Multi–Proxy Reconstruction of Drought Variability in China during the Past Two Millennia
Abstract
:1. Introduction
2. Study Area and Data
2.1. Study Area
2.2. Data
2.2.1. The scPDSI Grid
2.2.2. Selected Proxy Data and Pre-Processing
3. Methodology
3.1. Random Forest
3.2. Reconstruction Model
3.3. Empirical Mode Decomposition (EMD)
3.4. Rotated Empirical Orthogonal Function (REOF)
4. Results
4.1. Model Feasibility
4.1.1. Data Correlation
4.1.2. Calibration and Verification
4.2. Results of the scPDSI Reconstruction
4.3. Spatiotemporal Variations of the Reconstructed scPDSI
4.3.1. Multi-Scale Variation
4.3.2. Spatial Characteristics
5. Discussion
6. Conclusions
- (1)
- Based on the mean value of the reconstructed scPDSI (the mean value = −0.3151), China has been in a drought-biased state for almost 2000 years.
- (2)
- There are three different alternating fluctuation modes (interannual scale, multidecadal scale, and centennial scale) of dry-wet change, which were all positively correlated with the amplitude and frequency of the temperature in the northern hemisphere (in addition to the one-quarter-cycle delayed response over the multidecadal scale).
- (3)
- China was divided into nine dry-wet change characteristic regions according to the characteristics of the different REOF leading mode distributions: northwestern China, Xinjiang, southwestern China, southeastern China, the Loess plateau, central China, southwestern Tibet, eastern China, and northeastern China. The dry-wet change characteristics in central China and the Loess plateau reflected the situation in all of China. Northwestern China was the most severe drought region.
- (4)
- The RF was highly accurate and stable for reconstructing drought variability in China compared with linear regression.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hao, Z.; Singh, V.P. Drought characterization from a multivariate perspective: A review. J. Hydrol. 2015, 527, 668–678. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Lai, C.; Wang, R.; Chen, X.; Lian, Y. Drying tendency dominating the global major grain producing area. Glob. Food Secur. 2018, 16, 138–149. [Google Scholar] [CrossRef]
- Lai, C.; Zhong, R.; Wang, Z.; Wu, X.; Chen, X.; Wang, P.; Lian, Y. Monitoring hydrological drought using long-term satellite-based precipitation data. Sci. Total Environ. 2019, 649, 1198–1208. [Google Scholar] [CrossRef] [PubMed]
- Tijdeman, E.; Barker, L.J.; Svoboda, M.D.; Stahl, K. Natural and human influences on the link between meteorological and hydrological drought indices for a large set of catchments in the contiguous United States. Water Resour. Res. 2018, 54, 6005–6023. [Google Scholar] [CrossRef]
- Haslinger, K.; Hofstätter, M.; Kroisleitner, C.; Schöner, W.; Laaha, G.; Blöschl, G. Drivers of meteorological drought severity in the European Greater Alpine Region during the last two centuries. In Proceedings of the EGU General Assembly Confernce Abstract, Vienna, Austria, 4–13 April 2018; Volume 20, p. 12075. [Google Scholar]
- Kreyling, J.; Khan, M.A.A.; Sultana, F.; Babel, W.; Beierkuhnlein, C.; Foken, T.; Jentsch, A. Jentsch. Drought effects in climate change manipulation experiments: Quantifying the influence of ambient weather conditions and rain-out shelter artifacts. Ecosystems 2017, 20, 301–315. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961~2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Ge, Y.; Apurv, T.; Cai, X. Spatial and temporal patterns of drought in the Continental US during the past century. Geophys. Res. Lett. 2016, 43, 6294–6303. [Google Scholar] [CrossRef]
