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Abstract: One of the significant issues that the world has faced in recent decades has been the
estimation of water quality and location where safe drinking water is available. Due to the unexpected
nature of the mode of water contamination, it is not easy to analyze the quality and maintain it.
Some machine-learning techniques are used for predicting contaminating factors but there is no
technique that can predict the contamination using latitude, longitude, and elevation. The main
aim of this paper is to put factors such as water body location and elevation, which are used as
inputs, into the different machine-learning techniques that predict the contamination. The results are
reviewed and analyzed according to groundwater contamination and the chemical composition of
the groundwater location. Non-changeable factors such as latitude, longitude, and elevation are used
to predict pH, temperature, turbidity, dissolved oxygen hardness, chlorides, alkalinity, and chemical
oxygen demand. Such a study has not been conducted in the past where location-based factors are
used to predict the water contamination of any area. This research focuses on creating a relationship
between the location base factors affecting the water contamination in a given area.

Keywords: regression; biological oxygen demand; water contamination

1. Introduction

There is no living creature on the planet that can live without water. Water is regularly
contaminated, however, due to the industry’s annual growth in response to rising demand,
and hazardous waste is released into rivers and lakes by these sectors. Every year, millions
of people die, enormous amounts of money is lost, and agricultural land deteriorates due
to water pollution. Several studies have found that the quality of groundwater in most
nations has worsened dramatically in recent years. Due to this, the groundwater quality
is deteriorating day by day [1]. Identifying the “quality defining parameters” of water,
which play a role in identifying water contamination, is a straightforward, successful, and
reasonable method to assess water quality for various purposes.

Water as a resource is freely accessible. Industrialization, use of pesticides and antisep-
tics, and use of composts in the horticultural land all have added up to making accessible
water more contaminated. Due to rapid advancement in the industrial segment, like cli-
matic air, water has become contaminated. Corrosive rain and corrosive fog have been
experienced in numerous places. The degree of contamination has expanded so much that
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today a structural designer cannot consider utilizing water for development and restoring
purposes without knowing its quality [2].

Water is considered a valuable global resource [3–6]. There are two primary sources
of water in India: surface (ground) water and underground water. This paper focuses on
groundwater. Groundwater is the water that exists under the Earth’s crust in the capillary
pores of rocks and soils, as well as in the cracks of rock formations. When a unit of rock or
an undistributed deposit supplies a useable amount of water, it is called an aquifer. The
water table is the depth at which soil pores, cracks, and cavities in rock become totally
saturated with water. Groundwater is refilled from the surface, and it can naturally release
at springs and seeps, forming oases or wetlands. Extraction wells are frequently built and
operated to extract groundwater for agricultural, municipal, and industrial purposes. The
main source of ground water for this particular study has been the borewells at different
locations in Noida.

Variations in the availability of groundwater resources and highly diversified hydro
geological settings of different parts of the country, call for a relatable approach for evolving
suitable ground water management strategies [7–10]. An integrated approach can acquire
effective management of available groundwater resources [11]. One of the most significant
risks for groundwater quality in agricultural areas is pollution by nitrate and pesticides,
and agriculture tools undoubtedly intensify the problem [12,13].

Due to rapid industrialization, our natural resources such as water have become highly
contaminated, and this leads to the need for a detailed study on the contamination in the
region, which would help us in many ways, such as:

• Access to these data by the Government can help it shape policies and laws, which
would look towards preventing contamination.

• The general public can become aware of the drinkability of the water in their area,
which would help them know whether they need water purifiers at their homes or not.

• The study can help in the further analysis and development in the field of water
contamination prevention.

The region taken into consideration for this study is a city known as Noida and
nearby areas in the northern part of India. It has been seen that the groundwater level and
quality are falling at high speed in this region. Currently, to prevent further deterioration,
Government needs to plan for maintaining the ground water quality. Apart from just
acquiring, Government needs to have security central repositories for storing compressed
data about water contamination along with biological information about the organisms
in water [14–16]. These repositories can be used for applying different machine-learning
algorithms for not only predicting the contamination, but also for the disease causes due to
water contamination [17–22]. This study can also be used to create water quality records
of groundwater in different parts of India where pollution levels are higher and new
construction sites cause an increase in water contamination.

Mapping the water contamination factors to non-changeable parameters is a big
concern as data related to this kind of work are very limited. There is hardly any data
analyzed in the past that can be fruitful for predicting water contamination based on
changeable parameters. The output of this paper will result in defining a baseline to map
the location according to the data fed into it, which, in turn, could help us find the levels of
contamination in that area [23,24].

This work deals with the use of physical parameters that can predict the contaminating
factors with certain accuracy for different models used [25,26]. The paper deals with using
machine-learning methodologies to predict the contamination factors of underground
water. The Water quality index is used to find the contamination of the area based on
polluting parameters.

