The Impact of Wastewater Quality and Flow Characteristics on H2S Emissions Generation: Statistical Correlations and an Artificial Neural Network Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sewer Field Description
2.2. Field Study
2.3. Laboratory Analysis
2.4. Statistical Analysis of Each Parameter
2.5. H2S Prediction Modeling
3. Results and Discussion
3.1. Wastewater Quantity
3.2. Wastewater Quality
3.3. Effects of Different Parameters on H2S Emissions
3.3.1. Effect of Flowrate
3.3.2. Effect of Sulfate Concentration
3.3.3. Effect of Sulfide
3.3.4. Effect of Humidity
3.3.5. Effect of Total Sulfur
3.3.6. Effect of pH
3.3.7. Effect of COD
3.4. Model for Prediction of H2S Emissions
3.5. Generalized H2S Emissions Prediction Model
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boon, A.; Vincent, A. Odour generation and control. In Handbook of Water and Wastewater Microbiology; Elsevier: Amsterdam, The Netherlands, 2003; pp. 545–557. Available online: https://www.elsevier.com/books/handbook-of-water-and-wastewater-microbiology/mara/978-0-12-470100-7 (accessed on 17 January 2022).
- Talaiekhozani, A.; Bagheri, M.; Goli, A.; Khoozani, M.R.T. An overview of principles of odor production, emission, and control methods in wastewater collection and treatment systems. J. Environ. Manag. 2016, 170, 186–206. [Google Scholar] [CrossRef] [PubMed]
- Okabe, S.; Ito, T.; Sugita, K.; Satoh, H. Succession of Internal Sulfur Cycles and Sulfur-Oxidizing Bacterial Communities in Microaerophilic Wastewater Biofilms. Appl. Environ. Microbiol. 2005, 71, 2520–2529. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Zhou, X.; Shi, H. Sulfur Cycle by In Situ Analysis in the Sediment Biofilm of a Sewer System. J. Environ. Eng. 2016, 142, C4015011. [Google Scholar] [CrossRef]
- USEPA. Hydrogen Sulfide Corrosion: Its Consequences, Detection and Control. EPA 1991, 832S91100, 19. [Google Scholar]
- Wu, X.; Li, H.; Kan, Y.; Yin, B. A regeneratable and highly selective fluorescent probe for sulfide detection in aqueous solution. Dalton Trans. 2013, 42, 16302–16310. [Google Scholar] [CrossRef] [PubMed]
- De Belie, N.; Monteny, J.; Beeldens, A.; Vincke, E.; Van Gemert, D.; Verstraete, W. Experimental research and prediction of the effect of chemical and biogenic sulfuric acid on different types of commercially produced concrete sewer pipes. Cem. Concr. Res. 2004, 34, 2223–2236. [Google Scholar] [CrossRef]
- Jensen, H.S.; Lens, P.N.L.; Nielsen, J.L.; Bester, K.; Nielsen, A.H.; Hvitved-Jacobsen, T.; Vollertsen, J. Growth kinetics of hydrogen sulfide oxidizing bacteria in corroded concrete from sewers. J. Hazard. Mater. 2011, 189, 685–691. [Google Scholar] [CrossRef]
- Cwalina, B. Biodeterioration of concrete. Arch. Civ. Eng. Env. 2008, 4, 133–140. [Google Scholar]
- Davis, J.L.; Nica, D.; Shields, K.; Roberts, D.J. Analysis of concrete from corroded sewer pipe. Int. Biodeterior. Biodegrad. 1998, 42, 75–84. [Google Scholar] [CrossRef]
- Yongsiri, C.; Vollertsen, J.; Hvitved-Jacobsen, T. Effect of Temperature on Air-Water Transfer of Hydrogen Sulfide. J. Environ. Eng. 2004, 130, 104–109. [Google Scholar] [CrossRef]
