Regression Model Selection and Assessment of Agricultural Water Price Affordability in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Grey Situation Decision Making
2.2. AWPA Model Improvement
2.2.1. Traditional Methods
2.2.2. Model Improvement
2.3. Relative Contribution of Influencing Factors
2.4. Data Sources
3. Results
3.1. Regression Model Screening Results
3.1.1. Primary Regression Models
3.1.2. Results of the Regression Models
3.1.3. Optimal Selection of Regression Model
3.2. Models of AWPA and WEC
3.3. Results of AWPA and WEC Model Application
3.3.1. Current Water Price in China
3.3.2. Contribution of Influencing Factors
3.3.3. WEC
3.3.4. AWPA
4. Discussion
4.1. Comparison of Results
4.2. Limitations
4.3. Policy Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.; Simayi, Z.; Yang, S. Research on economic bearing capacity of farmers to agricultural irrigation water prices in the ebinur lake basin. Sustainability 2019, 11, 2155. [Google Scholar] [CrossRef] [Green Version]
- Latinopoulos, D. Multicriteria decision-making for efficient water and land resources allocation in irrigated agriculture. Environ. Dev. Sustain. 2009, 11, 329–343. [Google Scholar] [CrossRef]
- Johansson, R.C.; Tsur, Y.; Roe, T.L.; Doukkali, R.; Dinar, A. Pricing irrigation water: A review of theory and practice. Water Policy 2002, 4, 173–199. [Google Scholar] [CrossRef]
- Li, X.R. The formation mechanism of agricultural water price in foreign countries and its enlightenment to China. Water Resour. Dev. Manag. 2019, 11, 71–75. [Google Scholar] [CrossRef]
- Jiang, W.L. Research on agricultural water price carrying capacity. China Water Resour. 2003, 11, 41–43. [Google Scholar] [CrossRef]
- Wang, H.; Ruan, B.Q.; Shen, D.J. Theory and Practice of Water Price for Sustainable Development; Beijing Science Press: Beijing, China, 2003. [Google Scholar] [CrossRef]
- Tang, Z. Analysis on the bearing capacity of farmers to irrigation water price in Zhangye City. Yellow River 2010, 32, 86–88. [Google Scholar] [CrossRef]
- Liao, Y.S.; Bao, Z.Y.; Huang, Q.W. Irrigation price reform and farmers’ affordability. Water Resour. Dev. Res. 2004, 12, 29–34. [Google Scholar] [CrossRef]
- Nian, Z.L.; Wang, M.Y. Analysis of water price bearing capacity of agricultural water users in Xinjiang. Water Econ. 2010, 28, 42–44. [Google Scholar] [CrossRef]
- Zhao, Y.Y.; Luo, P.; Chu, G.H. Analysis of farmers’ affordability of irrigation water price in hilly and mountainous areas. China Rural Water Hydropower 2014, 11, 147–150. [Google Scholar] [CrossRef]
- Parween, F.; Kumari, P.; Singh, A. Irrigation water pricing policies and water resources management. Water Policy 2020, 23, 130–141. [Google Scholar] [CrossRef]
- Lou, Y.P. Thoughts on econometric model methods. Chin. E-Commer. 2013, 15, 1. [Google Scholar] [CrossRef]
- Yang, M.H.; Cao, L.H.; Zhao, D. Research on the dynamic multi-objective agricultural water price setting model. People’s Yellow River 2018, 40, 155–159. [Google Scholar] [CrossRef]
- Jiang, Y.J.; Jiang, S.X. On the reform of agricultural water price in Jiangxi province. Price Monthly 2014, 11, 1–6. [Google Scholar] [CrossRef]
