Technologies; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2022; pp. 241–258. [Google Scholar]
- Jiménez, A.F.; Cárdenas, P.F.; Jiménez, F. Intelligent IoT-multiagent precision irrigation approach for improving water use efficiency in irrigation systems at farm and district scales. Comput. Electron. Agric. 2022, 192, 106635. [Google Scholar] [CrossRef]
- Prabakaran, S.; Ramar, R.; Hussain, I.; Kavin, B.P.; Alshamrani, S.S.; AlGhamdi, A.S.; Alshehri, A. Predicting Attack Pattern via Machine Learning by Exploiting Stateful Firewall as Virtual Network Function in an SDN Network. Sensors 2022, 22, 709. [Google Scholar] [CrossRef]
- Mezouari, A.E.; Fazziki, A.E.; Sadgal, M. Towards Smart Farming through Machine Learning-Based Automatic Irrigation Planning. In Smart Sensor Networks; Springer: Cham, Switzerland, 2022; pp. 179–206. [Google Scholar]
- Ahmad, F.; Ahmad, A.; Hussain, I.; Uthansakul, P.; Khan, S. Cooperation Based Proactive Caching in Multi-Tier Cellular Networks. Appl. Sci. 2020, 10, 6145. [Google Scholar] [CrossRef]
- Abimbola, O.P.; Franz, T.E.; Rudnick, D.; Heeren, D.; Yang, H.; Wolf, A.; Katimbo, A.; Nakabuye, H.N.; Amori, A. Improving crop modeling to better simulate maize yield variability under different irrigation managements. Agric. Water Manag. 2021, 262, 107429. [Google Scholar] [CrossRef]
- Wolff, W.; Francisco, J.P.; Flumignan, D.L.; Marin, F.R.; Folegatti, M.V. Optimized algorithm for evapotranspiration retrieval via remote sensing. Agric. Water Manag. 2021, 262, 107390. [Google Scholar] [CrossRef]
Various Irrigation Techniques | References |
---|---|
Flood irrigation | [17,22,25,27,28] |
Alternate wetting and drying (AWD) | [22] |
Sprinkler irrigation | [21,27,29,30] |
Drip irrigation | [23,24,31,32,33] |
Micro irrigation | [14,34] |
Low-pressure pipe irrigation | [21,33,35] |
Channel lining | [36,37] |
Furrow irrigation | [28,35] |
Pivot irrigation | [32] |
Applications/Cloud Service Providers | Open Source | Device Management | Security Built in | Machine Learning Tools | Data Management | Analytics | Virtualization | Mobile Application Support | Visualization | Developer Tools |
---|---|---|---|---|---|---|---|---|---|---|
AWS IOT | no | ✓ | ✓ | ✓ | ✓ | no | ✓ | ✓ | ✓ | ✓ |
Artik Cloud | no | ✓ | ✓ | no | no | ✓ | no | no | ✓ | ✓ |
Autodesk Fusion Connect | no | ✓ | ✓ | no | ✓ | ✓ | ✓ | no | ✓ | ✓ |
GE Predix | no | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ | no |
Google Cloud IoT | no | ✓ | ✓ | no | ✓ | ✓ | no | ✓ | ✓ | no |
Microsoft Azure IoT Suite | no | no | ✓ | ✓ | ✓ | ✓ | no | ✓ | ✓ | ✓ |
IBM Watson IoT | no | ✓ | ✓ | ✓ | ✓ | ✓ | no | no | ✓ | ✓ |
Salesforce IoT Cloud | no | ✓ | no | no | ✓ | ✓ | no | no | ✓ | no |
Kaa Platform | ✓ | no | no | no | ✓ | ✓ | no | no | ✓ | ✓ |
Macchina Platform | ✓ | ✓ | no | no | ✓ | no | no | ✓ | ✓ | ✓ |
Microsoft Lab of Things | no | ✓ | ✓ | ✓ | ✓ | no | no | no | ✓ | ✓ |
Nimbits | ✓ | ✓ | no | no | ✓ | ✓ | no | no | ✓ | ✓ |
Oracle IoT | no | ✓ | ✓ | no | ✓ | ✓ | ✓ | no | ✓ | no |
SiteWhere Platform | ✓ | ✓ | no | no | no | no | no | no | no | ✓ |
Carriots Platform | ✓ | ✓ | no | no | no | no | no | no | ✓ | ✓ |
Temboo Platform | no | no | no | no | ✓ | ✓ | no | no | ✓ | ✓ |
Thethings.io | ✓ | ✓ | no | no | no | no | no | ✓ | ✓ | ✓ |
Thing speak | ✓ | ✓ | no | no | ✓ | ✓ | no | no | ✓ | ✓ |
Thing Worx | no | ✓ | no | no | ✓ | ✓ | no | no | ✓ | ✓ |
Ubidots Platform | ✓ | ✓ | no | no | ✓ | ✓ | no | no | ✓ | ✓ |
Xively | no | ✓ | ✓ | no | ✓ | ✓ | no | no | ✓ | no |
