Estimating the Soil Erosion Response to Land-Use Land-Cover Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Miyun Reservoir, North China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Processing and Acquisition
2.2.1. RUSLE Model
2.2.2. Land Use/Cover Data (P)
2.2.3. Rainfall Erosive Factor (R)
2.2.4. Soil Erodibility Factor (K)
2.2.5. Vegetation Cover-Management Factor (C)
2.2.6. Topographic Factor (LS)
2.2.7. Classification of Soil Erosion in China
3. Results
3.1. Land-Use Change Analysis
3.2. Soil Erosion Change Analysis
3.3. Soil Erosion and LULCC Overlay Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Park, S.; Oh, C.; Jeon, S.; Jung, H.; Choi, C. Soil erosion risk in Korean watersheds, assessed using the revised universal soil loss equation. J. Hydrol. 2011, 399, 263–273. [Google Scholar] [CrossRef]
- Wang, X.; Zhao, X.; Zhang, Z.; Yi, L.; Zuo, L.; Wen, Q.; Liu, F.; Xu, J.; Hu, S.; Liu, B. Assessment of soil erosion change and its relationships with land use/cover change in China from the end of the 1980s to 2010. Catena 2016, 137, 256–268. [Google Scholar] [CrossRef]
- Ochoa, P.A.; Fries, A.; Mejia, D.; Burneo, J.I.; Ruiz-Sinoga, J.D.; Cerda, A. Effects of climate, land cover and topography on soil erosion risk in a semiarid basin of the Andes. Catena 2016, 140, 31–42. [Google Scholar] [CrossRef]
- Wang, Z.-J.; Jiao, J.-Y.; Rayburg, S.; Wang, Q.-L.; Su, Y. Soil erosion resistance of “Grain for Green” vegetation types under extreme rainfall conditions on the Loess Plateau, China. Catena 2016, 141, 109–116. [Google Scholar] [CrossRef]
- Wang, N.; Jiao, J.Y.; Bai, L.C.; Zhang, Y.F.; Chen, Y.X.; Tang, B.Z.; Liang, Y.; Zhao, C.J.; Wang, H.L. Magnitude of soil erosion in small catchments with different land use patterns under an extreme rainstorm event over the Northern Loess Plateau, China. Catena 2020, 195, 104780. [Google Scholar] [CrossRef]
- Liu, L.C.; Dong, X.F.; Wang, J.H. Dynamic analysis of eco-environmental changes based on remote sensing and geographic information system: An example in Longdong region of the Chinese Loess Plateau. Environ. Geol. 2007, 53, 589–598. [Google Scholar] [CrossRef]
- Pimentel, D.; Kounang, N. Ecology of Soil Erosion in Ecosystems. Ecosystems 1998, 1, 416–426. [Google Scholar] [CrossRef]
- Lu, X.; Zhang, Y.; Lin, C.; Wu, F. Evolutionary Overview and Prediction of Themes in the Field of Land Degradation. Land 2021, 10, 241. [Google Scholar] [CrossRef]
- Gholami, V.; Booij, M.J.; Nikzad Tehrani, E.; Hadian, M.A. Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. Catena 2018, 163, 210–218. [Google Scholar] [CrossRef]
- Ministry of Environmental Protection; National Bureau of Statistics. Bulletin of First National Census for Water; Bulletin of First National Census for Water: Beijing, China, 2013; Available online: http://www.hrcshp.org/shp/en/pdf/2013/2013.pdf (accessed on 26 March 2013).