- Gutierrez, O.; Park, D.; Sharma, K.R.; Yuan, Z. Effects of long-term pH elevation on the sulfate-reducing and methanogenic activities of anaerobic sewer biofilms. Water Res. 2009, 43, 2549–2557. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, A.H.; Hvitved-Jacobsen, T.; Vollertsen, J. Effect of sewer headspace air-flow on hydrogen sulfide removal by corroding concrete surfaces. Water Environ. Res. 2012, 84, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Zuo, Z.; Chang, J.; Lu, Z.; Wang, M.; Lin, Y.; Zheng, M.; Zhu, D.Z.; Yu, T.; Huang, X.; Liu, Y. Hydrogen sulfide generation and emission in urban sanitary sewer in China: What factor plays the critical role? Environ. Sci. Water Res. Technol. 2019, 5, 839–848. [Google Scholar] [CrossRef]
- Jiang, G.; Keller, J.; Bond, P.L. Determining the long-term effects of H2S concentration, relative humidity and air temperature on concrete sewer corrosion. Water Res. 2014, 65, 157–169. [Google Scholar] [CrossRef] [Green Version]
- Shypanski, A.H.; Yuan, Z.; Sharma, K. Influence of pressure main pumping frequency on sulfide formation rates in sanitary sewers. Environ. Sci. Water Res. Technol. 2018, 4, 403–410. [Google Scholar] [CrossRef]
- Yongsiri, C.; Vollertsen, J.; Rasmussen, M.; Hvitved-Jacobsen, T. Air-Water Transfer of Hydrogen Sulfide: An Approach for Application in Sewer Networks. Water Environ. Res. 2004, 76, 81–88. [Google Scholar] [CrossRef]
- Pomeroy, R.D.; Parkhurst, J.D. The forecasting of sulfide build-up rates in sewers. In Eighth International Conference on Water Pollution Research; Jenkins, S.H., Ed.; Elsevier: Pergamon, Turkey, 1978; pp. 621–628. [Google Scholar]
- Thistlethwayte, D.K.B.; Davy, W.J. The Control of Sulphides in Sewerage Systems; Butterworths: Sydney, Australia, 1972. [Google Scholar]
- Boon, A.G. Formation of sulphide in rising main sewers and its prevention by injection of oxygen. Prog. Wat. Tech. 1975, 7, 289–300. [Google Scholar]
- Haveman, S.A.; Greene, E.A.; Voordouw, G. Gene expression analysis of the mechanism of inhibition of Desulfovibrio vulgaris Hildenborough by nitrate-reducing, sulfide-oxidizing bacteria. Environ. Microbiol. 2005, 7, 1461–1465. [Google Scholar] [CrossRef]
- Tomar, M.; Abdullah, T.H. Evaluation of chemicals to control the generation of malodorous hydrogen sulfide in waste water. Water Res. 1994, 28, 2545–2552. [Google Scholar] [CrossRef]
- Bjerrum, J.; Schwarzenbach, G.; Sillen, L.G. Stability Constants of Metal-Ion Complexes, with Solubility Products of Inorganic Substances, Part I: Organic Ligands; Chemical Society: London, UK, 1957. [Google Scholar]
- Intrator, O.; Intrator, N. Interpreting neural-network results: A simulation study. Comput. Stat. Data Anal. 2001, 37, 373–393. [Google Scholar] [CrossRef] [Green Version]
- Braspenning, P.J.; Thuijsman, F.; Weijters, A.J.M.M. Artificial Neural Networks: An Introduction to ANN Theory and Practice; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Ebtehaj, I.; Bonakdari, H.; Zaji, A.H. A new hybrid decision tree method based on two artificial neural networks for predicting sediment transport in clean pipes. Alex. Eng. J. 2018, 57, 1783–1795. [Google Scholar] [CrossRef]
