Fish Welfare in Urban Aquaponics: Effects of Fertilizer for Lettuce (Lactuca sativa L.) on Some Physiological Stress Indicators in Nile Tilapia (Oreochromis niloticus L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Description
2.2. Tilapia
2.3. Lettuce
2.4. Water Quality Parameters
2.5. Statistical Analysis
3. Results
3.1. Tilapia
3.2. Lettuce
3.3. Water Quality Parameters
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Dorick, J.; Hayden, M.; Smith, M.; Blanchard, C.; Monu, E.; Wells, D.; Huang, T.-S. Evaluation of Escherichia coli and Coliforms in Aquaponic Water for Produce Irrigation. Food Microbiol. 2021, 99, 103801. [Google Scholar] [CrossRef] [PubMed]
- Suárez-Cáceres, G.P.; Lobillo-Eguíbar, J.; Fernández-Cabanás, V.M.; Quevedo-Ruiz, F.J.; Pérez-Urrestarazu, L. Polyculture Production of Vegetables and Red Hybrid Tilapia for Self-Consumption by Means of Micro-Scale Aquaponic Systems. Aquac. Eng. 2021, 95, 102181. [Google Scholar] [CrossRef]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef] [Green Version]
- Tidwell, J.H. Aquaculture Production Systems; John Wiley & Sons: New York, NY, USA, 2012; ISBN 978-1-118-25009-9. [Google Scholar]
- Calone, R.; Pennisi, G.; Morgenstern, R.; Sanyé-Mengual, E.; Lorleberg, W.; Dapprich, P.; Winkler, P.; Orsini, F.; Gianquinto, G. Improving Water Management in European Catfish Recirculating Aquaculture Systems through Catfish-Lettuce Aquaponics. Sci. Total Environ. 2019, 687, 759–767. [Google Scholar] [CrossRef] [PubMed]
- Yanes, A.R.; Martinez, P.; Ahmad, R. Towards Automated Aquaponics: A Review on Monitoring, IoT, and Smart Systems. J. Clean. Prod. 2020, 263, 121571. [Google Scholar] [CrossRef]
- Suárez-Cáceres, G.P.; Pérez-Urrestarazu, L.; Avilés, M.; Borrero, C.; Lobillo Eguíbar, J.R.; Fernández-Cabanás, V.M. Susceptibility to Water-Borne Plant Diseases of Hydroponic vs. Aquaponics Systems. Aquaculture 2021, 544, 737093. [Google Scholar] [CrossRef]
- Villarroel, M.; Junge, R.; Komives, T.; König, B.; Plaza, I.; Bittsánszky, A.; Joly, A. Survey of Aquaponics in Europe. Water 2016, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Thomas, R.M.; Verma, A.K.; Prakash, C.; Krishna, H.; Prakash, S.; Kumar, A. Utilization of Inland Saline Underground Water for Bio-Integration of Nile Tilapia (Oreochromis niloticus) and Spinach (Spinacia oleracea). Agric. Water Manag. 2019, 222, 154–160. [Google Scholar] [CrossRef]
- Chia, M.A.; Abdulwahab, R.; Ameh, I.; Balogun, J.K.; Auta, J. Farmed Tilapia as an Exposure Route to Microcystins in Zaria-Nigeria: A Seasonal Investigation. Environ. Pollut. 2021, 271, 116366. [Google Scholar] [CrossRef] [PubMed]
- Guzmán-Luna, P.; Gerbens-Leenes, P.W.; Vaca-Jiménez, S.D. The Water, Energy, and Land Footprint of Tilapia Aquaculture in Mexico, a Comparison of the Footprints of Fish and Meat. Res. Con. Recycl. 2021, 165, 105224. [Google Scholar] [CrossRef]
- Baßmann, B.; Brenner, M.; Palm, H.W. Stress and Welfare of African Catfish (Clarias gariepinus Burchell, 1822) in a Coupled Aquaponic System. Water 2017, 9, 504. [Google Scholar] [CrossRef] [Green Version]
- Noble, C.; Gismervik, K.; Iversen, M.H.; Kolarevic, J.; Nilsson, J.; Stien, L.H.; Turnbull, J.F. Welfare Indicators for Farmed Atlantic Salmon: Tools for Assessing Fish Welfare; Nofima Marine: Trømso, Norway, 2018; ISBN 978-82-8296-556-9. [Google Scholar]