2. Related Work

Some research has been undertaken in past years related to water contamination.
Frank J. studied the effects of contaminated water on children’s birth in his paper, “Public
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Drinking Water Contamination and Birth Outcomes” in 1995. He found that different
disorders were observed due to exposure to certain kinds of substances in the drinking
water of pregnant women [27]. Osmani S.A. studied the machine-learning approach with
multi-objective optimization on different datasets using different techniques in his pa-
per, “An integrated approach of machine algorithms with multi-objective optimization
in performance analysis of event detection” in 2020, to obtain the best result for stimula-
tion [28]. Hart B.W. used a mixed integration programming formulation where sensors
were placed in water distribution centers of the municipality. In the paper, “Sensor Place-
ment in Municipal Water Networks with Temporal Integer Programming Models” in
2006, 86.5% accuracy was found [29]. Blackburn B.G. studied water-borne disease out-
breaks due to the drinking water in the United States. In his paper, “Surveillance for
Waterborne-Disease Outbreaks Associated with Drinking Water—the United States in
2001–2002”, he showed the pattern over 2001–2002 [30]. Brunkard J.M. Studied outbreaks
in 24 states of the USA and Puerto Rico, from Jan 2007 to December 2008 in his paper,
“Surveillance for Waterborne Disease Outbreaks Associated with Drinking Water—United
States” in 2007–2008,and found the deficiencies caused by it at different places [31]. Ca-
nary “https://software.sandia.gov/trac/canary” (accessed on 21 January 2022), first made
publicly available in May of 2009 is a water quality event detection tool [32] that was
used in the above study. Deb K. used the multi-objective genetic algorithm NSA-2 in
his paper, “A Fast and Elitist Multi-objective Genetic Algorithm” in 2002. She concluded
that these algorithms also face difficulties in highly generic problems [33]. Cristo C. stud-
ied the identification of pollution sources in his paper, “Pollution Source Identification
of Accidental Contamination in Water Distribution Networks” in 2008, and proposed a
methodology for obtaining water contamination locations using water quality measures in
the distribution network [34]. Hasan J. reviewed an early warning system in his review
paper, “Safeguarding The Security Of Public Water Supplies Using Early Warning Systems:
A Brief Review”, to study the contamination events in the source water or the distribution
system using EWS technology [35]. Smitha K. studied contamination classification in her
paper, “Contaminant classification using cosine distances based on multiple conventional
sensors” in 2015. She proposed a new cosine distance classification method and performed
real-time independent containment classifications [36]. Che H. demonstrated correlative
relationships between different types of conventional water quality sensors in his paper,
“Contamination event detection using multiple types of conventional water quality sensors
in source water” in 2014.He observed that the method detects contamination 9 min after
introducing a lead nitrate solution [37,38]. Liu S. worked on understanding the failure
of methods in identifying the existence of containment in his paper, “Why conventional
detection methods fail in identifying the existence of contamination events” in 2015. They
concluded that conventional methods work well for sudden spike-like variation and the
PE method works better than MED and LPF on actual event data [39]. Liu S. performed
multivariate-based event detection in his paper, “A multivariate based event detection
method and performance comparison with two baseline methods” in 2016 and detected it
with an accuracy of 95% with a 2% false alarm rate [40]. Masky S. used fuzzy set theory with
genetic algorithms for treatment of precipitation uncertainty in rainfall in his paper, “Treat-
ment of precipitation uncertainty in rainfall-runoff modeling: a fuzzy set approach” in 2004,
and concluded output uncertainty due to uncertain temporal distribution of precipitation
being significantly dominant over the uncertainty [41].

3. Methodology

With the increase in industrialization, safe groundwater has become a significant
issue because of our drainage systems, which are polluting the water near us. The water
that is supposed to be pure for drinking, is becoming hazardous for health. The concept
of groundwater vulnerability was introduced in 1970 based on the assumption that the
physical environment provides natural protection to groundwater.

https://software.sandia.gov/trac/canary
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3.1. Data Acquisition

The data used in this paper have been collected by the Department of Computer
Science, JSS Academy of Technical Education, Noida, by visiting different locations of
Noida and some places of Delhi. One liter of water sample from each site was collected,
and the coordinates and elevation were marked using GPS handsets and smart phones.
The collected water samples from the water bodies were tested in the laboratories of JSS
Academy of Technical Education, Noida. Different tests were then conducted to find
the properties of the water sample, which were then placed in an Excel sheet for further
preprocessing, and apply various machine-learning techniques. Mapping the location
parameters with the water quality parameters was performed during the collection process.
Table 1 shows the snapshot of data collected from different locations in Noida and Delhi.
Figure 1 presents a graphical representation of the data with different factors of the samples
collected from different locations in Noida and Delhi.

Table 1. Dataset of the study and testing results of water samples collected from different locations
of Noida.

Location Latitude
(N)

Longitude
(E)

Elevation
(m) pH Temperature

(◦C)
Turbidity
(NTU)

Hardness
(mg/L)

Chlorides
(mg/L)

Alkalinity
(mg/L)

COD
(mg/L) DO BOD3 Acidity Chlorine

Pump No. H-1,
Sector 15A 28◦34′34.7” 77◦18′29.9” 203 8.74 15 9 295 84.97 319 16 6.4 18 NIL NIL

AsagarpurJagirVilage,
Sector 128 28◦31′17” 77◦20′58.2” 201 8.2 11.3 0 400 219.93 435 10.66 7.6 15.3 NIL NIL

Hindustan
Petroleum, Near
Jaypee Hospital

28◦30′20.9” 77◦21′56.2” 198 8 16.2 0 465 34.98 395 10.66 6.8 18 NIL NIL

Balaji Temple,
Sector 126 28◦32′11” 77◦20′22.9” 202 8.35 15.5 0 430 449.86 490 10.66 8.4 14.4 NIL NIL

Ankit Nursery,
Sector 131 28◦30′46.27” 77◦21′09.12” 181 8.04 13.9 1 425 234.92 465 5.33 5.6 16.2 NIL NIL

Green Beauty Farm,
Sector 135 28◦28′58.74” 77◦22′59.48” 185 8.36 14.3 3 425 24.99 335 10.66 6.8 18 NIL NIL

Yakootpur, Sector
167 28◦28′32.94” 77◦25′2.11” 192 8.68 14.6 3 190 0 320 10.66 6 15.3 NIL NIL

Gulavali, Sector 162 28◦28′5.37” 77◦26′5” 193 8.2 14.3 56 340 104 495 5.33 5.6 19.8 NIL NIL
Jhatta Village,

Sector 159 28◦27′52.09” 77◦26′54.14” 186 8.6 14.3 4 205 59.98 310 16 5.6 19.8 NIL NIL

