Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources and Analysis
2.3. Methods
2.3.1. Calculation of Drought Indices
2.3.2. Potential Evapotranspiration (PET) Assessment
3. Results
3.1. Difference and Similarities of SPI and RDI
3.2. Spatiotemporal Variation Characteristics of RDI
3.3. Variation Characteristics of Drought and Wetness Events
3.3.1. Intra-Annual Variation Characteristics of Drought and Wetness Events
3.3.2. Variation Characteristics of Drought and Wetness Events on Annual and VGS Scales
3.3.3. Variation Characteristics of Drought and Wetness Events on Seasonal Scale
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhong, S.; Wang, C.; Yang, Y.; Huang, Q. Risk assessment of drought in Yun-Gui-Guang of China jointly using the Standardized Precipitation Index and vulnerability curves. Geomat. Nat. Hazards Risk 2018, 9, 892–918. [Google Scholar] [CrossRef]
- Shi, J.; Cui, L.; Tian, Z. Spatial and temporal distribution and trend in flood and drought disasters in East China. Environ. Res. 2020, 185, 109406. [Google Scholar] [CrossRef] [PubMed]
- Wang, F.; Wang, Z.; Yang, H.; Zhao, Y. Study of the temporal and spatial patterns of drought in the Yellow River Basin based on SPEI. Sci. China Earth Sci. 2018, 61, 1098–1111. [Google Scholar] [CrossRef]
- Yang, Q.; Li, M.; Zheng, Z.; Ma, Z. Regional applicability of seven meteorological drought indices in China. Sci. China Earth Sci. 2017, 60, 745–760. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Wang, S.; Wang, L. Increase in flood and drought disasters during 1500–2000 in Southwest China. Nat. Hazards 2015, 77, 1853–1861. [Google Scholar] [CrossRef]
- Cook, B.I.; Mankin, J.S.; Anchukaitis, K.J. Climate Change and Drought: From Past to Future. Curr. Clim. Chang. Rep. 2018, 4, 164–179. [Google Scholar] [CrossRef]
- An, Q.; He, H.; Nie, Q.; Cui, Y.; Gao, J.; Wei, C.; Xie, X.; You, J. Spatial and Temporal Variations of Drought in Inner Mongolia, China. Water 2020, 12, 1715. [Google Scholar] [CrossRef]
- Alamgir, M.; Khan, N.; Shahid, S.; Yaseen, Z.M.; Dewan, A.; Hassan, Q.; Rasheed, B. Evaluating severity–area–frequency (SAF) of seasonal droughts in Bangladesh under climate change scenarios. Stoch. Environ. Res. Risk Assess. 2020, 34, 447–464. [Google Scholar] [CrossRef]
- Marengo, J.A. Characteristics and spatio-temporal variability of the Amazon River Basin Water Budget. Clim. Dyn. 2005, 24, 11–22. [Google Scholar] [CrossRef]
- Tramblay, Y.; Llasat, M.C.; Randin, C.; Coppola, E. Climate change impacts on water resources in the Mediterranean. Reg. Environ. Chang. 2020, 20, 83. [Google Scholar] [CrossRef]
- Chou, J.; Xian, T.; Dong, W.; Xu, Y. Regional Temporal and Spatial Trends in Drought and Flood Disasters in China and Assessment of Economic Losses in Recent Years. Sustainability 2019, 11, 55. [Google Scholar] [CrossRef] [Green Version]
- WMO. Reducing and managing risks of disasters in a changing climate. WMO Bull. 2013, 62, 23–31. [Google Scholar]
- Liang, S.; Ge, S.; Wan, L.; Zhang, J. Can climate change cause the Yellow River to dry up? Water Resour. Res. 2010, 46, W02505. [Google Scholar] [CrossRef]
- Li, Q.; Yang, M.; Wan, G.; Wang, X. Spatial and temporal precipitation variability in the source region of the Yellow River. Environ. Earth Sci. 2016, 75, 594. [Google Scholar] [CrossRef]