- Hemathilake, D.M.K.S.; Gunathilake, D.M.C.C. Chapter 32—High-Productive Agricultural Technologies to Fulfill Future Food Demands: Hydroponics, Aquaponics, and Precision/Smart Agriculture. In Future Foods; Bhat, R., Ed.; Academic Press: Cambridge, MA, USA, 2022; pp. 555–567. ISBN 978-0-323-91001-9. [Google Scholar]
- Schon, M. Tailoring Nutrient Solutions to Meet the Demands of Your Plants. In Proceedings of the 13th Annual Conference on Hydroponics, Hydroponic Society of America, Orlando, FL, USA, 9–12 April 1992. [Google Scholar]
- Shao, M.; Liu, W.; Zha, L.; Zhou, C.; Zhang, Y.; Li, B. Differential Effects of High Light Duration on Growth, Nutritional Quality, and Oxidative Stress of Hydroponic Lettuce under Red and Blue LED Irradiation. Sci. Hortic. 2020, 268, 109366. [Google Scholar] [CrossRef]
- Yavuzcan Yildiz, H.; Robaina, L.; Pirhonen, J.; Mente, E.; Domínguez, D.; Parisi, G. Fish Welfare in Aquaponic Systems: Its Relation to Water Quality with an Emphasis on Feed and Faeces—A Review. Water 2017, 9, 13. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Joyce, A.; Wuertz, S.; Körner, O.; Bläser, I.; Reuter, M.; Keesman, K.J. Decoupled aquaponics systems. Aquaponics Food Prod. Syst. 2019, 83, 201–229. [Google Scholar]
- de la Presidencia, M. Real Decreto 1201/2005, de 10 de Octubre, Sobre Protección de Los Animales Utilizados Para Experimentación y Otros Fines Científicos. 2005, Volume BOE-A-2005-17344, pp. 34367–34391. Available online: https://www.boe.es/buscar/doc.php?id=BOE-A-2005-17344#:~:text=Esta%20directiva%20pretende%20garantizar%20que,o%20la%20lesi%C3%B3n%2C%20prolongados%20innecesariamente (accessed on 7 February 2022).
- Gullicks, H.A.; Cleasby, J.L. Nitrification Performance of a Pilot-Scale Trickling Filter. Res. J. Water Pollut. Control Fed. 1990, 62, 40–49. [Google Scholar]
- López-Luna, J.; Ibáñez, M.A.; Villarroel, M. Using Multivariate Analysis of Water Quality in RAS with Nile Tilapia (Oreochromis niloticus) to Model the Evolution of Macronutrients. Aquac. Eng. 2013, 54, 22–28. [Google Scholar] [CrossRef]
- Kittilsen, S.; Ellis, T.; Schjolden, J.; Braastad, B.O.; Øverli, Ø. Determining Stress-Responsiveness in Family Groups of Atlantic Salmon (Salmo salar) Using Non-Invasive Measures. Aquaculture 2009, 298, 146–152. [Google Scholar] [CrossRef]
- Trinder, P. Determination of Glucose in Blood Using Glucose Oxidase with an Alternative Oxygen Acceptor. Ann. Clin. Biochem. 1969, 6, 24–27. [Google Scholar] [CrossRef]
- Bucolo, G.; David, H. Quantitative Determination of Serum Triglycerides by the Use of Enzymes. Clin. Chem. 1973, 19, 476–482. [Google Scholar] [CrossRef] [PubMed]
- Feller, I.C. Effects of Nutrient Enrichment on Growth and Herbivory of Dwarf Red Mangrove (Rhizophora mangle). Ecol. Monogr. 1995, 65, 477–505. [Google Scholar] [CrossRef]
- Patrignani, A.; Ochsner, T.E. Canopeo: A Powerful New Tool for Measuring Fractional Green Canopy Cover. Agron. J. 2015, 107, 2312–2320. [Google Scholar] [CrossRef] [Green Version]
- AOAC. Official Methods of Analysis, 17th Ed.—Google Académico. 2000. Available online: https://scholar.google.es/scholar?hl=es&as_sdt=0%2C5&q=AOAC.+2000.+Official+Methods+of+Analysis%2C+17th+ed.+Association+of+Official+Analytical+Chemists%2C+Washington+DC%2C+USA.&btnG= (accessed on 7 February 2022).