Badauli, Sector 154 28◦27′20.43” 77◦27′39.94” 195 8.23 13.6 2 410 250 335 16 6.4 17.1 NIL NIL
KambuxpurDerin
Village, Sector 155 28◦26′40.84” 77◦27′19.39” 199 8.63 13.7 2 295 0 330 16 7.6 16.2 NIL NIL

GujjarDerin,
Kambuxpur, Sector

155A
28◦27′0.77” 77◦27′11.08” 186 8.51 13.3 3 270 104.96 320 53.33 6.4 16.2 NIL NIL

KondaliBangar,
Sector 149 28◦26′17.01” 77◦28′40.27” 201 8.33 13.7 3 240 34.98 395 58.66 8 14.4 NIL NIL

GarhiSamastpur,
Sector 150 28◦25′46.9” 77◦28′29.85” 186 8.06 14.2 5 470 89.97 370 53.33 3.2 26.1 NIL NIL

Momnathal, Sector
150 28◦36′33.69” 77◦21′36.24” 163 8.90 17.4 3 235 39.98 220 32 6.4 18.9 NIL NIL

Shafipur Village,
Sector 148 28◦26′51.99” 77◦29′17.81” 188 7.95 18.4 17 265 49.98 310 42.6 5.6 23.4 NIL NIL

MohiyapurVillage,
Sector 163 28◦28′42.06” 77◦26′0.61” 196 7.57 18.1 2 485 114.96 340 37.33 5.6 21.6 NIL NIL

Nalgadha, Sector
145 28◦28′56.25” 77◦26′24.5” 197 7.87 17.4 2 510 509.84 245 53.33 6.8 19.8 NIL NIL

Ideal Industrial
Training Institute,

Sector 143
28◦29′40.35” 77◦25′31.13” 189 7.52 16.5 38 515 344.89 305 21.33 4.8 23.4 NIL NIL

Shahdara, Sector
141 28◦30′17.25” 77◦25′03.87” 191 7.1 16.9 4 1780 0 460 16 6.4 23.4 NIL NIL

Hindon Flood Plain,
Kulesara, Sector 140 28◦30′43.61” 77◦25′47.52” 188 8.27 15.6 6 335 30 330 37.33 6.8 18 NIL NIL

Allahabad, Sector
86 28◦31′16.56” 77◦24′33.91” 189 7.79 16.1 5 1645 0 220 10.66 6.8 20.7 NIL NIL

SaiDham Colony,
Sector 88 28◦32′09.68” 77◦25′36.11” 194 7.94 15.4 1 395 210 355 48 6.8 19.8 NIL NIL

Kakrala Village,
Sector 80 28◦33′03.11” 77◦24′38.26” 196 8.11 15.8 9 370 150 365 42.66 6 19.8 NIL NIL

Gijhor Village,
Sector 53 28◦35′24.07” 77◦21′47.86” 198 7.54 18.6 1 775 744.77 355 26.66 8.4 15.3 NIL NIL

Sarfabad, Sector 73 28◦35′20.83” 77◦23′08.45” 200 8.28 17.7 1 445 619.81 255 10.66 8 17.1 NIL NIL
Sorkha Village,

Sector 118 28◦34′49.64” 77◦24′22.11” 183 7.67 17.8 19 580 324.9 580 21.33 6.4 18.9 NIL NIL
Pumping Station 3,

Sector 71 28◦35′35.91” 77◦22′33.01” 193 7.6 18.8 1 535 614.81 420 16 5.2 22.5 NIL NIL
Pump House,

Sector 122 28◦35′39.79” 77◦23′21.22” 187 7.65 18.1 0 600 1174.64 230 32 6 20.7 NIL NIL
19, Block H, Sector

116 28◦34′08.65” 77◦23′45.80” 194 7.97 18.6 1 935 854.73 275 5.33 6 21.6 NIL NIL

Baraula Village,
Sector 49 28◦33′59.25” 77◦22′12.96” 194 7.54 18.7 21 545 3288.98 215 58.66 6.4 19.8 NIL NIL

Pumping Station,
Sector 35 28◦34′50.46” 77◦21′11.94” 193 7.83 17.5 1 550 729.77 325 0 6.8 20.7 NIL NIL

Pumping Station 3,
Sector 34 28◦35′07.80” 77◦21′23.59” 192 7.58 17.3 6 830 1119.65 525 21.33 8 15.3 NIL NIL

Peerbabaji, Sector
144 28◦29′26.73” 77◦26′02.80” 183 8.45 17.3 20 765 799.75 305 10.66 6.8 18 NIL NIL

Dallupura Village,
Sector 164 28◦28′57.49” 77◦25′47.42” 189 8.65 16.6 0 360 164.95 280 32 8 17.1 NIL NIL



Water 2022, 14, 728 5 of 20

Table 1. Cont.

Location Latitude
(N)

Longitude
(E)

Elevation
(m) pH Temperature

(◦C)
Turbidity
(NTU)

Hardness
(mg/L)

Chlorides
(mg/L)

Alkalinity
(mg/L)

COD
(mg/L) DO BOD3 Acidity Chlorine

Dostpur, Mangrauli,
Sector 167 28◦29′01.19” 77◦24′57.37” 186 8.78 16.6 50 205 0 275 53.33 6.4 19.8 NIL NIL

Nangli Village,
Sector 134 28◦29′52.94” 77◦22′53.76” 188 8.55 16.7 0 580 109.97 335 64 7.2 18 NIL NIL

Bakhtawarpur,
Sector 127 28◦32′03.14” 77◦21′13.73” 185 8.31 14.1 6 325 99.97 335 5.33 6 20.7 NIL NIL

Sultanpur Village,
sector 128 28◦31′17.97” 77◦22′06.05” 190 7.75 16.7 0 690 659.8 460 10.66 5.6 20.7 NIL NIL