- Chen, J.; Chu, L.L.; Chen, D. Research on farmers’ psychological affordability of irrigation water price based on CVM. Water Econ. 2008, 5, 39–41. [Google Scholar] [CrossRef]
- Mitchel, L.R.; Carson, R. Using Surveys to Value Public Goods: The Contingent Valuation Method; Resources for the Future: Washington, DC, USA, 1989. [Google Scholar] [CrossRef]
- Aydogdu, M.H.; Bilgic, A. An evaluation of farmers’ willingness to pay for efficient irrigation for sustainable usage of resources: The GAP-Harran plain case, Turkey. J. Integr. Environ. Sci. 2016, 13, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Wu, M.Y.; Yang, K.; Liu, L. Evaluation of reclaimed water based on grey situation decision making and combination weighting method. J. Water Resour. Water Eng. 2018, 29, 111–117. [Google Scholar] [CrossRef]
- Liu, S.F.; Lin, Y. Grey information: Theory and practical applications. Kybernetes 2006, 34, 89–92. [Google Scholar] [CrossRef]
- Jiang, S.Q. Research on Grey Relational Decision Model Based on General Grey Number and Its Application. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2018. [Google Scholar]
- Guo, Y.; Liu, P.F. Damage assessment of airfield target based on grey relational analytic hierarchy process. Sichuan Ordnance J. 2014, 8, 55–58. [Google Scholar] [CrossRef]
- Wu, Y.; Li, W.; Ma, D.Z. Comprehensive evaluation of different maize varieties by DTOPSIS method based on entropy weighting. J. Maize Sci. 2019, 27, 32–41. [Google Scholar] [CrossRef]
- Wang, H.S.; Guo, C.F.; Tian, Y.G. Application of weighted grey situation decision in ship-aircraft cooperative submarine search. Ordnance Ind. Autom. 2015, 34, 33–35. [Google Scholar] [CrossRef]
- Grömping, U. Relative importance for linear regression in R: The package relaimpo. J. Stat. Softw. 2006, 76, 925–933. [Google Scholar] [CrossRef]
- Long, G.; Cao, X. Grey situation decision method comprehensive evaluation of potato varieties (or lines). J. Anhui Agric. Sci. 2009, 37, 11925–11927. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, L. Advanced Statistics Using R; ISDSA Press: Granger, IN, USA, 2017. [Google Scholar]
- Li, H.W.; Wu, Y.P.; Liu, S.G. Regional contributions to interannual variability of net primary production and climatic attributions. Agric. For. Meteorol. 2021, 303, 108384. [Google Scholar] [CrossRef]
- Ding, Y.B.; Gong, X.L. Attribution of meteorological, hydrological and agricultural drought propagation in different climatic regions of China. Agric. Water Manag. 2021, 255, 106996. [Google Scholar] [CrossRef]
- Shi, P.J.; Chen, Y.Q.; Ma, H. Contribution rate of relative oxygen content in near-surface atmosphere over the Tibetan Plateau. Chin. Sci. Bull. 2021, 64, 715–724. [Google Scholar] [CrossRef] [Green Version]
- Zhang, N. Research on Grey Situation Group Decision Model and Its Application. Ph.D. Thesis, Nanjing University of Aeronautics and Astronautics, Nanjing, China, 2016. [Google Scholar]
- Chen, D. Study on Irrigation Water Price and Farmers’ Affordability in Seasonal Water Shortage Irrigated Areas in Southern China. Ph.D. Thesis, Hohai University, Nanjing, China, 2007. [Google Scholar]