- Gitelson, A.A.; Merzlyak, M.N. Signature Analysis of Leaf Reflectance Spectra: Algorithm Development for Remote Sensing of Chlorophyll. J. Plant Physiol. 1996, 148, 494–500. [Google Scholar] [CrossRef]
- CARTER, G.A. Ratios of Leaf Reflectances in Narrow Wavebands as Indicators of Plant Stress. Int. J. Remote Sens. 1994, 15, 697–703. [Google Scholar] [CrossRef]
- Suárez-Cáceres, G.P.; Fernández-Cabanás, V.M.; Lobillo-Eguíbar, J.; Pérez-Urrestarazu, L. Consumers’ Knowledge, Attitudes and Willingness to Pay for Aquaponic Products in Spain and Latin America. Int. J. Gastron. Food Sci. 2021, 24, 100350. [Google Scholar] [CrossRef]
- Broom, D.M. Assessing the Welfare of Transgenic Animals. In Welfare Aspects of Transgenic Animals; Van Zutphen, L.F.M., Van Der Meer, M., Eds.; Springer: Berlin/Heidelberg, Germany, 1997; pp. 58–67. [Google Scholar]
- Conceição, L.E.C.; Aragão, C.; Dias, J.; Costas, B.; Terova, G.; Martins, C.; Tort, L. Dietary Nitrogen and Fish Welfare. Fish. Physiol. Biochem. 2012, 38, 119–141. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Muros, M.J.; Villacreces, S.; Miranda-de la Lama, G.; de Haro, C.; García-Barroso, F. Effects of Chemical and Handling Exposure on Fatty Acids, Oxidative Stress and Morphological Welfare Indicators in Gilt-Head Sea Bream (Sparus aurata). Fish. Physiol. Biochem. 2013, 39, 581–591. [Google Scholar] [CrossRef] [PubMed]
- Berg, T.; Erikson, U.; Nordtvedt, T.S. Rigor Mortis Assessment of Atlantic Salmon (Salmo salar) and Effects of Stress. J. Food Sci. 1997, 62, 439–446. [Google Scholar] [CrossRef]
- Sigholt, T.; Erikson, U.; Rustad, T.; Johansen, S.; Nordtvedt, T.S.; Seland, A. Handling Stress and Storage Temperature Affect Meat Quality of Farmed-Raised Atlantic Salmon (Salmo salar). J. Food Sci. 1997, 62, 898–905. [Google Scholar] [CrossRef]
- Uehara, S.A.; Walter, E.H.M.; Cunha, D.M.; Calixto, F.A.A.; Furtado, A.A.L.; Takata, R.; de Mesquita, E.F.M. Effects of Salinity Gradients on the Skin and Water Microbial Community and Physiological Responses of Tilapia (Oreochromis niloticus) in the Pre-Slaughter. Aquac. Res. 2021, 52, 4638–4647. [Google Scholar] [CrossRef]
- Mohamed, N.A.; Saad, M.F.; Shukry, M.; El-Keredy, A.M.S.; Nasif, O.; Van Doan, H.; Dawood, M.A.O. Physiological and Ion Changes of Nile Tilapia (Oreochromis niloticus) under the Effect of Salinity Stress. Aquac. Res. 2021, 19, 100567. [Google Scholar] [CrossRef]
- Kammerer, B.D.; Cech, J.J.; Kültz, D. Rapid Changes in Plasma Cortisol, Osmolality, and Respiration in Response to Salinity Stress in Tilapia (Oreochromis mossambicus). Comp. Biochem. Physiol. Part A Mol. Integr. Physiol. 2010, 157, 260–265. [Google Scholar] [CrossRef]