- Carbone, G.J.; Lu, J.; Brunetti, M. Estimating uncertainty associated with the standardized precipitation index. Int. J. Climatol. 2018, 38, e607–e616. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; Volume 17, pp. 179–183. [Google Scholar]
- Vicente–Serrano, S.M.; Beguería, S.; López–Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Palmer, W.C. Meteorological drought. In US Department of Commerce; Weather Bureau: Washington, DC, USA, 1965. [Google Scholar]
- Alley, W.M. The Palmer Drought Severity Index: Limitations and Assumptions. J. Appl. Meteorol. Climatol. 1984, 23, 1100–1109. [Google Scholar] [CrossRef] [Green Version]
- Wells, N.; Goddard, S.; Hayes, M.J. A self-calibrating Palmer drought severity index. J. Clim. 2004, 17, 2335–2351. [Google Scholar] [CrossRef]
- Dai, A.; Trenberth, K.E.; Qian, T. A global data set of palmer drought severity index for 1870–2002: Relationship with soil moisture and effects of surface warming. J. Hydrometeorol. 2009, 5, 1117–1130. [Google Scholar] [CrossRef]
- Van der Schrier, G.; Barichivich, J.; Briffa, K.R.; Jones, P.D. A scPDSI-based global data set of dry and wet spells for 1901–2009. J. Geophys. Res. Atmos. 2013, 118, 4025–4048. [Google Scholar] [CrossRef]
- Liu, L.; Hong, Y.; Bednarczyk, C.N.; Yong, B.; Shafer, M.A.; Riley, R.; Hocker, J.E. Hydroclimatological drought analyses and projections using meteorological and hydrological drought indices: A case study in Blue River Basin, Oklahoma. Water Resour. Manag. 2012, 26, 2761–2779. [Google Scholar] [CrossRef]
- Wang, Z.; Lai, C.; Chen, X.; Yang, B.; Zhao, S.; Bai, X. Flood hazard risk assessment model based on random forest. J. Hydrol. 2015, 527, 1130–1141. [Google Scholar] [CrossRef]
- Burke, E.J.; Brown, S.J.; Christidis, N. Modeling the recent evolution of global drought and projections for the twenty-first century with the Hadley Centre climate model. J. Hydrometeorol. 2006, 7, 1113–1125. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Lai, C.; Zeng, Z.; Zhong, R.; Chen, X.; Wang, M. Does drought in China show a significant decreasing trend from 1961 to 2009? Sci. Total Environ. 2017, 579, 314–324. [Google Scholar] [CrossRef]
- Haslinger, K.; Blöschl, G. Space-time patterns of meteorological drought events in the European Greater Alpine Region over the past 210 years. Water Resour. Res. 2017, 53, 9807–9823. [Google Scholar] [CrossRef] [Green Version]
- Woodhouse, C.A.; Overpeck, J.T. 2000 Years of Drought Variability in the Central United States. Bull. Am. Meteorol. Soc. 1998, 79, 2693–2714. [Google Scholar] [CrossRef]
- Yang, B.; Qin, C.; Wang, J. A 3500-year tree-ring record of annual precipitation on the northeastern Tibetan Plateau. Proc. Natl. Acad. Sci. USA 2014, 111, 2903–2908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Q.; Liu, Y.; Lei, Y.; Bao, G.; Sun, B. Reconstruction of the March-August PDSI since 1703 AD based on tree rings of Chinese pine (Pinus tabulaeformis Carr.) in the Lingkong Mountain, southeast Chinese loess Plateau. Clim. Past 2014, 9, 6311–6344. [Google Scholar] [CrossRef] [Green Version]