- She, D.; Xia, J. The spatial and temporal analysis of dry spells in the Yellow River Basin, China. Stoch. Environ. Res. Risk Assess. 2013, 27, 29–42. [Google Scholar] [CrossRef]
- Zhang, B.; Wang, Z.; Chen, G. A Sensitivity Study of Applying a Two-Source Potential Evapotranspiration Model in the Standardized Precipitation Evapotranspiration Index for Drought Monitoring. Land Degrad. Dev. 2017, 28, 783–793. [Google Scholar] [CrossRef]
- Zheng, H.; Zhang, L.; Liu, C.; Shao, Q.; Fukushima, Y. Changes in stream flow regime in headwater catchments of the Yellow River Basin since the 1950s. Hydrol. Processes 2007, 21, 886–893. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, X.; Li, C.; Wu, F.; Yang, Z. Spatiotemporal analysis of temperature trends under climate change in the source region of the Yellow River, China. Theor. Appl. Climatol. 2015, 119, 123–133. [Google Scholar] [CrossRef]
- Gu, H.; Yu, Z.; Li, G.; Luo, J.; Ju, Q.; Huang, Y.; Fu, X. Entropy-Based Research on Precipitation Variability in the Source Region of China’s Yellow River. Water 2020, 12, 2486. [Google Scholar] [CrossRef]
- Morid, S.; Smakhtin, V.; Moghaddasi, M. Comparison of seven meteorological indices for drought monitoring in Iran. Int. J. Climatol. 2006, 26, 971–985. [Google Scholar] [CrossRef]
- McKee, T.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17 January 1993. [Google Scholar]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Mohammed, R.; Scholz, M. The reconnaissance drought index: A method for detecting regional arid climatic variability and potential drought risk. J. Arid. Environ. 2017, 144, 181–191. [Google Scholar] [CrossRef]
- Tsakiris, G.; Vangelis, H. Establishing a Drought Index Incorporating Evapotranspiration. Eur. Water 2005, 9, 3–11. [Google Scholar]
- Asadi Zarch, M.A.; Sivakumar, B.; Sharma, A. Droughts in a warming climate: A global assessment of Standardized precipitation index (SPI) and Reconnaissance drought index (RDI). J. Hydrol. 2015, 526, 183–195. [Google Scholar] [CrossRef]
- Xu, K.; Yang, D.; Yang, H.; Li, Z.; Qin, Y.; Shen, Y. Spatio-temporal variation of drought in China during 1961–2012: A climatic perspective. J. Hydrol. 2015, 526, 253–264. [Google Scholar] [CrossRef]
- Ma, Q.; Jin, H.-J.; Bense, V.F.; Luo, D.-L.; Marchenko, S.S.; Harris, S.A.; Lan, Y.-C. Impacts of degrading permafrost on streamflow in the source area of Yellow River on the Qinghai-Tibet Plateau, China. Adv. Clim. Chang. Res. 2019, 10, 225–239. [Google Scholar] [CrossRef]
- Yuan, F.; Berndtsson, R.; Zhang, L.T.; Uvo, C.; Hao, Z.; Wang, X.-P.; Yasuda, H. Hydro Climatic Trend and Periodicity for the Source Region of the Yellow River. J. Hydrol. Eng. 2015, 20, 05015003. [Google Scholar] [CrossRef]
- Hu, Y.; Maskey, S.; Uhlenbrook, S.; Zhao, H. Streamflow trends and climate linkages in the source region of the Yellow River, China. Hydrol. Processes 2011, 25, 3399–3411. [Google Scholar] [CrossRef]
- Yihui, D.; Chan, J.C.L. The East Asian summer monsoon: An overview. Meteorol. Atmos. Phys. 2005, 89, 117–142. [Google Scholar] [CrossRef]