- Zare, M.; Panagopoulos, T.; Loures, L. Simulating the impacts of future land use change on soil erosion in the Kasilian watershed, Iran. Land Use Policy 2017, 67, 558–572. [Google Scholar] [CrossRef]
- Schowanek, D.; David, H.; Francaviglia, R.; Hall, J.; Kirchmann, H.; Krogh, P.H.; Schraepen, N.; Smith, S.; Wildemann, T. Probabilistic risk assessment for linear alkylbenzene sulfonate (LAS) in sewage sludge used on agricultural soil. Regul. Toxicol. Pharm. 2007, 49, 245–259. [Google Scholar] [CrossRef] [PubMed]
- Rompaey, A.J.J.V.; Govers, G. Data quality and model complexity for regional scale soil erosion prediction. Int. J. Geogr. Inf. Sci. 2002, 16, 663–680. [Google Scholar] [CrossRef]
- Huang, W.; Ho, H.C.; Peng, Y.; Li, L. Qualitative risk assessment of soil erosion for karst landforms in Chahe town, Southwest China: A hazard index approach. Catena 2016, 144, 184–193. [Google Scholar] [CrossRef]
- Xu, L.F.; Xu, X.G.; Meng, X.W. Risk assessment of soil erosion in different rainfall scenarios by RUSLE model coupled with Information Diffusion Model: A case study of Bohai Rim, China. Catena 2013, 100, 74–82. [Google Scholar] [CrossRef]
- Jain, S.K.; Kumar, S.; Varghese, J. Estimation of soil erosion for a Himalayan watershed using GIS technique. Water Resour. Manag. 2001, 15, 41–54. [Google Scholar] [CrossRef]
- Nyakatawa, E.Z.; Reddy, K.C.; Lemunyon, J.L. Predicting soil erosion in conservation tillage cotton production systems using the revised universal soil loss equation (RUSLE). Soil Tillage Res. 2001, 57, 213–224. [Google Scholar] [CrossRef]
- Chen, T.; Niu, R.Q.; Wang, Y.; Li, P.X.; Zhang, L.P.; Du, B. Assessment of spatial distribution of soil loss over the upper basin of Miyun reservoir in China based on RS and GIS techniques. Environ. Monit. Assess. 2011, 179, 605–617. [Google Scholar] [CrossRef]
- Ostovari, Y.; Ghorbani-Dashtaki, S.; Bahrami, H.-A.; Naderi, M.; Dematte, J.A.M. Soil loss estimation using RUSLE model, GIS and remote sensing techniques: A case study from the Dembecha Watershed, Northwestern Ethiopia. Geoderma Reg. 2017, 11, 28–36. [Google Scholar] [CrossRef]
- Cerri, C.E.P.; Demattě, J.A.M.; Ballester, M.V.R.; Martinelli, L.A.; Victoria, R.L.; Roose, E. Gis Erosion Risk Assessment of the Piracicaba River Basin, Southeastern Brazil. Mapp. Sci. Remote Sens. 2013, 38, 157–171. [Google Scholar] [CrossRef]
- Feng, X.; Wang, Y.; Chen, L.; Fu, B.; Bai, G. Modeling soil erosion and its response to land-use change in hilly catchments of the Chinese Loess Plateau. Geomorphology 2010, 118, 239–248. [Google Scholar] [CrossRef]
- Alatorre, L.C.; Beguería, S.; Lana-Renault, N.; Navas, A.; García-Ruiz, J.M. Soil erosion and sediment delivery in a mountain catchment under scenarios of land use change using a spatially distributed numerical model. Hydrol. Earth Syst. Sci. 2012, 16, 1321–1334. [Google Scholar] [CrossRef] [Green Version]
- López-Vicente, M.; Poesen, J.; Navas, A.; Gaspar, L. Predicting runoff and sediment connectivity and soil erosion by water for different land use scenarios in the Spanish Pre-Pyrenees. Catena 2013, 102, 62–73. [Google Scholar] [CrossRef]
- Lizaga, I.; Quijano, L.; Palazón, L.; Gaspar, L.; Navas, A. Enhancing Connectivity Index to Assess the Effects of Land Use Changes in a Mediterranean Catchment. Land Degrad. Dev. 2018, 29, 663–675. [Google Scholar] [CrossRef] [Green Version]
- Jazouli, A.E.; Barakat, A.; Khellouk, R.; Rais, J.; Baghdadi, M.E. Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the Oum Er Rbia River (Morocco). Remote Sens. Appl. Soc. Environ. 2019, 13, 361–374. [Google Scholar] [CrossRef]
- Romano, G.; Abdelwahab, O.M.M.; Gentile, F. Modeling land use changes and their impact on sediment load in a Mediterranean watershed. Catena 2018, 163, 342–353. [Google Scholar] [CrossRef]