- Cheng, Z.; Li, X.; Bai, Y.; Li, C. Multi-Scale Fuzzy Inference System for Influent Characteristic Prediction of Wastewater Treatment. CLEAN Soil Air Water 2018, 46, 1700343. [Google Scholar] [CrossRef]
- Heo, S.; Nam, K.; Loy-Benitez, J.; Yoo, C. Data-Driven Hybrid Model for Forecasting Wastewater Influent Loads Based on Multimodal and Ensemble Deep Learning. IEEE Trans. Ind. Inform. 2020, 17, 6925–6934. [Google Scholar] [CrossRef]
- Yu, T.; Yang, S.; Bai, Y.; Gao, X.; Li, C. Inlet Water Quality Forecasting of Wastewater Treatment Based on Kernel Principal Component Analysis and an Extreme Learning Machine. Water 2018, 10, 873. [Google Scholar] [CrossRef] [Green Version]
- Boyd, G.; Na, D.; Li, Z.; Snowling, S.; Zhang, Q.; Zhou, P. Influent Forecasting for Wastewater Treatment Plants in North America. Sustainability 2019, 11, 1764. [Google Scholar] [CrossRef] [Green Version]
- Cheng, T.; Harrou, F.; Kadri, F.; Sun, Y.; Leiknes, T. Forecasting of Wastewater Treatment Plant Key Features Using Deep Learning-Based Models: A Case Study. IEEE Access 2020, 8, 184475–184485. [Google Scholar] [CrossRef]
- Kang, J.-H.; Song, J.; Yoo, S.S.; Lee, B.-J.; Ji, H.W. Prediction of Odor Concentration Emitted from Wastewater Treatment Plant Using an Artificial Neural Network (ANN). Atmosphere 2020, 11, 784. [Google Scholar] [CrossRef]
- Rege, M.A.; Tock, R.W. A Simple Neural Network for Estimating Emission Rates of Hydrogen Sulfide and Ammonia from Single Point Sources. J. Air Waste Manag. Assoc. 1996, 46, 953–962. [Google Scholar] [CrossRef]
- Nielsen, P.H.; Hvitved-Jacobsen, T. Effect of Sulfate and Organic Matter on the Hydrogen Sulfide Formation in Biofilms of Filled Sanitary Sewers. J. Water Pollut. Control Fed. 1988, 60, 627–634. [Google Scholar]
- Sharma, K.R.; Yuan, Z.; de Haas, D.; Hamilton, G.; Corrie, S.; Keller, J. Dynamics and dynamic modelling of H2S production in sewer systems. Water Res. 2008, 42, 2527–2538. [Google Scholar] [CrossRef]
- Sengupta, A. Preliminary Hydrogen Sulfide Emission Factors and Emission Models for Wastewater Treatment Plant Headworks. Ph.D. Thesis, University of New Orleans, New Orleans, LA, USA, 2014; p. 110. [Google Scholar]
- Nasr, M.; Moustafa, M. Performance evaluation of El-Agamy wastewater treatment plant—Egypt. In Proceedings of the 10th International Conference on the Role of Engineering Towards a Better Environment, Alexandria, Egypt, 15–17 December 2014. [Google Scholar]
- Faiman, D.; Hazan, H.; Laufer, I. Reducing the heat loss at night from solar water heaters of the integrated collector—Storage variety. Sol. Energy 2001, 71, 87–93. [Google Scholar] [CrossRef]
- Hvitved-Jacobsen, T.; Vollertsen, J.; Yongsiri, C.; Nielsen, A.; Abdul-Talib, S. Sewer microbial processes, emissions and impacts. In Proceedings of the 3rd International Conference on Sewer Processes and Networks, Paris, France, 15–17 April 2002. [Google Scholar]
- US EPA. Design Manual: Odor and Corrosion Control in Sanitary Sewerage Systems and Treatment Plants; U.S. Environmental Protection Agency: Washington, DC, USA.
- US EPA. Process Design Manual for Sulfide Control in Sanitary Sewerage Systems; US EPA: Washington, DC, USA, 1974.