- Linderholm, H.W.; Björklund, J.A.; Seftigen, K.; Gunnarson, B.E.; Grudd, H.; Jeong, J.H.; Drobyshev, I.; Liu, Y. Dendroclimatology in Fennoscandia-from past accomplishments to future potential. Clim. Past 2010, 6, 93–114. [Google Scholar] [CrossRef] [Green Version]
- Büntgen, U.; Tegel, W.; Nicolussi, K.; McCormick, M.; Frank, D.; Trouet, V.; Kaplan, J.O.; Herzig, F.; Heussner, K.-U.; Wanner, H.; et al. 2500 years of European climate variability and human susceptibility. Science 2011, 331, 578–582. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Zhang, X.; Song, H.; Cai, Q.; Li, Q.; Zhao, B.; Mei, R. Tree-ring-width-based PDSI reconstruction for central Inner Mongolia, China over the past 333 years. Clim. Dyn. 2017, 48, 867–879. [Google Scholar] [CrossRef]
- Gaire, N.; Dhakal, Y.R.; Shah, S.K. Drought (scPDSI) reconstruction of trans-Himalayan region of central Himalaya using Pinus wallichiana tree-rings. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2019, 514, 251–264. [Google Scholar] [CrossRef]
- Esper, J.; Frank, D.; Büntgen, U.; Verstege, A.; Luterbacher, J.; Xoplaki, E. Long-term drought severity variations in Morocco. Geophys. Res. Lett. 2007, 34, 244. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Anchukaitis, K.J.; Buckley, B.M.; D’Arrigo, R.D.; Jacoby, G.C.; Wright, W.E. Asian monsoon failure and megadrought during the last millennium. Science 2010, 328, 486–489. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Seager, R.; Kushnir, Y.; Briffa, K.R.; Büntgen, U.; Frank, D.; Baillie, M. Old World megadroughts and pluvials during the Common Era. Sci. Adv. 2015, 1, e1500561. [Google Scholar] [CrossRef] [Green Version]
- Palmer, J.G.; Cook, E.R.; Turney, C.S.; Allen, K.; Fenwick, P.; Cook, B.I.; O’Donnell, A.; Lough, J.; Grierson, P.; Baker, P. Drought variability in the eastern Australia and New Zealand summer drought atlas (ANZDA, CE1500~2012) modulated by the Interdecadal Pacific Oscillation. Environ. Res. Lett. 2015, 10, 124002. [Google Scholar] [CrossRef]
- Shi, F.; Zhao, S.; Guo, Z.; Goosse, H.; Yin, Q. Multi-proxy reconstructions of May-September precipitation field in China over the past 500 years. Clim. Past 2017, 13, 1919–1938. [Google Scholar] [CrossRef] [Green Version]
- He, M.; Yang, B.; Datsenko, N.M. A six hundred-year annual minimum temperature history for the central Tibetan Plateau derived from tree-ring width series. Clim. Dyn. 2014, 43, 641–655. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Galelli, S. A linear dynamical systems approach to streamflow reconstruction reveals history of regime shifts in northern Thailand. Water Resour. Res. 2018, 54, 2057–2077. [Google Scholar] [CrossRef] [Green Version]
- Littell, J.S.; Pederson, G.T.; Gray, S.T.; Tjoelker, M.; Hamlet, A.F.; Woodhouse, C.A. Reconstructions of Columbia River streamflow from tree-ring chronologies in the Pacific Northwest, USA. J. Am. Water Resour. Assoc. 2016, 52, 1121–1141. [Google Scholar] [CrossRef]
- Allen, K.J.; Nichols, S.C.; Evans, R.; Allie, S.; Carson, G.; Ling, F.; Baker, P.J. A 277 year cool season dam inflow reconstruction for Tasmania, southeastern Australia. Water Resour. Res. 2017, 53, 400–414. [Google Scholar] [CrossRef]
- Shi, F.; Ge, Q.; Yang, B.; Li, J.; Yang, F.; Ljungqvist, F.C.; Xu, C. A multi-proxy reconstruction of spatial and temporal variations in Asian summer temperatures over the last millennium. Clim. Chang. 2015, 131, 663–676. [Google Scholar] [CrossRef]