- Chen, T.; Niu, R.-Q.; Li, P.-X.; Zhang, L.-P.; Du, B. Regional soil erosion risk mapping using RUSLE, GIS, and remote sensing: A case study in Miyun Watershed, North China. Environ. Earth Sci. 2010, 63, 533–541. [Google Scholar] [CrossRef]
- Luo, W.; Lu, Y.; Zhang, Y.; Fu, W.; Wang, B.; Jiao, W.; Wang, G.; Tong, X.; Giesy, J.P. Watershed-scale assessment of arsenic and metal contamination in the surface soils surrounding Miyun Reservoir, Beijing, China. J. Environ. Manage. 2010, 91, 2599–2607. [Google Scholar] [CrossRef] [PubMed]
- Yin, Z.Y.; Liu, Y.; Pan, Y.C. Evaluation and Classification of Rural Multifunction at a Grid Scale: A Case Study of Miyun District, Beijing. Sustainability 2021, 13, 6362. [Google Scholar] [CrossRef]
- Miyun District People’s Government of Beijing Municipality, Statistical Yearbook of Miyun District, Beijing. Available online: http://www.bjmy.gov.cn/col/col74/index.html (accessed on 14 January 2014).
- Li, X.S.; Wu, B.F.; Zhang, L. Dynamic monitoring of soil erosion for upper stream of Miyun Reservoir in the last 30 years. J. Mt. Sci. 2013, 10, 801–811. [Google Scholar] [CrossRef]
- Huang, J.; Ebach, M.C.; Triantafilis, J. Cladistic analysis of Chinese Soil Taxonomy. Geoderma Reg. 2017, 10, 11–20. [Google Scholar] [CrossRef]
- Perović, V.; Životić, L.; Kadović, R.; Đorđević, A.; Jaramaz, D.; Mrvić, V.; Todorović, M. Spatial modelling of soil erosion potential in a mountainous watershed of South-eastern Serbia. Environ. Earth Sci. 2012, 68, 115–128. [Google Scholar] [CrossRef]
- Tang, Q.; Xu, Y.; Bennett, S.J.; Li, Y. Assessment of soil erosion using RUSLE and GIS: A case study of the Yangou watershed in the Loess Plateau, China. Environ. Earth Sci. 2014, 73, 1715–1724. [Google Scholar] [CrossRef] [Green Version]
- Bini, C.; Gemignani, S.; Zilocchi, L. Effect of different land use on soil erosion in the pre-alpine fringe (North-East Italy): Ion budget and sediment yield. Sci. Total Environ. 2006, 369, 433–440. [Google Scholar] [CrossRef]
- Islam, K.; Jashimuddin, M.; Nath, B.; Nath, T.K. Land use classification and change detection by using multi-temporal remotely sensed imagery: The case of Chunati wildlife sanctuary, Bangladesh. Egypt. J. Remote Sens. Space Sci. 2018, 21, 37–47. [Google Scholar] [CrossRef]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Abdulkareem, J.H.; Pradhan, B.; Sulaiman, W.N.A.; Jamil, N.R. Prediction of spatial soil loss impacted by long-term land-use/land-cover change in a tropical watershed. Geosci. Front. 2019, 10, 389–403. [Google Scholar] [CrossRef]
- Rizeei, H.M.; Saharkhiz, M.A.; Pradhan, B.; Ahmad, N. Soil erosion prediction based on land cover dynamics at the Semenyih watershed in Malaysia using LTM and USLE models. Geocarto Int. 2016, 31, 1158–1177. [Google Scholar] [CrossRef]
- Jiao, J.; Zou, H.; Jia, Y.; Wang, N. Research progress on the effects of soil erosion on vegetation. Acta Ecol. Sin. 2009, 29, 85–91. [Google Scholar] [CrossRef]
- Lu, Y.; Fu, B.; Feng, X.; Zeng, Y.; Liu, Y.; Chang, R.; Sun, G.; Wu, B. A policy-driven large scale ecological restoration: Quantifying ecosystem services changes in the Loess Plateau of China. PLoS ONE 2012, 7, e31782. [Google Scholar] [CrossRef]
- Fu, L.; Zhao, D.; Wu, B.; Xu, Z.; Zeng, Y. Variations in forest aboveground biomass in Miyun Reservoir of Beijing over the past two decades. J. Soils Sediments 2017, 17, 2080–2090. [Google Scholar] [CrossRef]
- Beijing Municipal Development and Reform Commission, Ecological Environment Construction Plan of Beijing During the Tenth Five-Year Plan Period. Available online: http://fgw.beijing.gov.cn/fgwzwgk/ghjh/wngh/swsq/202003/t20200331_1751770.htm (accessed on 5 November 2007).