- Du, L.J.; Liu, C.S. Preliminary study on the calculation of farmers’ irrigation water cost bearing capacity. Water Resour. Hydropower Technol. 2011, 42, 59–62. [Google Scholar] [CrossRef]
- Guo, Q.L.; Feng, Q.; Yang, Y.S. Research on water price of sustainable development in the middle reaches of Heihe River. Yellow River 2007, 29, 65–66. [Google Scholar] [CrossRef]
- Zheng, T.H.; Zhang, C. Agricultural Water Price Comprehensive Reform Pilot Training Handout; China Water and Hydropower Press: Beijing, China, 2008. [Google Scholar]
- Zhuo, H.W.; Wang, W.M.; Song, S. Research on farmers’ ability to bear agricultural water price. China Rural Water Hydropower 2005, 11, 1–5. [Google Scholar] [CrossRef]
- Lan, M.; Wang, C.C. Assessing the impact of water price reform on farmers’ willingness to pay for agricultural water in northwest China. J. Clean. Prod. 2019, 234, 1072–1081. [Google Scholar] [CrossRef]
- Zeng, L.; Zhang, C.Z.; Lu, S.S. Application of grey situation decision in evaluation of new rice varieties. J. Anhui Agric. Sci. 2013, 41, 1466–1468. [Google Scholar] [CrossRef]
- Wang, H.H.; Zhu, J.J.; Fang, Z.G. Information aggregation method for multi-stage linguistic evaluation based on grey relational degree. Control Decis. 2013, 28, 109–114. [Google Scholar] [CrossRef]
- Wu, X.Z.; Ruan, P.J.; Pan, G.Y. Application of grey situation decision in comprehensive evaluation of maize varieties. J. Mt. Agric. Biol. 2001, 20, 407–411. [Google Scholar] [CrossRef]
- Li, W.Y.; Wei, Y.; Kong, F.N. Application of DTOPSIS method in comprehensive evaluation of strawberry varieties. Chin. J. Plant Physiol. 2018, 54, 925–930. [Google Scholar] [CrossRef]
- Deng, J.L. Grey Prediction and Decision; Huazhong University of Science and Technology Press: Wuhan, China, 2002. [Google Scholar]
- Zhu, J.J.; Liu, S.F. Aggregation method for multi-stage multivariate judgment preference in group decision making. Control Decis. 2008, 23, 730–734. [Google Scholar] [CrossRef]
- Xu, Z.S. A method based on the dynamic weighted geometric aggregation operator for dynamic hybrid multi-attribute group decision making. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 2009, 17, 15–33. [Google Scholar] [CrossRef]
- Qi, J.S.; Xia, L.K.; Huang, B. Application of DTOPSIS method and grey situation decision method based on entropy weight in maize varieties regional experiment. Crops 2021, 1, 60–67. [Google Scholar] [CrossRef]
- Jiang, W.L.; Feng, X.; Liu, Y. Analysis of regional differences in comprehensive reform of agricultural water price in China. Prog. Sci. Technol. Water Resour. Hydropower 2020, 40, 1–5. [Google Scholar] [CrossRef]
Basic Data | Data Sources |
---|---|
Output | Statistical yearbooks of all provinces, compilation of data on Cost and Income of National Agricultural Products |
Price of water | Statistics of the Development Research Center of the Ministry of Water Resources for the average implementation of agricultural water prices for 2019 terminal projects |
Precipitation, water consumption per unit area of each province | Provincial Water Resources Bulletin |
Province | Crop with Largest Planting Area | Proportion | Lrovince | Crop with Largest Planting Area | Proportion |