- Zhou, H.; Zhao, X.; Tang, Y.; Gu, S.; Zhou, L. Alpine grassland degradation and its control in the source region of the Yangtze and Yellow Rivers, China. Grassl. Sci. 2005, 51, 191–203. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, W.; Liu, T.; Li, Q. Runoff Dynamics and Associated Multi-Scale Responses to Climate Changes in the Middle Reach of the Yarlung Zangbo River Basin, China. Water 2018, 10, 295. [Google Scholar] [CrossRef] [Green Version]
- Asadi Zarch, M.A.; Malekinezhad, H.; Mobin, M.H.; Dastorani, M.T.; Kousari, M.R. Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resour. Manag. 2011, 25, 3485. [Google Scholar] [CrossRef] [Green Version]
- Vangelis, H.; Tigkas, D.; Tsakiris, G. The effect of PET method on Reconnaissance Drought Index (RDI) calculation. J. Arid. Environ. 2013, 88, 130–140. [Google Scholar] [CrossRef]
- Ben Abdelmalek, M.; Nouiri, I. Study of trends and mapping of drought events in Tunisia and their impacts on agricultural production. Sci. Total Environ. 2020, 734, 139311. [Google Scholar] [CrossRef] [PubMed]
- Nedealcov, M.; Răileanu, V.; Sîrbu, R.; Cojocari, R. The Use Of Standardized Indicators (SPI And SPEI) In Predicting Droughts Over The Republic Of Moldova Territory. Present Environ. Sustain. Dev. 2015, 9, 149–158. [Google Scholar] [CrossRef]
- Kaczmarek, Z.; Strzepek, K.M.; Somlyody, L.; Priazhinskaya, V. Water Resources Management in the Face of Climatic/Hydrologic Uncertainties; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1996; p. 407. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Reference Crop Evapotranspiration from Temperature. Appl. Eng. Agric. 1985, 1, 96–99. [Google Scholar] [CrossRef]
- Thornthwaite, C.W. An Approach Toward a Rational Classification of Climate. Soil Sci. 1948, 66, 77. [Google Scholar] [CrossRef] [Green Version]
- Doorenbos, J.; Pruitt, W. Guidelines for predicting crop water requirements, FAO-ONU, Rome. Irrig. Drain. Pap. 1977, 24, 144. [Google Scholar]
- Hargreaves, G.H. Moisture Availability and Crop Production. Trans. ASAE 1975, 18, 980–0984. [Google Scholar] [CrossRef]
- Hargreaves, G.H.; Samani, Z.A. Estimating potential evapotranspiration. J. Irrig. Drain. Div. 1982, 108, 225–230. [Google Scholar] [CrossRef]
- Zhang, J.; Li, G.; Liang, S. The response of river discharge to climate fluctuations in the source region of the Yellow River. Environ. Earth Sci. 2012, 66, 1505–1512. [Google Scholar] [CrossRef]
- Khalili, D.; Farnoud, T.; Jamshidi, H.; Kamgar-Haghighi, A.A.; Zand-Parsa, S. Comparability Analyses of the SPI and RDI Meteorological Drought Indices in Different Climatic Zones. Water Resour. Manag. 2011, 25, 1737–1757. [Google Scholar] [CrossRef]
- Merabti, A.; Meddi, M.; Martins, D.S.; Pereira, L.S. Comparing SPI and RDI Applied at Local Scale as Influenced by Climate. Water Resour. Manag. 2018, 32, 1071–1085. [Google Scholar] [CrossRef]
- Zhang, L.; Gao, L. Drought and Wetness Variability and the Respective Contribution of Temperature and Precipitation in the Qinghai-Tibetan Plateau. Adv. Meteorol. 2021, 2021, 7378196. [Google Scholar] [CrossRef]
- Hu, Y.; Maskey, S.; Uhlenbrook, S. Trends in temperature and rainfall extremes in the Yellow River source region, China. Clim. Change 2012, 110, 403–429. [Google Scholar] [CrossRef] [Green Version]