- Hu, Y.; Kong, X.; Zheng, J.; Sun, J.; Wang, L.; Min, M. Urban Expansion and Farmland Loss in Beijing during 1980–2015. Sustainability 2018, 10, 3927. [Google Scholar] [CrossRef] [Green Version]
- Niu, R.-Q.; Du, B.; Wang, Y.; Zhang, L.-P.; Chen, T. Impact of fractional vegetation cover change on soil erosion in Miyun reservoir basin, China. Environ. Earth Sci. 2014, 72, 2741–2749. [Google Scholar] [CrossRef]
- Huang, S.; Ye, Z.; Liu, B. Review on non-point source pollution in Miyun Reservoir. Chin. J. Eco-Agric. 2008, 67, 1311–1316. [Google Scholar] [CrossRef]
- Wang, X.; Wang, Y.-X.; Cai, X.; Qian, X.; Ting, L. Investigation of non-point pollution in watershed of Miyun Reservoir. Environ. Sci. Technol. 2002, 25, 1–3. [Google Scholar] [CrossRef]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural sustainability and intensive production practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Yan, S.J.; Wang, X.; Cai, Y.P.; Li, C.H.; Yan, R.; Cui, G.N.; Yang, Z.F. An Integrated Investigation of Spatiotemporal Habitat Quality Dynamics and Driving Forces in the Upper Basin of Miyun Reservoir, North China. Sustainability 2018, 10, 4625. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; He, L.; Fan, X.; Huo, P.S.; Liu, Y.H.; Zhang, T.; Pan, Y.; Yu, Z.R. Ecosystem Service Value Assessment and Contribution Factor Analysis of Land Use Change in Miyun County, China. Sustainability 2015, 7, 7333–7356. [Google Scholar] [CrossRef] [Green Version]
- Gebreslassie, H. Land Use-Land Cover dynamics of Huluka watershed, Central Rift Valley, Ethiopia. Int. Soil Water Conserv. Res. 2014, 2, 25–33. [Google Scholar] [CrossRef] [Green Version]
- Yan, R.; Zhang, X.; Yan, S.; Chen, H. Estimating soil erosion response to land use/cover change in a catchment of the Loess Plateau, China. Int. Soil Water Conserv. Res. 2018, 6, 13–22. [Google Scholar] [CrossRef]
- Gong, W.; Wang, H.; Wang, X.; Fan, W.; Stott, P. Effect of terrain on landscape patterns and ecological effects by a gradient-based RS and GIS analysis. J. For. Res. 2017, 28, 1061–1072. [Google Scholar] [CrossRef]
- Xin, Z.; Yu, X.; Lu, X. Factors controlling sediment yield in China’s Loess Plateau. Earth Surf. Process. Landf. 2011, 36, 816–826. [Google Scholar] [CrossRef]
- Lesschen, J.P.; Kok, K.; Verburg, P.H.; Cammeraat, L.H. Identification of vulnerable areas for gully erosion under different scenarios of land abandonment in Southeast Spain. Catena 2007, 71, 110–121. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, B. Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: A case study of upstream Chaobaihe River catchment, north China. Int. J. Sediment. Res. 2008, 23, 167–173. [Google Scholar] [CrossRef]
- Miyun District People’s Government of Beijing Municipality, Notice of Miyun County People’s Government on Printing and Distributing the Implementation Plan of Pilot Demonstration Construction of Miyun County Main Function Zone. Available online: http://www.beijing.gov.cn/zhengce/gfxwj/201905/t20190523_69693.html (accessed on 2 July 2015).