---|---|---|---|---|---|
Beijing | Corn | 72% | Jiangxi | Indica rice | 92% |
Tianjin | Corn | 53% | Shandong | Wheat | 48% |
Hebei | Corn | 53% | Henan | Wheat | 53% |
Shanxi | Corn | 56% | Hubei | Wheat | 49% |
Inner Mongolia | Corn | 55% | Guangdong | Indica rice | 83% |
Liaoning | Corn | 78% | Guangxi | Indica rice | 63% |
Jilin | Corn | 76% | Hainan | Indica rice | 86% |
Shanghai | Indica rice | 80% | Yunnan | Corn | 43% |
Jiangsu | Indica rice | 40% | Shanxi | Corn | 39% |
Zhejiang | Indica rice | 67% | Gansu | Corn | 38% |
Fujian | Indica rice | 74% | Qinghai | Wheat | 40% |
Xinjiang | Corn | 47% | Ningxia | Corn | 42% |
Type | Regression Model | |
---|---|---|
Linear | ||
Logarithm-linear | ||
Linear-to-logarithm | ||
Log-to-linear | ||
Reciprocal | ||
Logarithmic reciprocal |
Provinces | Output p/yuan·hm−2 | Precipitation r/mm | Current WEC a/% |
---|---|---|---|
Anhui | 19,425.00 | 935.80 | 1.68 |
Beijing | 14,085.00 | 506.00 | 2.67 |
Henan | 16,365.00 | 529.10 | 4.32 |
Heilongjiang | 18,585.00 | 728.30 | 1.78 |
Hubei | 20,715.00 | 893.50 | 1.54 |
Jiangsu | 23,565.00 | 798.50 | 2.06 |
Shandong | 15,315.00 | 558.90 | 4.74 |
Yunnan | 23,985.00 | 1008.00 | 2.19 |
Chongqing | 20,385.00 | 1106.80 | 2.22 |
Gansu | 19,140.00 | 346.00 | 4.19 |
Ningxia | 17,595.00 | 345.70 | 5.45 |
Xinjiang | 16,380.00 | 174.70 | 5.47 |
Jiangxi | 20,190.00 | 1710.00 | 1.98 |
Shaanxi | 13,740.00 | 759.40 | 4.07 |
Shanxi | 16,545.00 | 458.10 | 4.63 |
Hebei | 14,085.00 | 442.70 | 5.25 |
Type | Regression Model |
---|---|
Linear | |
Logarithm-linear | |
Linear-to-logarithm | |
Log-to-linear | |
Reciprocal | |
Logarithmic reciprocal |
Type | R | R2 | F | S |
---|---|---|---|---|
Linear | 0.80 | 0.65 | 11.82 | 0.95 |
Logarithm-linear | 0.84 | 0.71 | 15.87 | 0.27 |
Linear-to-logarithm | 0.85 | 0.73 | 17.48 | 0.83 |
Log-to-linear | 0.80 | 0.64 | 11.46 | 0.30 |
Reciprocal | 0.83 | 0.69 | 14.31 | 0.90 |
Logarithmic reciprocal | 0.82 | 0.67 | 12.90 | 0.29 |
R | R2 | F | S | rij | |
---|---|---|---|---|---|
Linear | 0.94 | 0.88 | 0.68 | 0.28 | 0.70 |
Logarithm-linear | 0.98 | 0.97 | 0.91 | 1.00 | 0.97 |
Linear-to-logarithm | 1.00 | 1.00 | 1.00 | 0.32 | 0.83 |
Log-to-linear | 0.94 | 0.88 | 0.66 | 0.89 | 0.84 |
Reciprocal | 0.97 | 0.94 | 0.82 | 0.30 | 0.76 |
Logarithmic reciprocal | 0.96 | 0.91 | 0.74 | 0.92 | 0.88 |
Regression Statistics | |
---|---|
Multiple R | 0.84 |
R2 | 0.71 |
Adjusted R2 | 0.66 |
Standard error | 0.27 |
Observed value | 16 |
df | SS | MS | F | Significance F | |
---|---|---|---|---|---|
Regression analysis | 2 | 2.36 | 1.18 | 15.87 | 0.00032 |
Residual | 13 | 0.97 | 0.07 | ||
Total | 15 | 3.33 |
Coefficients | Standard Error | t Stat | p-Value | Lower 95% | Upper 95% | |
---|---|---|---|---|---|---|
Intercept | 14.00 | 4.16 | 3.37 | 0.01 | 5.02 | 22.99 |
−0.51 | 0.15 | −3.50 | 0.004 | −0.83 | −0.20 | |
−0.98 | 0.46 | −2.12 | 0.05 | −1.98 | 0.02 |
Area | Irrigation Area | Water Consumption /m³·hm−2 | Price of Water /yuan·m−³ | Precipitation /mm | Output /yuan·hm−2 | Water Bill /yuan·hm−2 | WEC /% |
---|---|---|---|---|---|---|---|