- Yang, F.; Wang, N.; Shi, F.; Ljungqvist, F.C.; Zhao, S.; Liu, T. The spatial distribution of precipitation over the West Qinling region, China, AD 1470–2000. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2016, 443, 278–285. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Chen, H.; Liang, Z.; Liu, Y.; Jiang, Q.; Xie, S. Effects of drought and flood on crop production in China across 1949–2015: Spatial heterogeneity analysis with Bayesian hierarchical modeling. Nat. Hazards 2018, 92, 525–541. [Google Scholar] [CrossRef]
- Shao, D.; Chen, S.; Tan, X.; Gu, W. Drought characteristics over China during 1980–2015. Int. J. Climatol. 2018, 38, 3532–3545. [Google Scholar] [CrossRef]
- Wang, Z.; Zhong, R.; Lai, C.; Zeng, Z.; Lian, Y.; Bai, X. Climate change enhances the severity and variability of drought in the Pearl River Basin in South China in the 21st century. Agric. For. Meteorol. 2018, 249, 149–162. [Google Scholar] [CrossRef]
- Zhao, A.; Zhang, A.; Cao, S.; Liu, X.; Liu, J.; Cheng, D. Responses of vegetation productivity to multi-scale drought in Loess Plateau, China. Catena 2018, 163, 165–171. [Google Scholar] [CrossRef]
- Zhang, L.; Wu, P.; Zhou, T.; Xiao, C. ENSO Transition from La Niña to El Niño Drives Prolonged Spring-Summer Drought over North China. J. Clim. 2018, 31, 3509–3523. [Google Scholar] [CrossRef]
- Yu, M.; Li, Q.; Hayes, M.J.; Svoboda, M.D.; Heim, R.R. Are droughts becoming more frequent or severe in China based on the standardized precipitation evapotranspiration index: 1951–2010? Int. J. Climatol. 2014, 34, 545–558. [Google Scholar] [CrossRef]
- Fang, K.; Gou, X.; Chen, F.; Liu, C.; Davi, N.; Li, J.; Li, Y. Tree-ring based reconstruction of drought variability (1615–2009) in the Kongtong Mountain area, northern China. Glob. Planet. Change 2012, 80, 190–197. [Google Scholar] [CrossRef]
- Cai, Q.; Liu, Y. Climatic response of Chinese pine and PDSI variability in the middle Taihang Mountains, north China since 1873. Trees 2013, 27, 419–427. [Google Scholar] [CrossRef]
- Li, J.; Shi, J.; Zhang, D.D.; Yang, B.; Fang, K.; Yue, P.H. Moisture increase in response to high-altitude warming evidenced by tree-rings on the southeastern Tibetan Plateau. Clim. Dyn. 2017, 48, 649–660. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; Gou, X.; Deng, Y.; Zhang, R.; Liu, W.; Zhang, F.; Zheng, W. Tree growth response of Fokienia hodginsii to recent climate warming and drought in southwest China. Int. J. Biometeorol. 2017, 61, 2085–2096. [Google Scholar] [CrossRef]
- Gou, X.; Deng, Y.; Gao, L.; Chen, F.; Cook, E.; Yang, M.; Zhang, F. Millennium tree-ring reconstruction of drought variability in the eastern Qilian Mountains, northwest China. Clim. Dyn. 2015, 45, 1761–1770. [Google Scholar] [CrossRef] [Green Version]
- Yang, B.; Kang, S.; Ljungqvist, F.C.; He, M.; Zhao, Y.; Qin, C. Drought variability at the northern fringe of the Asian summer monsoon region over the past millennia. Clim. Dyn. 2014, 43, 845–859. [Google Scholar] [CrossRef]
- Yang, H.; Yang, D.; Hu, Q.; Lv, H. Spatial variability of the trends in climatic variables across China during 1961–2010. Theor. Appl. Climatol. 2015, 120, 773–783. [Google Scholar] [CrossRef]
- International Tree Ring Data Bank. Available online: http://www.ncdc.noaa.gov/paleo/treering.html (accessed on 7 January 2022).