Shahpur, Sector 131 28◦30′56.37” 77◦22′04.54” 186 7.91 15.1 0 860 699.78 510 16 6 19.8 NIL NIL
Sadarpur, Sector 45 28◦33′02.93” 77◦21′02.22” 194 8.01 13.5 7 585 234.93 445 0 5.2 21.6 NIL NIL
Chhalera, Sector 44 28◦33′02.49” 77◦21′02.57” 195 7.78 16.0 0 1055 634.8 495 21.33 7.2 16.2 NIL NIL

Sanatan Temple,
Sector 41 28◦33′53.91” 77◦21′36.79” 194 7.97 16.3 1 1745 2579.2 250 48 3.6 20.7 NIL NIL

Shiv Mandir, Sector
31 28◦34′37.29” 77◦20′48.62” 187 7.74 16.5 0 695 479.85 455 26.66 6 21.6 NIL NIL

NaglaCharanDass,
Noida Phase-2 28◦32′25.47” 77◦24′25.02” 200 7.95 16.3 4 840 1214.62 510 32 6 21.6 NIL NIL

Nursery, Sector 104 28◦32′13.48” 77◦21′54.55” 190 7.85 16.4 1 685 484.85 490 21.33 4.4 23.4 NIL NIL
Pumping Station,

Sector 80 28◦33′15.36” 77◦24′23.03” 201 8.12 17.4 0 290 154.95 400 10.66 4.4 25.2 NIL NIL
Shiv Mandir, Sector

93 28◦31′35.64” 77◦22′35.64” 192 7.80 17.3 1 1230 1349.58 380 42.66 5.2 22.5 NIL NIL

Salarpur Village,
Sector 102 28◦32′50.20” 77◦22′56.28” 192 7.48 18.0 0 750 729.77 695 32 4.8 23.4 NIL NIL

GarhiChaukhandi,
sector 121 28◦35′58.99” 77◦23′41.18” 197 8.01 17.2 0 560 1479.54 265 37.33 5.2 21.6 NIL NIL

Pumping Station,
Block-G, Sector 63 28◦35′58.94” 77◦23′41.32” 199 7.92 17.7 0 590 1009.69 255 32 4.4 24.3 NIL NIL

Water 2022, 14, x FOR PEER REVIEW 6 of 22 
 

 

Sadarpur, 
Sector 45 

28°33′02.93″ 77°21′02.22″ 194 8.01 13.5 7 585 234.93 445 0 5.2 21.6 NIL NIL 

Chhalera, 
Sector 44 

28°33′02.49″ 77°21′02.57″ 195 7.78 16.0  0 1055 634.8 495 21.33 7.2 16.2 NIL NIL 

Sanatan 
Temple, Sector 

41 
28°33′53.91″ 77°21′36.79″ 194 7.97 16.3 1 1745 2579.2 250 48 3.6 20.7 NIL NIL 

Shiv Mandir, 
Sector 31 

28°34′37.29″ 77°20′48.62″ 187 7.74 16.5 0 695 479.85 455 26.66 6 21.6 NIL NIL 

NaglaCharanD
ass, Noida 

Phase-2 
28°32′25.47″ 77°24′25.02″ 200 7.95 16.3 4 840 1214.62 510 32 6 21.6 NIL NIL 

Nursery, Sector 
104 

28°32′13.48″ 77°21′54.55″ 190 7.85 16.4 1 685 484.85 490 21.33 4.4 23.4 NIL NIL 

Pumping 
Station, Sector 

80 
28°33′15.36″ 77°24′23.03″ 201 8.12 17.4 0 290 154.95 400 10.66 4.4 25.2 NIL NIL 

Shiv Mandir, 
Sector 93 

28°31′35.64″ 77°22′35.64″ 192 7.80  17.3 1 1230 1349.58 380 42.66 5.2 22.5 NIL NIL 

Salarpur 
Village, Sector 

102 
28°32′50.20″ 77°22′56.28″ 192 7.48 18.0  0 750 729.77 695 32 4.8 23.4 NIL NIL 

GarhiChaukha
ndi, sector 121 

28°35′58.99″ 77°23′41.18″ 197 8.01 17.2 0 560 1479.54 265 37.33 5.2 21.6 NIL NIL 

Pumping 
Station, Block-

G, Sector 63 
28°35′58.94″ 77°23′41.32″ 199 7.92 17.7 0 590 1009.69 255 32 4.4 24.3 NIL NIL 

 
Figure 1.Distribution of Factors from different locations of Noida and Delhi. 

The different parameters that were tested are as follows: 
  

0

500

1000

1500

2000

2500

3000

3500

ELEVATION (m)PHTEMPERATURE (℃)TURBIDITY(NTU)HARDNESS(mg/L)CHLORIDES(mg/L)ALKALINITY(mg/L)COD(mg/L)DOBOD³
Figure 1. Distribution of Factors from different locations of Noida and Delhi.

The different parameters that were tested are as follows:

3.1.1. Temperature

Temperature is the physical property that expresses the coldness or hotness of water
and can be further described as thermal energy measurement. Due to variance in temper-
ature, other parameters, including chemical and physical properties, change. It broadly
affects parameters including pH and oxidation as follows:

• pH: For an increase in temperature, the ratio of ionization to its molecule increases,
hence increasing the toxicity of water by increasing the chemical content.

• Toxicity: A rise in temperature leads to an increase in solubility of compounds, which
increases toxicity.

• Metabolic rate: It has been observed that metabolic rates of aquatic plants increase,
whereas fishes such as salmon and trout decrease because they prefer colder tempera-
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tures. It does not affect the temperature but shows how metabolic rates change with
the change in temperature.

• Dissolved oxygen: Increase in temperature results in an increase in solubility of oxygen
and other gases. Thus, lakes and streams with lower temperatures can hold more
dissolved oxygen than warmer water. As dissolved oxygen increases too much, it
increases bacteria and algae, which results in contamination.