Northeast China | Water Bureau Woken River Irrigation District Management station in Heilongjiang Yilan County | 6450.0 | 0.068 | 728.3 | 18,585 | 439.5 | 2.4% |
Heilongjiang Toad irrigation area | 6450.0 | 0.044 | 728.3 | 18,585 | 283.5 | 1.5% | |
North China | Ningcheng Reservoir Irrigation District Administration of Inner Mongolia (Dianzi Irrigation District) | 2700.0 | 0.220 | 458.1 | 12,390 | 594.0 | 4.8% |
Shanxi Yuncheng Jiamakou Yellow Diversion Administration | 4065.0 | 0.125 | 279.5 | 18,585 | 507.0 | 2.7% | |
East China | Yuanbei Irrigation District Administration Bureau of Yuanzhou District, Jiangxi Province | 5055.0 | 0.070 | 1710.0 | 20,190 | 355.5 | 1.8% |
Anhui Chaohu Water Bureau | 3585.0 | 0.065 | 935.8 | 19,425 | 232.5 | 1.2% | |
Central China | Shimen Reservoir Management Office, Zhongxiang City, Hubei Province | 6720.0 | 0.105 | 893.5 | 13,620 | 705.0 | 5.2% |
Chibi City, Hubei Lushui Southern trunk Canal Management Office | 6720.0 | 0.030 | 893.5 | 13,620 | 202.5 | 1.5% | |
Northwest China | Shaanxi Jiaokou Irrigation Administration Bureau | 4305.0 | 0.192 | 759.4 | 13,740 | 823.5 | 6.0% |
Dama River Management Office, Minle County, Gansu Province | 4800.0 | 0.158 | 362.1 | 14,250 | 760.5 | 5.3% | |
Southwest China | Yunnan Luliang Irrigation District Administration Banqiao reservoir | 5730.0 | 0.220 | 1008.0 | 23,985 | 1260.0 | 5.3% |
Sichuan Wudu Diversion Administration Bureau | 5400.0 | 0.154 | 953.2 | 20,220 | 831.0 | 4.1% |
Area | Provinces | Current Water Price/Yuan·hm−2 | Current Water Price/$ hm−2 | Current Water Price/Yuan·m−3 | Current Water Price/$·m−3 |
---|---|---|---|---|---|
Beijing | 376.380 | 54.603 | 0.153 | 0.022 | |
Northeast China | Heilongjiang | 331.650 | 48.114 | 0.055 | 0.008 |
Jilin | 232.200 | 33.686 | 0.045 | 0.007 | |
Liaoning | 927.000 | 134.484 | 0.103 | 0.015 | |
North China | Inner Mongolia | 455.280 | 66.050 | 0.112 | 0.016 |
Hebei | 739.500 | 107.283 | 0.290 | 0.042 | |
Shanxi | 765.450 | 111.047 | 0.270 | 0.039 | |
East China | Jiangsu | 484.521 | 70.292 | 0.093 | 0.013 |
Shandong | 726.282 | 105.365 | 0.287 | 0.042 | |
Jiangxi | 399.000 | 57.885 | 0.056 | 0.008 | |
Anhui | 326.250 | 47.331 | 0.087 | 0.013 | |
Fujian | 862.680 | 125.153 | 0.104 | 0.015 | |
South China | Guangdong | 576.812 | 83.681 | 0.052 | 0.008 |
Guangxi | 637.470 | 92.481 | 0.054 | 0.008 | |
Central China | Henan | 706.500 | 102.495 | 0.300 | 0.044 |
Hubei | 318.990 | 46.277 | 0.062 | 0.009 | |
Northwest China | Gansu | 802.800 | 116.466 | 0.120 | 0.017 |
Ningxia | 958.395 | 139.039 | 0.091 | 0.013 | |
Shaanxi | 559.650 | 81.191 | 0.130 | 0.019 | |
Qinghai | 891.231 | 129.295 | 0.124 | 0.018 | |
Xinjiang | 895.860 | 129.967 | 0.108 | 0.016 | |
Southwest China | Sichuan | 459.900 | 66.720 | 0.084 | 0.012 |
Yunnan | 525.728 | 76.270 | 0.092 | 0.013 | |
Chongqing | 453.375 | 65.773 | 0.093 | 0.013 |
Regressor | Relative Contribution (%) | R2 |
---|---|---|
Output | 25.6 | 70.8% |
Precipitation | 45.2 |
Province | Output p /yuan·hm−2 | Precipitation r /mm | Water Consumption /m³·hm−2 | AWPA /yuan·hm−2 | AWPA /$·hm−2 | AWPA /yuan·m−3 | AWPA /$·m−3 | Current Water Price /yuan·hm−2 |
---|---|---|---|---|---|---|---|---|