- Graber, A.; Junge, R. Aquaponic Systems: Nutrient Recycling from Fish Wastewater by Vegetable Production. Desalination 2009, 246, 147–156. [Google Scholar] [CrossRef]
- Pacumbaba, R.O.; Beyl, C.A. Changes in Hyperspectral Reflectance Signatures of Lettuce Leaves in Response to Macronutrient Deficiencies. Adv. Space Res. 2011, 48, 32–42. [Google Scholar] [CrossRef]
- Krom, M.D.; Ellner, S.; van Rijn, J.; Neori, A. Nitrogen and Phosphorus Cycling and Transformations in a Prototype “non-Polluting” Integrated Mariculture System, Eilat, Israel. Mar. Ecol. Prog. Ser. 1995, 118, 25–36. [Google Scholar] [CrossRef] [Green Version]
- Monsees, H.; Suhl, J.; Paul, M.; Kloas, W.; Dannehl, D.; Würtz, S. Lettuce (Lactuca Sativa, Variety Salanova) Production in Decoupled Aquaponic Systems: Same Yield and Similar Quality as in Conventional Hydroponic Systems but Drastically Reduced Greenhouse Gas Emissions by Saving Inorganic Fertilizer. PLoS ONE 2019, 14, e0218368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kloas, W.; Groß, R.; Baganz, D.; Graupner, J.; Monsees, H.; Schmidt, U.; Staaks, G.; Suhl, J.; Tschirner, M.; Wittstock, B.; et al. A New Concept for Aquaponic Systems to Improve Sustainability, Increase Productivity, and Reduce Environmental Impacts. Aquac. Environ. Interact. 2015, 7, 179–192. [Google Scholar] [CrossRef] [Green Version]
- Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.; Jijakli, M.H. Lettuce (Lactuca Sativa L. Var. Sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 2016, 8, 467. [Google Scholar] [CrossRef]
- Suhl, J.; Dannehl, D.; Kloas, W.; Baganz, D.; Jobs, S.; Scheibe, G.; Schmidt, U. Advanced Aquaponics: Evaluation of Intensive Tomato Production in Aquaponics vs. Conventional Hydroponics. Agric. Water Manag. 2016, 178, 335–344. [Google Scholar] [CrossRef]
Variable | Without Fertilizer (WF) | Fertilizer (FW) | p |
---|---|---|---|
Initial weight (g) | 63.5 ± 9.9 | 52.6 ± 10.5 | 0.45 |
Final weight (g) | 75.1 ± 12.1 | 69.9 ± 12.9 | 0.76 |
Weight gain (g/fish) | 11.7 ± 1.2 | 16.7 ± 5.3 | 0.31 |
Variable | WF (n = 6) | WF + S (n = 9) | FW (n = 5) | FW + S (n = 6) | p Fertilizer | p Stress | p F × S |
---|---|---|---|---|---|---|---|
Cortisol (ng/mL) | 3.9 ± 0.69 | 3.5 ± 0.55 | 5.17 ± 0.64 | 3.5 ± 0.60 | 0.20 | 0.89 | 0.17 |
Glucose (mg/dL) | 80.3 ± 3.16 | 89.8 ± 4.17 | 79.8 ± 3.35 | 84.3 ± 4.8 | 0.91 | 0.41 | 0.30 |
Triglycerides (mg/dL) | 76.6 ± 8.8 | 91.8 ± 12.7 | 80.7 ± 11.2 | 81.6 ± 17.1 | 0.78 | 0.64 | 0.33 |
Variable | Without Fertilizer (WF) | Fertilizer (FW) | p |
---|---|---|---|
Root length (cm) | 14.37 ± 1.22 a | 23.31 ± 2.42 b | 0.003 |
Root weight (g) | 31.71 ± 0.87 | 35.14 ± 2.14 | 0.15 |
Aerial length (cm) | 12.72 ± 0.97 a | 26.36 ± 1.11 b | <0.001 |
Leaf weight (g) | 20.02 ± 2.59 a | 108.11 ± 16.96 b | <0.001 |
Total weight (g) | 51.73 ± 3.27 a | 143.25 ± 18.38 b | <0.001 |