Temperature [42] plays a vital role in shaping the physical property of water as it also
affects the other parameters, which leads to harm to the aquatic life of the water body.

3.1.2. pH

It is a measurement of the concentration of hydrogen ions in water, indicating the
sample’s acidity. It is measured on a scale of 0 to 14, with 7 being the midpoint and is
neutral, whereas a pH [42] above 7 is alkaline and becomes more alkaline as it reaches
14; a pH [43] below 7 is acidic and becomes more acidic as it reaches 0 value. pH with a
value of 7; hence, non-acidic and non-alkaline is considered as perfectly drinkable water. A
key water-quality metric is pH (negative base-10 logarithm of hydrogen ion activity). It is
easily tested on-site, and it determines the solubility and mobility of numerous dissolved
metals, as well as the sorts of gases and minerals with which groundwater has interacted
as it travels from the recharge zone to the sample site. The pH of water varies due to the
following factors:

• Bedrock and soil composition affect the pH as rocks such as limestone neutralize the
acid, whereas rocks such as granite do not affect the pH, resulting in deviation of the
pH from the required level of 7.

• Plant growth and organic material in the water body release carbon dioxide when they
decompose, which combines with water forms carbonic water and converts the water
to slightly acidic.

• Acid rain pollutes the water because they contain nitrogen oxides (NOx) (x could be
2 or 3 depending on if it is dioxide or trioxide) and sulfur dioxide (SO2) along with
water vapor, thus increasing the acidity of the water.

• Iron sulfide, a mineral found in and around coal, combines with water to form sulfuric
acid, a strong acid; hence, coal mine drainage severely affects the pH of the water.

The pH of groundwater reacting with sandstones ranges between 6.5 and 7.5, but
the pH of groundwater running through limestone strata can reach 8.5. The pH of water
is essential for aquatic life and drinkability, and even a slight change in pH affects the
drinkability of the water. Non-neutral water consumption is hazardous for health. Pure
water has a neutral pH of 7.0 at normal temperature. The pH of rain that has balanced with
atmospheric carbon dioxide is around 5.6. The pH of streams and lakes in rainy areas is
usually between 6.5 and 8.0. Ground water that has come into touch with decomposing
organic matter can have a pH as low as 4.0, and water that has interacted with iron sulfide
minerals in coal or shale can have an even lower pH. Groundwater pH normally varies
from 6.0 to 8.5 in the absence of coal or iron sulfide minerals, depending on the kind of soil
and rock affected.

3.1.3. Chlorides

Chlorides [44] are salts formed due to the intermixing of metal with gaseous chlorine,
and can be used to disinfect surfaces. They are present in molecules such as magnesium
chloride (MgCl2) and sodium chloride (NaCl). Content in drinking water does not cause
harm, but a high amount, the sodium associated with it causes health concerns such as
diarrhea. There are many sources from which chloride can enter the drinking water.

• Agricultural waste increases the chloride content in water.
• Rocks that contain chloride content.
• Waste water from wastewater treatment plants also has a high amount of chloride

content in them.
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• The industrial waste also contains high amounts of chloride.

High levels of it also affect aquatic lives because of the toxicity it causes. However,
guidelines suggest the chloride content should be less than 250 mg/L, and more than this
will make water unfit for drinking and also affect aquatic life.

3.1.4. Dissolved Oxygen

Dissolved oxygen is the oxygen dissolved [43] in water by diffusion from the surround-
ing air. Photosynthesis by aquatic plants and some bacteria are responsible for oxygen as
it splits oxygen from the water and carbon dioxide. Phytoplanktons in oceans supply a
total of three-fourths of oxygen on earth. Good water quality requires adequate dissolved
oxygen, and a level below 5.0 mg/L puts aquatic life under stress and is also not fit for
drinking. Biologically, the oxygen level is more important for water quality than are fecal
coli form levels, and it also affects properties such as odor, clarity, and taste. It is affected
by a change in temperature, such as higher temperatures.

This lowers the dissolved oxygen level of water, because as the temperature rises, the
maximum level of dissolved oxygen that a water body can have, decreases, resulting in the
growth of algae and bacteria in water, and hence contaminating the water body.

3.1.5. Alkalinity

Water can neutralize the acid present in the water, which is the reverse of alkalinity [45].
This occurs naturally in water due to the soil or the rocks present on the water body’s
floor [46]. They are present as compounds of hydroxyl, carbonates, bicarbonates, and
phosphates, silicates, etc. It has health benefits such as bone-strengthening, but high levels
may lead to metabolic alkalosis, confusion, muscle twitching, etc. They also cause harm
to aquatic life because they make the water alkaline, which is not be suitable for certain
types of marine life to exist. The alkalinity of water must be between 20 and 200 mg/L to
be considered fit for drinking purposes.

A decrease in temperature affects the alkalinity of the water body. By increasing its
alkalinity, the water is made unfit for drinking.

3.1.6. Chemical Oxygen Demand (COD)

The quantity of dissolved oxygen required to oxidise chemical organic compounds
such as petroleum is known as chemical oxygen demand (COD) [47]. It is used to charac-
terize different types of water such as industrial waste, sewage, etc. It is a quality measure
used to determine the amount of inactive organic and biologically active substances in
a water body. The COD limit must be less than 250 mg/L to be fit to be discharged in
a water body. Higher COD levels mean more oxidizable organic material to remain in
water samples [48], which causes dissolved oxygen levels to drop down and, as a result,
causes anaerobic conditions that are not fit for drinking nor for aquatic life to be sustained.
Suppose that the COD of the water body was more than 250 mg/L, in this case, the water
body would have a harmful amount of inactive, organic, and biologically active substances,
making the water unfit for drinking.