Anhui | 19,425.00 | 935.80 | 3750.00 | 904.336 | 131.196 | 0.241 | 0.0350 | 326.250 |
Beijing | 14,085.00 | 506.00 | 2460.00 | 1229.488 | 178.368 | 0.500 | 0.0725 | 376.380 |
Guangdong | 23,565.00 | 1993.60 | 11,130.00 | 617.300 | 89.555 | 0.055 | 0.0080 | 576.812 |
Guangxi | 20,190.00 | 1602.70 | 11,805.00 | 687.851 | 99.790 | 0.058 | 0.0084 | 637.470 |
Hebei | 14,085.00 | 442.70 | 2550.00 | 1316.210 | 190.949 | 0.516 | 0.0749 | 739.500 |
Henan | 16,365.00 | 529.10 | 2355.00 | 1205.425 | 174.877 | 0.512 | 0.0743 | 706.500 |
Heilongjiang | 18,585.00 | 728.30 | 6030.00 | 1026.765 | 148.958 | 0.170 | 0.0247 | 331.650 |
Hubei | 20,715.00 | 893.50 | 5145.00 | 927.115 | 134.501 | 0.180 | 0.0261 | 318.990 |
Jilin | 18,585.00 | 679.30 | 5160.00 | 1063.893 | 154.344 | 0.206 | 0.0299 | 232.200 |
Jiangsu | 23,565.00 | 798.50 | 5205.00 | 984.354 | 142.805 | 0.189 | 0.0274 | 484.521 |
Jiangxi | 20,190.00 | 1710.00 | 7125.00 | 665.489 | 96.546 | 0.093 | 0.0135 | 399.000 |
Liaoning | 18,585.00 | 687.20 | 9000.00 | 1057.638 | 153.437 | 0.118 | 0.0171 | 927.000 |
Inner Mongolia | 18,585.00 | 279.50 | 4065.00 | 1673.380 | 242.765 | 0.412 | 0.0598 | 455.280 |
Ningxia | 17,595.00 | 345.70 | 10,590.00 | 1499.813 | 217.585 | 0.142 | 0.0206 | 958.395 |
Qinghai | 13,740.00 | 374.00 | 7170.00 | 1433.710 | 207.995 | 0.200 | 0.0290 | 891.231 |
Shandong | 15,315.00 | 558.90 | 2535.00 | 1170.653 | 169.832 | 0.462 | 0.0670 | 726.282 |
Shanxi | 16,545.00 | 458.10 | 2835.00 | 1297.626 | 188.253 | 0.458 | 0.0664 | 765.450 |
Shaanxi | 13,740.00 | 759.40 | 4305.00 | 999.047 | 144.936 | 0.232 | 0.0337 | 559.650 |
Sichuan | 20,220.00 | 953.20 | 5475.00 | 896.598 | 130.074 | 0.164 | 0.0238 | 459.900 |
Xinjiang | 16,380.00 | 174.70 | 8295.00 | 2121.207 | 307.733 | 0.256 | 0.0371 | 895.860 |
Yunnan | 23,985.00 | 1008.00 | 5730.00 | 874.380 | 126.850 | 0.153 | 0.0222 | 525.728 |
Chongqing | 20,385.00 | 1106.80 | 4875.00 | 830.954 | 120.550 | 0.170 | 0.0247 | 453.375 |
Previous Results | Results of This Study | |||
---|---|---|---|---|
Area | WEC (%) | AWPA (yuan/m3) | WEC (%) | AWPA (yuan/m3) |
Xinjiang | 10 | 0.0742 | 12.9 | 0.26 |
Henan (people victory irrigation area) | 8–10 | - | 7.4 | 0.51 |
Shanxi (Linfen) | 15 (of net benefit) | 0.44 | 7.8 | 0.46 |
Shanxi (Lvliang) | 15 (of net benefit) | 0.37 | 7.8 | 0.46 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, R.; Chen, G.; Ni, H.; Zhou, Y. Regression Model Selection and Assessment of Agricultural Water Price Affordability in China. Water 2022, 14, 764. https://doi.org/10.3390/w14050764
Huang R, Chen G, Ni H, Zhou Y. Regression Model Selection and Assessment of Agricultural Water Price Affordability in China. Water. 2022; 14(5):764. https://doi.org/10.3390/w14050764
Chicago/Turabian StyleHuang, Ruirui, Genfa Chen, Hongzhen Ni, and Yuepeng Zhou. 2022. "Regression Model Selection and Assessment of Agricultural Water Price Affordability in China" Water 14, no. 5: 764. https://doi.org/10.3390/w14050764
APA StyleHuang, R., Chen, G., Ni, H., & Zhou, Y. (2022). Regression Model Selection and Assessment of Agricultural Water Price Affordability in China. Water, 14(5), 764. https://doi.org/10.3390/w14050764