- Khan, M.I.; Liu, D.; Fu, Q.; Dong, S.; Liaqat, U.W.; Faiz, M.A.; Hu, Y.; Saddique, Q. Recent Climate Trends and Drought Behavioral Assessment Based on Precipitation and Temperature Data Series in the Songhua River Basin of China. Water Resour. Manag. 2016, 30, 4839–4859. [Google Scholar] [CrossRef]
- Wang, Y.; Quan, Q.; Shen, B. Spatio-temporal variability of drought and effect of large scale climate in the source region of Yellow River. Geomat. Nat. Hazards Risk 2019, 10, 678–698. [Google Scholar] [CrossRef] [Green Version]
- Tian, H.; Lan, Y.; Wen, J.; Jin, H.; Wang, C.; Wang, X.; Kang, Y. Evidence for a recent warming and wetting in the source area of the Yellow River (SAYR) and its hydrological impacts. J. Geogr. Sci. 2015, 25, 643–668. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, L.; Xiang, F.; Qin, W.; Jiang, W. Vegetation dynamics and the relations with climate change at multiple time scales in the Yangtze River and Yellow River Basin, China. Ecol. Indic. 2020, 110, 105892. [Google Scholar] [CrossRef]
- Liu, Q.; Cui, B. Impacts of climate change/variability on the streamflow in the Yellow River Basin, China. Ecol. Model. 2011, 222, 268–274. [Google Scholar] [CrossRef]
- Khan, M.I.; Liu, D.; Fu, Q.; Saddique, Q.; Faiz, M.A.; Li, T.; Qamar, M.U.; Cui, S.; Cheng, C. Projected Changes of Future Extreme Drought Events under Numerous Drought Indices in the Heilongjiang Province of China. Water Resour. Manag. 2017, 31, 3921–3937. [Google Scholar] [CrossRef]
- Cheng, Q.; Gao, L.; Chen, Y.; Liu, M.; Deng, H.; Chen, X. Temporal-Spatial Characteristics of Drought in Guizhou Province, China, Based on Multiple Drought Indices and Historical Disaster Records. Adv. Meteorol. 2018, 2018, 4721269. [Google Scholar] [CrossRef]
- Yin, Y.; Tang, Q.; Liu, X.; Zhang, X. Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River Basin. Hydrol. Earth Syst. Sci. 2017, 21, 791–804. [Google Scholar] [CrossRef] [Green Version]
- Wohlfart, C.; Kuenzer, C.; Chen, C.; Liu, G. Social–ecological challenges in the Yellow River Basin (China): A review. Environ. Earth Sci. 2016, 75, 1066. [Google Scholar] [CrossRef]
Code | Name | Longitude (°E) | Latitude (°N) | Elevation (m) | Tmax 1 (°C) | Tmin 2 (°C) | P 3 (mm) |
---|---|---|---|---|---|---|---|
52943 | Xinghai | 99.98 | 35.58 | 3323.2 | 9.77 ± 0.74 | −5.78 ± 0.86 | 346.47 ± 75.2 |
52955 | Guinan | 100.75 | 35.58 | 8120.0 | 11.11 ± 0.76 | −4.32 ± 0.65 | 396.03 ± 90.96 |
56021 | Qumarleb | 95.78 | 34.13 | 4175.0 | 5.87 ± 0.97 | −8.54 ± 0.92 | 362.53 ± 109.92 |
56033 | Madoi | 98.22 | 34.92 | 4272.3 | 3.89 ± 0.98 | −9.51 ± 1.16 | 284.84 ± 88.61 |
56034 | Qingshuihe | 97.13 | 33.80 | 4415.4 | 3.97 ± 0.86 | −11.22 ± 0.83 | 431.68 ± 146.93 |
56043 | Golog | 100.25 | 34.47 | 3719.0 | 8.55 ± 0.75 | −7.21 ± 0.93 | 473.8 ± 90.42 |
56046 | Darlag | 99.65 | 33.75 | 3967.5 | 6.92 ± 0.82 | −6.78 ± 0.88 | 490.45 ± 119.44 |
56065 | Henan | 101.60 | 34.73 | 8500.0 | 8.96 ± 0.87 | −6.59 ± 1.07 | 539.76 ± 96.32 |
56067 | Jiuzhi | 101.48 | 33.43 | 3628.5 | 9.41 ± 0.85 | −5.67 ± 0.96 | 680.62 ± 126.81 |
56074 | Maqu | 102.08 | 34.00 | 3471.4 | 9.12 ± 0.72 | −4.52 ± 1.20 | 565.75 ± 97.8 |
56079 | Zoigê | 102.97 | 33.58 | 3439.6 | 9.41 ± 0.76 | −4.97 ± 0.94 | 649.92 ± 101.76 |