3.1.7. Hardness

It is the amount of dissolved magnesium and calcium that is present in water in
dissolved form. Traditionally the water can have reactions with soap [49]. Hard water is
also constituted of other cations such as aluminum, iron, manganese, zinc, barium, etc. The
source of the addition of these substances in water is sedimentary rocks such as chalk and
limestone. Magnesium and calcium are both present in ground water [50] and running
water, usually in concentrations of 100 mg/L for calcium and between negligible and
100 mg/L for magnesium. They both are essential minerals that benefit our body, but inad-
equate concentrations of calcium cause health issues such as kidney stones, hypertension,
obesity, stroke, etc. Magnesium causes coronary heart disease, metabolic syndrome, etc.
Hence, adequate amounts of these metals are needed in dietary needs. However, an excess
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of these can cause decreased absorption of food in the intestines due to a reaction, in the
case of calcium, whereas excessive magnesium causes diarrhea [51,52]. The water with
0–17.1 mg/L of hardness is called soft water and is perfect for drinking purposes. Hard
water also affects the functioning of the liver and can also result in hair loss.

3.1.8. Turbidity

The cloudiness or opaqueness of water samples is due to suspended particles such
as clay-, silt-, iron-, and magnesium-like chemicals [53]. There are more if the water is
more opaque, whereas there are less if the water is clear, as light is more scattered if
the suspended particles are present in massive amounts, indicating that the turbidity is
high. Low turbidity suggests that there are fewer pathogens present in the water. Upon
consumption, high turbid water can cause endemic gastrointestinal disease, and crystal-
clear water has turbidity below 1 NTU, which means drinking water must have turbidity
below 1 NTU. More than the permissible limit of turbidity contaminates the water by
making it unfit for human consumption and poses a danger to the aquatic life of the
water body.

3.1.9. BOD (Biological Oxygen Demand)

The quantity of oxygen required to eliminate waste organic matter from water during
the decomposition process by aerobic bacteria is measured by BOD (those bacteria that live
only in an environment containing oxygen). The breakdown of waste organic stuff by live
bacterial organisms that require oxygen to function stabilizes or renders it unobjectionable.
BOD is a measure of organic contamination in water that is commonly used in wastewater
treatment plants.

3.1.10. Acidity

Acidic groundwater is a serious environmental and social issue that arises as a result
of changes in the ground and hydrological systems, such as the building of deep flood
control channels, and wet and dry seasons. By analyzing the pH of water acidity can be
found.

3.2. Data Pre-Processing

The problem encountered with the whole system was the unavailability of data at some
coordinates, which was later dealt with by understanding the role of each parameter in the
algorithm. The parameters were to be predicted using the present physical parameters such
as latitude, longitude, and elevation. At first, the non-affecting parameters were removed
where the location was removed, as they did not give us any unique number. The latitude
and longitude were used instead of the location. After this, the redundant parameters
that were not showing any results were also removed from the data. Different arrays
were made to match the physical parameters to the changeable parameters. The number
of changeable parameters was equated, keeping in account the instances of a particular
parameter. Figure 2 shows the flow chart of data pre-processing.
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3.3. Processing

After pre-processing, latitude, longitude, elevation were used to predict pH, tempera-
ture, turbidity, hardness, chlorides, dissolved oxygen, alkalinity, chemical oxygen demand,
etc. Parameters are differentiated into physical parameters (which cannot be changed)
and changeable parameters. Physical parameters were then mapped one by one to each
changeable parameter in an array, which resulted in nine arrays. These nine arrays were
then fed into the machine-learning models that are being used in this paper.

Four models were used while considering that the input label will consist of the
latitude, longitude, and elevation. In contrast, the features consist of the parameters such
as pH, temperature, turbidity, hardness, chlorides, alkalinity, dissolved oxygen, chemical
oxygen demand, biological oxygen demand, etc. Then the division of data was made into
the train sets and test sets.

Next, the data were fed into the Multivariable linear regression model, Support vector
regression, Decision tree regression, and Lasso regression for results.

After that, R2 scores were checked for each algorithm to find out the best-suited
algorithm for the dataset that we could use for classifications and usage in the future. The
R2 score is a statistical measure to find the goodness of the fitted data (in the algorithm) [54].
It is on a scale of 0 to 1, where close to 1 signifies better fit and close to 0 indicates a bad fit,
but as we have multiplied it with a factor of 100 for a better scale, the scale is now between
0 and100.

R2 =
(

1−
(

Σ(yi − fi)
2 − Σ( fi − y)

))
× 100 (1)

yi = observed data that need to be predicted; fi = output of the data corresponding to yi; y =
Mean of the observed data.

The training and test datasets were fed into all four algorithms, and then the results
were fed into the R2 algorithms to understand the fitness of the algorithm. Figure 3 shows
the flow chart of methodology.

3.4. Algorithms Used

The data, after pre-processing, were fed into the Multivariable linear regression model,
Support vector regression, Decision tree regression, and Lasso regression for results.

3.4.1. Multivariable Linear Regression

Generally, the multiple regression model is an extension to linear regression, which
comprises multiple iterations of the same linear regression data [55]. This improves the
accuracy of the model. Given a dataset

{
yi, xi1, . . . . . . , xip

}n
i=1 of n statistical sites, a linear

regression model will assume the yi based on the factors x.

y = β0 + β1×1 + β2×2 + . . . + βk×k + ∈ (2)

where ∈ is error, βi are slope constants, and y and xi are output and input variables.
This algorithm is fed with the training dataset such that the input x is fir in the

Equation (2), which then makes a random value of the βi and maps it with the actual y.
This process keeps iterating up to multiple times until the set of βi is not found with the
least possible error. Those βi are then placed in Equation (2) to predict the output y. We can
map the parameters using this algorithm.
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3.4.2. Support Vector Regression

This is the most common regression technique for the classification of a water-based
regression model. It is well known for its accuracy, and the nature of classification is simple.
The procedure involves making a hyper plane that exists between the classes; it maximizes
the distinction by making a significant difference in the parameter assignment. These
results in low mismatch ratios. Training of the SVR performed by solving [56]:

minimize
1
2
‖w‖2 (3)

subjectto|yi − 〈w, xi〉 − b ≤ ε (4)

y = wx + b (5)

where xi is a training sample with a target yi. 〈w, xi〉 + b is the prediction for the sample. ε
is a free parameter that serves as a threshold that all the predictions have to be within an ε
range of the accurate prediction.