- Wang, Y.; Cheng, H.; Edwards, R.L.; He, Y.; Kong, X.; An, Z.; Li, X. The Holocene Asian monsoon: Links to solar changes and North Atlantic climate. Science 2005, 308, 854–857. [Google Scholar] [CrossRef]
- Tan, M.; Liu, T.; Hou, J.; Qin, X.; Zhang, H.; Li, T. Cyclic rapid warming on centennial-scale revealed by a 2650-year stalagmite record of warm season temperature. Geophys. Res. Lett. 2003, 30, 31. [Google Scholar] [CrossRef]
- Adusumilli, S.; Bhatt, D.; Wang, H.; Devabhaktuni, V.; Bhattacharya, P. A novel hybrid approach utilizing principal component regression and random forest regression to bridge the period of GPS outages. Neurocomputing 2015, 166, 185–192. [Google Scholar] [CrossRef]
- Zhang, D. Test of calibration on the paleoclimatic proxy data by using Chinese historical records. Adv. Clim. Change Res. 2010, 6, 70–72. [Google Scholar] [CrossRef]
- Allen, E.B.; Rittenour, T.M.; DeRose, R.J.; Bekker, M.F.; Kjelgren, R.; Buckley, B.M. A tree-ring based reconstruction of Logan River streamflow, northern Utah. Water Resour. Res. 2013, 49, 8579–8588. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Meko, D.M.; Stahle, D.W.; Cleaveland, M.K. Drought reconstructions for the continental United States. J. Clim. 1999, 12, 1145–1162. [Google Scholar] [CrossRef] [Green Version]
- Huang, N.E.; Shen, Z.; Long, S.R.; Wu, M.C.; Shih, H.H.; Zheng, Q.; Liu, H.H. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 1998, 454, 903–995. [Google Scholar] [CrossRef]
- Lorenz, E.N. Empirical Orthogonal Functions and Statistical Weather Prediction; Science Report No. 1; MIT: Cambridge, MA, USA, 1956; pp. 1–49. [Google Scholar]
- Richman, M.B. Review article, rotation of principal components. J. Climatol. 1986, 6, 293–355. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, P.; Zhang, F.; Liu, X.; Chen, G. Spatiotemporal characteristics of dryness/wetness conditions across Qinghai Province, Northwest China. Agric. For. Meteorol. 2003, 182, 101–108. [Google Scholar] [CrossRef]
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 2007, 112, 3798. [Google Scholar] [CrossRef]
- Mann, M.E.; Jones, P.D. Global surface temperatures over the past two millennia. Geophys. Res. Lett. 2003, 30, 17814. [Google Scholar] [CrossRef] [Green Version]
- Esper, J.; Cook, E.R.; Schweingruber, F.H. Low-frequency signals in long tree-ring chronologies for reconstructing past temperature variability. Science 2002, 295, 2250–2253. [Google Scholar] [CrossRef] [Green Version]
- Cook, E.R.; Esper, J.; D’Arrigo, R.D. Extra-tropical Northern Hemisphere land temperature variability over the past 1000 years. Quat. Sci. Rev. 2004, 23, 2063–2074. [Google Scholar] [CrossRef]
- D’Arrigo, R.; Wilson, R.; Jacoby, G. On the long-term context for late twentieth century warming. J. Geophys. Res. Atmos. 2006, 111, 6352. [Google Scholar] [CrossRef]
- Briffa, K.R. Annual climate variability in the Holocene: Interpreting the message of ancient trees. Quat. Sci. Rev. 2000, 19, 87–105. [Google Scholar] [CrossRef]
- Zhang, D.E.; Liang, Y.Y. A long lasting and Extensive Drought Event over China during 1876–1878. Adv. Clim. Chang. Res. 2010, 6, 106–112. [Google Scholar]
- Kass, R.E. Nonlinear regression analysis and its applications. J. Am. Stat. Assoc. 1990, 85, 594–596. [Google Scholar] [CrossRef]