- Xu, E.; Zhang, H. Aggregating land use quantity and intensity to link water quality in upper catchment of Miyun Reservoir. Ecol. Indic. 2016, 66, 329–339. [Google Scholar] [CrossRef]
Class Name | Cropland | Forest | Grassland | Water Body | Built-Up Land | Unused Land | Total | User’s Accuracy |
---|---|---|---|---|---|---|---|---|
Cropland | 25 | 2 | 0 | 0 | 2 | 1 | 30 | 0.8333 |
Forest | 1 | 41 | 2 | 0 | 0 | 2 | 46 | 0.8913 |
Grassland | 5 | 2 | 29 | 0 | 0 | 2 | 38 | 0.7632 |
Water body | 0 | 0 | 1 | 18 | 0 | 1 | 20 | 0.90 |
Built-up land | 2 | 1 | 0 | 0 | 19 | 3 | 25 | 0.76 |
Unused land | 1 | 1 | 1 | 0 | 1 | 27 | 31 | 0.871 |
Total | 34 | 47 | 33 | 18 | 22 | 36 | 190 | |
Producer’s accuracy | 0.7353 | 0.8723 | 0.8788 | 100 | 0.8636 | 0.75 |
Class Name | Cropland | Forest | Grassland | Water Body | Built-Up Land | Unused Land | Total | User’s Accuracy |
---|---|---|---|---|---|---|---|---|
Cropland | 26 | 1 | 0 | 1 | 2 | 0 | 30 | 0.8667 |
Forest | 0 | 43 | 2 | 0 | 0 | 1 | 46 | 0.9348 |
Grassland | 2 | 1 | 33 | 0 | 0 | 2 | 38 | 0.8684 |
Water body | 0 | 0 | 0 | 18 | 1 | 1 | 20 | 0.9000 |
Built-up land | 1 | 1 | 0 | 0 | 21 | 2 | 25 | 0.8400 |
Unused land | 0 | 2 | 2 | 0 | 1 | 26 | 31 | 0.8387 |
Total | 29 | 48 | 37 | 19 | 25 | 32 | 190 | |
Producer’s accuracy | 0.8966 | 0.8958 | 0.8919 | 0.9474 | 0.8400 | 0.8125 |
Erosion Risk Level | Intensity | Soil Loss (t ha−1 Year−1) |
---|---|---|
Very low | Slight | <10 |
Low | Light | 10–25 |
Moderate | Moderate | 25–50 |
Severe | Severe | 50–80 |
Very severe | Very severe | 80–150 |
Extremely severe | Extremely severe | >150 |
Land-Use Types | 2003 | 2013 | Area Change (km2) | ||
---|---|---|---|---|---|
Area (km2) | Proportion of Total (%) | Area (km2) | Proportion of Total (%) | ||
Cropland | 206.56 | 9.28 | 272.59 | 12.25 | 66.03 |
Forest | 1073.93 | 48.24 | 1317.37 | 59.18 | 243.44 |
Grassland | 258.35 | 11.61 | 120.19 | 5.40 | −138.16 |
Water body | 100.98 | 4.53 | 109.99 | 4.94 | 9.01 |
Built-up land | 176.99 | 7.95 | 158.55 | 7.12 | −18.44 |
Unused land | 409.27 | 18.39 | 247.39 | 11.11 | −161.88 |
2226.09 | 100 | 2226.09 | 100 | – |
2013 | Cropland | Forest | Grassland | Water Body | Built-Up Land | Unused Land | |
---|---|---|---|---|---|---|---|
2003 | |||||||
Cropland | 53.72 | 14.65 | 10.34 | 0.59 | 10.83 | 9.87 | |
Forest | 1.93 | 88.56 | 2.88 | 0.41 | 0.39 | 5.83 | |