Parameters/ Microcontroller Based Boards | Arduino Uno | Arduino Yun | Particle Electron | Espressif Systems ESP8266-01 | Node MCU. | ARM mbed NXPLPC1768Processor | Electric Imp 003 |
---|---|---|---|---|---|---|---|
Supply Voltage | 5 V | 5 V/3.3 V | 3.3 V | 3.3 V | 3.3 V | 5 V | 5 V |
Processor | ATMega328PU | ATmega32u4, and Atheros AR9331 | 32-bit STM32F205 | 32-bit Tensilica L106 | 32-bit Xtensa L106 | ARM Cortex M3 | ARM Cortex M4F |
Processor speed (MHZ) | 16 | 16 | 120 | 80 | 80 | 300 | 96 |
System Flash | 32 KB | 16 MB | 128 KB RAM | - | 128 KB | 512 KB | 4 MB |
System Memory | 16 MB | 64 MB | 1 MB | 1 MB | 16 MB | 120 KB | 32 KB |
IDE | Arduino | Arduino | Arduino | Online Compiler, Arduino | Arduino | C/C++ SDK, Online Compiler | Electric Imp |
GPIO | 6 Analog in 14 Digital—6 PWM | 12 Analog in 20 Digital—7 PWM | 12 Analog In,2 Analog out, 30 Digital–15 PWM | 2 Digital 1 Analog | 1 Analog in 16 Digital | 6 Analog in 20 Digital—6 PWM | 5 Analog 6 Digital |
I/O Connectivity | SPI, I2C, UART, GPIO | SPI, I2C, UART, GPIO | SPI, I2C, UART, GPIO | SPI, I2C, UART, GPIO | SPI, I2C, UART, GPIO | SPI, I2C, UART, CAN GPIO | SPI, I2C, UART, GPIO |
Network Interfaces | No, can be added as ad-on. | No, can be added as ad-on. | Integrated GPRS modem(2G/3G) | Wi-Fi | Wi-Fi | No, can be added as ad-on. | Wi-Fi |
Parameters/Single Board Computers | Raspberry Pi 3 Model B | Intel Galileo Gen2 | Intel Edison | Beagle Bone Black | Qualcomm DragonBoard 410c |
---|---|---|---|---|---|
Supply voltage | 3.3 V | 5 V | 3.3 V | 3.3 V | 1.8 V |
Processor | ARM CORTEX A53 | IntelQuarkTM SoC X1000 | IntelQuarkTM SoCX1000 | SitaraAM3358BZCZ100 | ARM CORTEX A53 |
Processor speed(HZ) | 1.2 GHZ | 400 MHZ | 500 MHz | 1 GHZ | 1.2 GHZ |
RAM | 1 GB | 256 MB | 1 GB | 512 MB | 1 GB |
System Memory | Supports 8/16 GB | 8 MB | 4 GB | 4 GB | 8 GB |
IDE | NOOBS, Debian, Android, Ubuntu, Cloud9 IDE | ArduinoIDE | ArduinoIDE, Eclipse, Intel XDK | Debian, Android, Ubuntu, Cloud9 IDE | Debian, Android, Ubuntu, Cloud9 IDE |
GPIO | 40 I/O pins, including 29 Digital | 14 Digital, 6-Analog | 14 Digital, 6-Analog | 65 Digital—8 PWM 7 Analog in | 12 Digital |
I/O Connectivity | SPI, DSI, UART, SDIO, CSI, GPIO | SPI, I2C, UART, GPIO | SPI, I2C, UART, I2S, GPIO | SPI, UART, I2C, McASP, GPIO | SPI, UART, I2C, McASP, GPIO |
Network Interfaces | Wifi, Ethernet, Bluetooth | Ethernet | Wi-Fi | Ethernet, USB ports allow external wifi/Bluetooth adaptors | Wifi, Bluetooth, GPS |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramachandran, V.; Ramalakshmi, R.; Kavin, B.P.; Hussain, I.; Almaliki, A.H.; Almaliki, A.A.; Elnaggar, A.Y.; Hussein, E.E. Exploiting IoT and Its Enabled Technologies for Irrigation Needs in Agriculture. Water 2022, 14, 719. https://doi.org/10.3390/w14050719
Ramachandran V, Ramalakshmi R, Kavin BP, Hussain I, Almaliki AH, Almaliki AA, Elnaggar AY, Hussein EE. Exploiting IoT and Its Enabled Technologies for Irrigation Needs in Agriculture. Water. 2022; 14(5):719. https://doi.org/10.3390/w14050719
Chicago/Turabian StyleRamachandran, Veerachamy, Ramar Ramalakshmi, Balasubramanian Prabhu Kavin, Irshad Hussain, Abdulrazak H. Almaliki, Abdulrhman A. Almaliki, Ashraf Y. Elnaggar, and Enas E. Hussein. 2022. "Exploiting IoT and Its Enabled Technologies for Irrigation Needs in Agriculture" Water 14, no. 5: 719. https://doi.org/10.3390/w14050719
APA StyleRamachandran, V., Ramalakshmi, R., Kavin, B. P., Hussain, I., Almaliki, A. H., Almaliki, A. A., Elnaggar, A. Y., & Hussein, E. E. (2022). Exploiting IoT and Its Enabled Technologies for Irrigation Needs in Agriculture. Water, 14(5), 719. https://doi.org/10.3390/w14050719