- McCuen, R.H.; Knight, Z.; Cutter, A.G. Cutter. Evaluation of the Nash-Sutcliffe efficiency index. J. Hydrol. Eng. 2006, 11, 597–602. [Google Scholar] [CrossRef]
- Legates, D.R.; McCabe, G.J., Jr. Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour. Res. 1999, 35, 233–241. [Google Scholar] [CrossRef]
scPDSI Value | scPDSI Category | scPDSI Value | scPDSI Category |
---|---|---|---|
Above 4.00 | Extreme wet | Below −4.00 | Extreme drought |
3.00 to 3.99 | Severe wet | −3.00 to −3.99 | Severe drought |
2.00 to 2.99 | Moderate wet | −2.00 to −2.99 | Moderate drought |
1.00 to 1.99 | Mid wet | −1.00 to −1.99 | Mid drought |
0.50 to 0.99 | Incipient wet | −0.50 to −0.99 | Incipient drought |
0.49 to −0.49 | Normal |
NO | Country | Area | Site | Lat (° N) | Long (° E) | Archive Type | Proxy Measurement | Reference |
---|---|---|---|---|---|---|---|---|
1 | Japan (JP) | Asia2k | YKS | 30.33 | 130.5 | Tree ring | Total ring width | [57] |
2 | Mongolia (MG) | LDEO | SODAPS | 48.3 | 98.93 | |||
3 | China (CH) | CHIN070 | HYGJU | 38.57 | 99.33 | |||
4 | China (CH) | Dongge Cave | DGC | 25.28 | 108.08 | Speleothem | d18O | [58] |
5 | China (CH) | Shihua Cave | SHC | 39.78 | 115.93 | [59] |
Drought Periods | Humid Periods | ||||
---|---|---|---|---|---|
Number | Start & End Year (AD) | Duration (Year) | Number | Start & End Year (AD) | Duration (Year) |
1 | 60–74 | 15 | 1 | 77–87 | 11 |
2 | 122–131 | 10 | 2 | 93–120 | 28 |
3 | 350–381 | 32 | 3 | 133–146 | 14 |
4 | 463–494 | 32 | 4 | 154–238 | 85 |
5 | 524–546 | 23 | 5 | 276–302 | 27 |
6 | 623–650 | 28 | 6 | 335–348 | 14 |
7 | 684–716 | 33 | 7 | 548–584 | 37 |
8 | 744–761 | 18 | 8 | 602–621 | 20 |
9 | 798–807 | 10 | 9 | 765–785 | 21 |
10 | 1007–1031 | 25 | 10 | 809–818 | 10 |
11 | 1096–1151 | 56 | 11 | 828–900 | 73 |
12 | 1169–1247 | 79 | 12 | 910–940 | 31 |
13 | 1254–1302 | 49 | 13 | 958–1002 | 45 |
14 | 1377–1403 | 27 | 14 | 1153–1166 | 14 |
15 | 1433–1508 | 76 | 15 | 1570–1599 | 30 |
16 | 1624–1666 | 43 | 16 | 1794–1807 | 14 |
17 | 1697–1715 | 19 | 17 | 1882–1910 | 29 |
18 | 1812–1823 | 12 | 18 | 1925–1958 | 34 |
19 | 1912–1921 | 10 |
Mean | Max | Min | r | NSE | PBIAS | |
---|---|---|---|---|---|---|
Actual calculated | −0.35 | 8.37 | −6.98 | / | / | / |
Random forest | −0.37 | 7.55 | −6.66 | 0.97 | 0.89 | 6.32% |
Linear regression | −0.51 | 6.89 | −5.98 | 0.60 | 0.07 | 44.79% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, B.; Lai, C.; Chen, X.; Singh, V.P.; Wang, J. Multi–Proxy Reconstruction of Drought Variability in China during the Past Two Millennia. Water 2022, 14, 858. https://doi.org/10.3390/w14060858
Yang B, Lai C, Chen X, Singh VP, Wang J. Multi–Proxy Reconstruction of Drought Variability in China during the Past Two Millennia. Water. 2022; 14(6):858. https://doi.org/10.3390/w14060858
Chicago/Turabian StyleYang, Bing, Chengguang Lai, Xiaohong Chen, Vijay P. Singh, and Jiawen Wang. 2022. "Multi–Proxy Reconstruction of Drought Variability in China during the Past Two Millennia" Water 14, no. 6: 858. https://doi.org/10.3390/w14060858
APA StyleYang, B., Lai, C., Chen, X., Singh, V. P., & Wang, J. (2022). Multi–Proxy Reconstruction of Drought Variability in China during the Past Two Millennia. Water, 14(6), 858. https://doi.org/10.3390/w14060858