In this, we feed the xi to the Equation (4) such that the Equation (3) is minimized, and
after finding the suitable w, it is then provided to the equation of the hyper plane (5). The
result of the hyper plane equation is the predicted value of y, which is afterward used in R2

score. We can map the parameters using this algorithm.
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3.4.3. Decision Tree Regression

Decision trees construct regression or arrangement models as a tree structure [57].
It divides a dataset into primary subsets while simultaneously a related decision tree is
steadily evolved. The conclusive outcome is a tree with decision hubs and leaf hubs. This
algorithm is used for both classification and regression. It is the regression model that uses
entropy to select as the main parameter within the variables. After this, it makes a top to
bottom line tree to determine all the decisions in the classification regression tree.

A decision tree is constructed top-down from a root hub and includes dividing the
information into subsets that contain occurrences with comparable qualities (homogenous).
In this, it utilizes standard deviation to ascertain the homogeneity of a numerical example.
In the event that the numerical model is totally homogeneous, its standard deviation is zero.

Gini index = 1 − Σp2 (6)

pi is the probability of happening of event pi.
In this, the predicted outcome is a real number and not a class. In the process of

making the tree, the data need to be classified level-wise, which is performed by using the
concept of Gini impurity or Information gain. The objective is to figure out the minor Gini
impurity feature as the root node, giving us a better solution. To compute the Gini impurity
for class Items set, once the data are fed into it, it will make a decision tree based on the
entropies of the probability of each. It will then decide the following most probable answer
based on the regression of the data.

3.4.4. Lasso Regression

Lasso (least absolute shrinkage and selection operator) is a regression analysis method
that performs variable selection and regularization to improve the prediction accuracy [58].
Lasso regression is a sort of linear regression that utilizes shrinkage. Shrinkage is the place
information esteems are contracted towards an essential issue, similar to the mean. The
lasso methodology empowers straightforward, meager models (for example, models with
fewer parameters). This specific sort of regression is appropriate for models indicating
significant levels of multicollinearity or when you need to robotize certain pieces of model
choice, similar to variable determination/parameter enhancement. For lasso, this equation
needs to be solved:

min
βo, β

{
N

∑
i=1

(
yi − βo − xT

i β
)

2

}
subject to

p

∑
j=1

∣∣β j
∣∣ ≤ t (7)

where ‖β‖p =

(
N
∑

i=1
|βi|p

)1/p

is the standard Lp norm, and 1N is N × 1 vector of ones? t is

a specified parameter that determines the regularization amount.
When data are fed into the regression algorithm, it works like linear regression by

using random parameters, shrinking the cost function, and using those coefficients in the
equation. The cost function that decides the parameters is the least for best coefficients in
the equation. The results in lasso regression are then used to find its R2 scores, which then
determine the following most probable answer based on the regression of the data.

4. Results

After collecting the results of the tested samples, the properties of water as parameters
were found and were ready to be used for machine-learning algorithms. It was observed
that machine learning could be used to find the contaminating parameters using the
physical parameters as input parameters. Since the physical parameters are non-changeable
for a location, they were mapped with the changeable parameters to yield output and
predict the contaminating factors. So, after implementing four regressions on the dataset,
we obtained the results that helped us conclude that Multivariable linear regression works
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the best in most cases. As we increase the instance count in the dataset, the results start to
improve even further. The current effects on those parameters are:

Figure 4 shows the R2 results for temperature. From this, we can conclude that
Multivariable linear regression showed the best results.
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Figure 4. R2 result for Temperature.

Figure 5 shows the R2 results for pH. From this, we can conclude that Support vector
regression showed the best results.
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Figure 5. R2 result for pH.

Figure 6 shows the R2 results for turbidity, which we were unable to conclude because
of less correlation among the data.
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Figure 6. R2 result for Turbidity.

Figure 7 shows the R2 results for the hardness of the water, which we were unable to
conclude because of less correlation among the data.
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Figure 7. R2 result for Hardness.

Figure 8 shows the R2 results for Chlorides. From this, we can conclude that Support
vector regression showed the best results.
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Figure 8. R2 result for Chlorides.

Figure 9 shows the R2 results for alkalinity, which we were unable to conclude because
of less correlation among the data.
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Figure 9. R2 result for Alkalinity.

Figure 10 shows the R2 results for COD. From this, we can conclude that Multivariable
linear regression showed the best results, and it will improve as the dataset size increases.
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Figure 10. R2 result for COD.

Figure 11 shows the R2 results for DO. From this, we can conclude that Multivariable
linear regression showed the best results, and it will improve as the dataset size increases.
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Figure 12 shows the R2 results for BOD. From this, we can conclude that Multivariable
Linear regression showed the best results, and it will improve as the dataset size increases.
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The statistical analysis of the data was performed after splitting them into two parts,
namely, training data and test data. Thus, they show different results on each parameter
and model. The data were divided into 80% for training part, and 20% is the test part, and
all of them showed their respective R2 scores.

5. Discussion

The main aim of this research was to create a relationship between the location-based
factors with the factors affecting the water contamination in a given area. Some research
has been conducted in the past where water contamination has been found in an area for a
given time line, but no study was available where water contaminants are predicted using
the location coordinates. In simple words, it can be stated that if we have the data of n
locations in a particular area, this study can help to predict the water contaminants of the
(n + 1)th location without physically testing the water sample of that location.