Grassland | 28.80 | 37.80 | 13.85 | 0.96 | 3.71 | 14.88 | |
Water body | 0.44 | 4.28 | 0.04 | 90.41 | 0.81 | 4.02 | |
Built-up land | 13.60 | 3.75 | 2.20 | 2.29 | 61.26 | 16.90 | |
Unused land | 10.04 | 54.74 | 7.14 | 1.96 | 2.95 | 23.17 |
Soil Erosion Types | 2003 | 2013 | Area Change (km2) | ||
---|---|---|---|---|---|
Area (km2) | Proportion of Total (%) | Area (km2) | Proportion of Total (%) | ||
Slight | 544.95 | 24.48 | 536.93 | 24.12 | −8.02 |
Light | 479.95 | 21.56 | 1067.41 | 47.95 | 587.46 |
Moderate | 1013.98 | 45.55 | 568.77 | 25.55 | −445.21 |
Severe | 155.38 | 6.98 | 12.69 | 0.57 | −142.69 |
Very severe | 30.27 | 1.36 | 29.16 | 1.31 | −1.11 |
Extremely severe | 1.56 | 0.07 | 11.13 | 0.50 | 9.57 |
Sum | 2226.09 | 100 | 2226.09 | 100 |
2013 | Slight | Light | Moderate | Severe | Very Severe | Extremely Severe | |
---|---|---|---|---|---|---|---|
2003 | |||||||
Slight | 96.31 | 3.56 | 0.14 | 0.00 | 0.00 | 0.00 | |
Light | 1.40 | 94.44 | 4.15 | 0.00 | 0.01 | 0.00 | |
Moderate | 0.56 | 57.56 | 41.09 | 0.25 | 0.46 | 0.09 | |
Severe | 0.03 | 6.51 | 78.08 | 0.34 | 14.75 | 0.30 | |
Very severe | 0.03 | 0.67 | 33.77 | 31.18 | 5.37 | 28.98 | |
Extremely severe | 0.00 | 0.00 | 1.68 | 5.32 | 0.40 | 92.60 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gong, W.; Liu, T.; Duan, X.; Sun, Y.; Zhang, Y.; Tong, X.; Qiu, Z. Estimating the Soil Erosion Response to Land-Use Land-Cover Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Miyun Reservoir, North China. Water 2022, 14, 742. https://doi.org/10.3390/w14050742
Gong W, Liu T, Duan X, Sun Y, Zhang Y, Tong X, Qiu Z. Estimating the Soil Erosion Response to Land-Use Land-Cover Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Miyun Reservoir, North China. Water. 2022; 14(5):742. https://doi.org/10.3390/w14050742
Chicago/Turabian StyleGong, Wenfeng, Tiedong Liu, Xuanyu Duan, Yuxin Sun, Yangyang Zhang, Xinyu Tong, and Zixuan Qiu. 2022. "Estimating the Soil Erosion Response to Land-Use Land-Cover Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Miyun Reservoir, North China" Water 14, no. 5: 742. https://doi.org/10.3390/w14050742
APA StyleGong, W., Liu, T., Duan, X., Sun, Y., Zhang, Y., Tong, X., & Qiu, Z. (2022). Estimating the Soil Erosion Response to Land-Use Land-Cover Change Using GIS-Based RUSLE and Remote Sensing: A Case Study of Miyun Reservoir, North China. Water, 14(5), 742. https://doi.org/10.3390/w14050742