Ratio (Shoot/Root, g) | 0.62 ± 0.07 a | 3.01 ± 0.39 b | <0.001 |
Spectral Index (1/R700) | 0.02227 ± 0.012 a | 0.02846 ± 0.015 b | 0.012 |
Spectral Index (R550) | 44.02 ± 2.14 a | 34.83 ± 1.55 b | 0.006 |
Area covered | |||
Initial area covered (%) | 6.99 ± 1.29 | 6.69 ± 1.23 | 0.6 |
Final area covered (%) | 68.47 ± 2.92 a | 94.7 ± 4.27 b | 0.03 |
Composition | |||
Crude Protein (%) | 16.44 ± 0.84 a | 33.24 ± 0.90 b | <0.0001 |
CP/DM (%) | 18.28 ± 0.94 a | 35.91 ± 0.96 b | <0.0001 |
Dry Matter (%) | 89.96 ± 0.42 a | 92.56 ± 0.38 b | 0.001 |
Ashes (%) | 9.83 ± 0.47 a | 22.29 ± 0.60 b | <0.0001 |
Color characteristics | |||
L* (D65) | 62.86 ± 0.81 a | 55.88 ± 0.70 b | <0.0001 |
a* (D65) | −12.31 ± 0.20 a | −13.24 ± 0.13 b | 0.0003 |
b* (D65) | 43.36 ± 0.73 a | 36.97 ± 0.71 b | <0.0001 |
Variable | Without Fertilizer (WF) | Fertilizer (FW) | p |
---|---|---|---|
NO2− (mg/L) | 2.40 ± 1.38 a | 24.6 ± 1.69 b | <0.0001 |
NO3− (mg/L) | 21.3 ± 1.21 a | 25.5 ± 1.49 b | 0.032 |
NH3+ NH4+ (mg/L) | 0.62 ± 0.40 a | 6.70 ± 0.49 b | <0.0001 |
DO (mg/L) | 6.13 ± 0.23 | 5.87 ± 0.26 | 0.48 |
pH | 6.62 ± 0.40 | 5.81 ± 0.49 | 0.21 |
Temperature (oC) | 23.0 ± 0.22 a | 23.7 ± 0.28 b | 0.05 |
Phosphate (μg/mL) | 25.24 ± 7.12 a | 101.02 ± 17.7 b | 0.0007 |
Potassium (μg/mL) | 4.13 ± 1.01 a | 175.85 ± 23.7 b | <0.0001 |
Sulfate (μg/mL) | 0 a | 1.14 ± 0.25 b | 0.02 |
Bicarbonate (mg/L) | 9.15 ± 0.06 | 8.72 ± 0.06 | 0.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villarroel, M.; Miranda-de la Lama, G.C.; Escobar-Álvarez, R.; Moratiel, R. Fish Welfare in Urban Aquaponics: Effects of Fertilizer for Lettuce (Lactuca sativa L.) on Some Physiological Stress Indicators in Nile Tilapia (Oreochromis niloticus L.). Water 2022, 14, 935. https://doi.org/10.3390/w14060935
Villarroel M, Miranda-de la Lama GC, Escobar-Álvarez R, Moratiel R. Fish Welfare in Urban Aquaponics: Effects of Fertilizer for Lettuce (Lactuca sativa L.) on Some Physiological Stress Indicators in Nile Tilapia (Oreochromis niloticus L.). Water. 2022; 14(6):935. https://doi.org/10.3390/w14060935
Chicago/Turabian StyleVillarroel, Morris, Genaro C. Miranda-de la Lama, Rafael Escobar-Álvarez, and Rubén Moratiel. 2022. "Fish Welfare in Urban Aquaponics: Effects of Fertilizer for Lettuce (Lactuca sativa L.) on Some Physiological Stress Indicators in Nile Tilapia (Oreochromis niloticus L.)" Water 14, no. 6: 935. https://doi.org/10.3390/w14060935
APA StyleVillarroel, M., Miranda-de la Lama, G. C., Escobar-Álvarez, R., & Moratiel, R. (2022). Fish Welfare in Urban Aquaponics: Effects of Fertilizer for Lettuce (Lactuca sativa L.) on Some Physiological Stress Indicators in Nile Tilapia (Oreochromis niloticus L.). Water, 14(6), 935. https://doi.org/10.3390/w14060935