56173 | Hongyuan | 102.55 | 32.80 | 3491.6 | 10.27 ± 0.77 | −5.32 ± 1.01 | 749.36 ± 99.67 |
SPI and RDI Range | Probability (%) | Drought Classes |
---|---|---|
2.0 or more | 2.3 | Extreme wetness |
1.5 to 1.99 | 4.4 | Severe wetness |
1.0 to 1.49 | 9.2 | Moderate wetness |
0.99 to 0.0 | 34.1 | Normal |
0.0 to −0.99 | 34.1 | Mild drought |
−1.0 to −1.49 | 9.2 | Moderate drought |
−1.5 to −1.99 | 4.4 | Severe drought |
−2.0 or less | 2.3 | Extreme drought |
Name | SPI-12Min 1 | RDI-12Min | SPI-12Max 2 | RDI-12Max |
---|---|---|---|---|
Xinghai | −3.41 | −3.22 | 1.87 | 1.79 |
Guinan | −2.88 | −2.70 | 2.05 | 2.06 |
Qumarleb | −2.58 | −2.66 | 2.07 | 2.06 |
Madoi | −2.32 | −2.32 | 1.63 | 1.79 |
Qingshuihe | −2.29 | −2.16 | 1.56 | 1.44 |
Golog | −2.79 | −2.58 | 2.16 | 2.30 |
Darlag | −2.34 | −2.45 | 1.56 | 1.67 |
Henan | −1.62 | −1.57 | 1.83 | 2.20 |
Jiuzhi | −2.99 | −3.60 | 1.89 | 2.17 |
Maqu | −3.18 | −3.00 | 2.37 | 2.44 |
Zoigê | −2.30 | −2.41 | 2.73 | 2.67 |
Hongyuan | −1.94 | −1.87 | 2.56 | 2.52 |
Classes | September | October | November | December | January | February | March | April | May | June | July | August |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Mild Drought | 34.5 | 34.5 | 52.7 | 50.9 | 41.8 | 43.6 | 27.3 | 36.4 | 34.5 | 36.4 | 41.8 | 43.6 |
Moderately Drought | 9.1 | 5.5 | 3.6 | 0.0 | 9.1 | 3.6 | 16.4 | 10.9 | 7.3 | 9.1 | 9.1 | 1.8 |
Severely Drought | 1.8 | 5.5 | 0.0 | 0.0 | 0.0 | 3.6 | 1.8 | 0.0 | 3.6 | 1.8 | 0.0 | 3.6 |
Extremely Drought | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 |
Moderately Wetness | 7.3 | 1.8 | 10.9 | 7.3 | 7.3 | 9.1 | 10.9 | 7.3 | 3.6 | 12.7 | 9.1 | 5.5 |
Severely Wetness | 0.0 | 3.6 | 0.0 | 3.6 | 1.8 | 5.5 | 0.0 | 3.6 | 1.8 | 0.0 | 1.8 | 1.8 |
Extremely Wetness | 1.8 | 0.0 | 0.0 | 0.0 | 1.8 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
Totally Wetness | 9.1 | 5.4 | 10.9 | 10.9 | 10.9 | 14.6 | 10.9 | 10.9 | 5.4 | 12.7 | 10.9 | 7.3 |
Classes | Seasons | |||
---|---|---|---|---|
Autumn | Winter | Spring | Summer | |
extreme drought | −0.01 | −0.01 | −0.01 | −0.03 * |
severe drought | −0.05 * | −0.07 * | −0.06 * | −0.05 * |
moderate drought | −0.08 * | −0.27 * | −0.37 * | −0.09 * |
mild drought | −0.06 | −0.21 * | −0.14 * | −0.20 * |
moderate wetness | 0.04 | 0.12 * | 0.13 * | 0.07 * |
severe and extreme wetness | −0.01 | 0.02 | 0.02 | 0.02 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ren, Y.; Liu, J.; Shalamzari, M.J.; Arshad, A.; Liu, S.; Liu, T.; Tao, H. Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water 2022, 14, 861. https://doi.org/10.3390/w14060861
Ren Y, Liu J, Shalamzari MJ, Arshad A, Liu S, Liu T, Tao H. Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water. 2022; 14(6):861. https://doi.org/10.3390/w14060861
Chicago/Turabian StyleRen, Yanqun, Jinping Liu, Masoud Jafari Shalamzari, Arfan Arshad, Suxia Liu, Tie Liu, and Hui Tao. 2022. "Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China" Water 14, no. 6: 861. https://doi.org/10.3390/w14060861
APA StyleRen, Y., Liu, J., Shalamzari, M. J., Arshad, A., Liu, S., Liu, T., & Tao, H. (2022). Monitoring Recent Changes in Drought and Wetness in the Source Region of the Yellow River Basin, China. Water, 14(6), 861. https://doi.org/10.3390/w14060861