- Neville, A. Chloride attack of reinforced concrete: An overview. Mater. Struct. 1995, 28, 63–70. [Google Scholar] [CrossRef]
- Cadena, F.; Peters, R.W. Evaluation of chemical oxidizers for hydrogen sulfide control. J. Water Pollut. Control Fed. 1988, 60, 1259–1263. [Google Scholar]
- Dincer, F.; Muezzinoglu, A. Odor Determination at Wastewater Collection Systems: Olfactometry versus H2S Analyses. CLEAN Soil Air Water 2007, 35, 565–570. [Google Scholar] [CrossRef]
- Hvitved-Jacobsen, T. Sewer Processes: Microbial and Chemical Process Engineering of Sewer Networks; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Yalamanchili, C.; Smith, M.D. Acute hydrogen sulfide toxicity due to sewer gas exposure. Am. J. Emerg. Med. 2008, 26, 518.e5–518.e7. [Google Scholar] [CrossRef] [PubMed]
- House, M.; Weiss, W.J. Review of Microbially Induced Corrosion and Comments on Needs Related to Testing Procedures. In Proceedings of the 4th International Conference on the Durability of Concrete Structures, West Lafayette, IN, USA, 24–26 July 2014; pp. 94–103. [Google Scholar] [CrossRef] [Green Version]
- Mori, T.; Nonaka, T.; Tazaki, K.; Koga, M.; Hikosaka, Y.; Noda, S. Interactions of nutrients, moisture and pH on microbial corrosion of concrete sewer pipes. Water Res. 1992, 26, 29–37. [Google Scholar] [CrossRef]
- Geraghty, P.J. Ireland’s environmental protection agency act 1992: An overview. Eur. Environ. 1993, 3, 10–13. [Google Scholar] [CrossRef]
- Nielsen, A.H.; Vollertsen, J.; Jensen, H.S.; Madsen, H.I.; Hvitved-Jacobsen, T. Aerobic and Anaerobic Transformations of Sulfide in a Sewer System-Field Study and Model Simulations. Water Environ. Res. 2008, 80, 16–25. [Google Scholar] [CrossRef]
- Wang, M. Network Modelling of the Formation and Fate of Hydrogen Sulfide and Methane in Sewer Systems. Ph.D. Thesis, University of Sheffield, Sheffield, UK, 2017. [Google Scholar]
- Sivák, P.; Ostertagová, E. Evaluation of Fatigue Tests by Means of Mathematical Statistics. Procedia Eng. 2012, 48, 636–642. [Google Scholar] [CrossRef] [Green Version]
- Tian, L.; Han, C.; Zhang, J.; Ouyang, Y.; Xi, J. Development of an H2S emission model for wastewater treatment plants. J. Air Waste Manag. Assoc. 2021, 71, 1303–1311. [Google Scholar] [CrossRef]
- Gu, T.; Jia, R.; Unsal, T.; Xu, D. Toward a better understanding of microbiologically influenced corrosion caused by sulfate reducing bacteria. J. Mater. Sci. Technol. 2018, 35, 631–636. [Google Scholar] [CrossRef]
Parameter | Maximum Value | Minimum Value | Average |
---|---|---|---|
pH | 7.3 | 6.9 | 7.1 |
COD (ppm) | 546 | 79.6 | 279.2 |
TOC (ppm) | 430.5 | 215 | 306.3 |
DO (ppm) | 1.2 | 0.05 | 0.5 |
Temperature of wastewater (°C) | 32.7 | 31.8 | 32.5 |
Temperature of air (°C) | 42 | 32 | 35.5 |
EC (µS/cm) | 1929 | 839.1 | 1271.9 |
Sulfate (ppm) | 260 | 153 | 202 |
TDS (ppm) | 738 | 323 | 491.7 |
TSS (ppm) | 584 | 73 | 160.4 |
Sulfide (ppm) | 0.4 | 0.05 | 0.1 |
Chloride (ppm) | 2281.2 | 167.5 | 1098.2 |
Model Summary | |||
---|---|---|---|
S | R-sq | R-sq (adj) | R-sq (pred) |
45.6328 | 74.38% | 71.08% | 62.41% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sherief, M.; Aly Hassan, A. The Impact of Wastewater Quality and Flow Characteristics on H2S Emissions Generation: Statistical Correlations and an Artificial Neural Network Model. Water 2022, 14, 791. https://doi.org/10.3390/w14050791
Sherief M, Aly Hassan A. The Impact of Wastewater Quality and Flow Characteristics on H2S Emissions Generation: Statistical Correlations and an Artificial Neural Network Model. Water. 2022; 14(5):791. https://doi.org/10.3390/w14050791
Chicago/Turabian StyleSherief, Mohsina, and Ashraf Aly Hassan. 2022. "The Impact of Wastewater Quality and Flow Characteristics on H2S Emissions Generation: Statistical Correlations and an Artificial Neural Network Model" Water 14, no. 5: 791. https://doi.org/10.3390/w14050791
APA StyleSherief, M., & Aly Hassan, A. (2022). The Impact of Wastewater Quality and Flow Characteristics on H2S Emissions Generation: Statistical Correlations and an Artificial Neural Network Model. Water, 14(5), 791. https://doi.org/10.3390/w14050791