The research started with water samples collection from different locations in Noida
and few in Delhi. The samples so collected were tested in the lab for finding out the
different attributes of the water sample. These data were unique and had never been
collected, analyzed, or used for any past study. The studies that had been carried out
till now had not gone into the micro level. Moreover, in previous research, samples of
all locations were collected over a time period, which makes our approach completely
different, meaning that we did not collect samples for each and every location. If we had
the data for n locations, we could predict the water contamination of (n + 1)th location.

This research aimed to find water factors of the contamination using a machine-
learning approach where the physical parameters were used in algorithms to predict the
contamination. These physical factors were mapped with each contaminating factor such
that the input of the physical factor would predict one contaminating factor. R2 scores for
temperature in Multivariable linear regression training was 40.94, and testing was 52.51;
in Support vector regression training was 99.65 and testing was 29.87; in Decision tree
regression training was 100.0 and testing was −0.69; and in Lasso regression training was
0.0 and testing was 5.29. So, from this, we can conclude that Multivariable linear regression
showed the best results.

R2 scores for pH in Multivariable linear regression training was 33.40, and testing
was −7.70; in Support vector regression training was 92.09 and testing was 46.97; in
Decision tree regression training was 100.0 and testing was 16.04; and in Lasso regression
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training was 0.0 and testing was −10.24. So, from this, we can conclude that Support vector
regression showed the best results.

R2 scores for turbidity in Multivariable linear regression training was 23.08,and testing
was −17.38; in Support vector regression training was 94.17andtesting was −44.02; in
Decision tree regression training was 100.0 and testing was −33.76; and in Lasso regression
training was 10.56 and testing was −11.27. So, from this, we were unable to conclude
because of less correlation among the data.

R2 scores for hardness in Multivariable linear regression training was 9.79, and testing
was −150.18; in Support vector regression training was 43.35 and testing was −121.64; in
Decision tree regression training was 100.0 and testing was−831.68; and in Lasso regression
training was 9.79 and testing was −148.01. So, from this, we were unable to conclude
because of less correlation among the data.

R2 scores for chlorides in Multivariable linear regression training was 18.95, and
testing was 21.23; in Support vector regression training was 33.53 and testing was 71.188; in
Decision tree regression training was 100.0 and testing was 12.10; and in Lasso regression
training was 18.95 and testing was 22.14. So, from this, we can conclude that Support vector
regression showed the best results.

R2 scores for alkalinity in Multivariable linear regression training was 8.76, and testing
was −3.62; in Support vector regression training was 69.48 and testing was −90.04; in
Decision tree regression training was 100.0 and testing was−111.41; and in Lasso regression
training was 10.32 and testing was−2.56. So, from this, we were unable to conclude because
of less correlation among the data.

R2 scores for chemical oxygen demand in Multivariable linear regression training was
12.01, and testing was 9.02; in Support vector regression training was 87.59501708185957
and testing was −310.54; in Decision tree regression training was 100.0 and testing was
−0.69; and in Lasso regression training was 0.0 and testing was 8.579239914991078. So,
from this, we can conclude that Multivariable linear regression showed the best results and
will improve as the dataset size increases.

R2 scores for dissolved oxygen in Multivariable linear regression training was 69.58,
and testing was 54.83; in Support Vector Regression training was 98.51 and testing was
−374.93; in Decision tree regression training was 100.0 and testing was 31.33; and in Lasso
regression training was 0.0 and testing was −16.96. So, from this, we can conclude that
Multivariable linear regression showed the best results and will improve as the dataset size
increases.

R2 scores for biological oxygen demand in Multivariable linear regression training was
99.99, and testing was 99.99, in Support vector regression training was 99.88 and testing
was 78.77; in Decision tree regression training was 100.0 and testing was 96.74; and in Lasso
regression training was 84.66 and testing was 76.91. So, from this, we can conclude that
Multivariable linear regression showed the best results and will improve as the dataset size
increases.

6. Conclusions

The dataset used in this paper was collected through ground survey and analyzed
through lab testing. This paper not only aimed at predicting water contamination using lo-
cation coordinates, but also proposed a new method for predicting the water contamination
level of a particular area. To forecast the pH, temperature, turbidity, hardness, chlorides,
alkalinity, COD, DO, and BOD in groundwater, regression models (such as MVLR, SVR,
DTR, and LR models) were created.

pH, temperature, turbidity, hardness, chlorides, dissolved oxygen, alkalinity, chemical
oxygen demand, and other parameters were predicted using latitude, longitude, and eleva-
tion after pre-processing. Physical parameters (which cannot be modified) and changeable
parameters were the two types of parameters used. After that, physical parameters were
mapped one by one to each changeable parameter in an array, yielding a total of nine arrays.
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These nine arrays were then loaded into the machine-learning models employed in this
study.

Four models were used, with the input label consisting of latitude, longitude, and ele-
vation. The features consisted of pH, temperature, turbidity, hardness, chlorides, alkalinity,
dissolved oxygen, chemical oxygen demand, and biological oxygen demand, among other
factors. The data were then divided into train sets and test sets.

The data were then sent into the Multivariable linear regression model, Support vector
regression model, Decision tree regression model, and Lasso regression model for analysis.

The suggested technique, which uses the regression models, has provided valuable
data that decisionmakers can utilize to help manage reservoir water quality. Instead of
forecasting, we focused on water quality prediction in this study. Different lead-time
forecasts in water quality can be produced in future research to aid local authorities
with water quality management. Soft computing approaches, such as the merging fuzzy
optimum model with genetic programming, support vector machine, and the particle
swarm optimization training algorithm for a neural network, can enhance reservoir water
quality prediction.
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