Appraisal of Environmental Health and Ecohydrology of Free-Flowing Aghanashini River, Karnataka, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method
2.2.1. Land Use Dynamics
2.2.2. Assessment of Hydrological Footprint, Ecological Footprint, and Eco-Hydrologic Footprint
2.2.3. Water Quality Assessment
3. Results and Discussion
3.1. Land Use Dynamics
3.2. Assessment of Hydrological Footprint, Ecological Footprint, and Eco-Hydrologic Footprint
3.3. Assessment of Water Quality and Composition
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khatoon, N.; Khan, A.H.; Rehman, M.; Pathak, V. Correlation study for the assessment of water quality and its parameters of Ganga River, Kanpur, Uttar Pradesh, India. IOSR J. Appl. Chem. 2013, 5, 80–90. [Google Scholar] [CrossRef]
- Glatzle, A.; Reimer, L.; Núñez-Cobo, J.; Smeenk, A.; Musálem, K.; Laino, R. Groundwater dynamics, land cover and salinization in the dry Chaco in Paraguay. Ecohydrol. Hydrobiol. 2020, 20, 175–182. [Google Scholar] [CrossRef]
- Gleick, P.H. Basic water requirements for human activities: Meeting basic needs. Water Int. 1996, 21, 83–92. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, S.; Chandran, M.D.S. Geospatial analysis of forest fragmentation in Uttara Kannada District, India. For. Ecosyst. 2016, 3, 10. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, T.V.; Setturu, B.; Rajan, K.S.; Chandran, M.D.S. Modelling the forest transition in Central Western Ghats, India. Spat. Inf. Res. 2017, .25, 117–130. [Google Scholar] [CrossRef]
- Dibaba, W.T.; Demissie, T.A.; Miegel, K. Watershed hydrological response to combined land use/land cover and climate change in highland Ethiopia: Finchaa catchment. Water 2020, 12, 801. [Google Scholar] [CrossRef]
- Hyandye, C.B.; Worqul, A.; Martz, L.W.; Muzuka, A.N. The impact of future climate and land use/cover change on water resources in the Ndembera watershed and their mitigation and adaptation strategies. Environ. Syst. Res. 2018, 7, 7. [Google Scholar] [CrossRef] [Green Version]
- Kummu, M.; Guillaume, J.H.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T.I.; Ward, P.J. The world’s road to water scarcity: Shortage and stress in the 20th century and pathways towards sustainability. Sci. Rep. 2016, 6, 38495. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lambin, E.F.; Geist, H.J.; Lepers, E. Dynamics of land-use and land-cover change in tropical regions. Annu. Rev. Eviron. Resour. 2003, 28, 205–241. [Google Scholar] [CrossRef] [Green Version]
- Jain, S.K. Assessment of environmental flow requirements for hydropower projects in India. Curr. Sci. 2015, 108, 1815–1825. Available online: https://www.currentscience.ac.in/Volumes/108/10/1815.pdf (accessed on 18 March 2020).
- Singh, R.; Singh, G.S. Integrated management of the Ganga River: An ecohydrological approach. Ecohydrol. Hydrobiol. 2019, 20, 153–174. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Bharath, S.; Bharath, H.A. Spatio-temporal dynamics along the terrain gradient of diverse landscape. J. Environ. Eng. Landsc. Manag. 2014, 22, 50–63. [Google Scholar] [CrossRef] [Green Version]
- Ramachandra, T.V.; Chandran, M.D.S.; Vinay, S.; Sudarshan, P.B.; Vishnu, D.M.; Rao, G.R.; Shrikanth, N.; Bharath, H.A. Sacred Groves (Kan Forests) of Sagara Taluk, Shimoga District; Sahyadri Conservation Series: 54; ENVIS Technical Report 102; Environmental Information System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2016. [Google Scholar]
- Ramachandra, T.V.; Bharath, S.; Rajan, K.S.; Chandran, M.D.S. Stimulus of developmental projects to landscape dynamics in Uttara Kannada, Central Western Ghats. Egypt. J. Remote Sens. Space Sci. 2016, 19, 175–193. [Google Scholar] [CrossRef] [Green Version]
- Bhat, M.; Nayak, V.N.; Chandran, M.D.S.; Ramachandra, T.V. Impact of hydroelectric projects on finfish diversity in the Sharavathi River estuary of Uttara Kannada district, central west coast of India. Int. J. Environ. Sci. 2014, 5, 58–66. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Chandran, M.D.S.; Joshi, N.V.; Bhoominathan, M. Edible Bivalves of Central West Coast, Uttara Kannada District, Karnataka, India; Sahyadri Conservation Series 17, ENVIS Technical Report 48; Environmental Information System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2012; Available online: http://wgbis.ces.iisc.ernet.in/biodiversity/pubs/ETR/ETR48/conclusion.htm (accessed on 29 March 2020).
- Ramachandra, T.V.; Bharath, S.; Chandran, M.D.S.; Joshi, N.V. Salient ecological sensitive regions of Central Western Ghats, India. Earth Syst. Environ. 2018, 2, 15–34. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Setturu, B.; Vinay, S. Ecological sustainability of riverine ecosystems in Central Western Ghats. J. Biodivers. 2018, 9, 25–42. [Google Scholar]
- Vijay, K.; Ramachandra, T.V. Environmental Management; The Energy and Resources Institute (TERI): New Delhi, India, 2006. [Google Scholar]
- Ramachandra, T.V.; Soman, D.; Naik, A.D.; Chandran, M.D.S. Appraisal of forest ecosystems goods and services: Challenges and opportunities for conservation. J. Biodivers. 2017, 8, 12–33. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Vinay, S.; Bharath, S.; Chandran, M.D.; Aithal, B.H. Insights into riverscape dynamics with the hydrological, ecological, and social dimensions for water sustenance. Curr. Sci. 2020, 118, 1379–1393. [Google Scholar] [CrossRef]
- Aghsaei, H.; Dinan, N.M.; Moridi, A.; Asadolahi, Z.; Delavar, M.; Fohrer, N.; Wagner, P.D. Effects of dynamic land use/land cover change on water resources and sediment yield in the Anzali wetland catchment, Gilan, Iran. Sci. Total Envi. 2020, 712, 136449. [Google Scholar] [CrossRef]
- Sharma, D.; Kansal, A. Assessment of river quality models: A review. Rev. Environ. Sci. Biotechnol. 2013, 12, 285–311. [Google Scholar] [CrossRef]
- Peñas, F.J.; Juanes, J.A.; Galván, C.; Medina, R.; Castanedo, S.; Álvarez, C.; Bárcena, J.F. Estimating minimum environmental flow requirements for well-mixed estuaries in Spain. Estuar. Coast. Shelf Sci. 2013, 134, 138–149. [Google Scholar] [CrossRef]
- International Water Centre. The Brisbane Declaration. 2007. Available online: http://www.watercentre.org/news/declaration (accessed on 10 November 2019).
- Ramachandra, T.V.; Vinay, S.; Bharath, H.A. Environmental flow assessment in a lotic ecosystem of Central Western Ghats, India. Hydrol. Curr. Res. 2016, 7, 1000248. [Google Scholar] [CrossRef]
- Tharme, R.E. A global perspective on environmental flow assessment: Emerging trends in the development and application of environmental flow methodologies for rivers. River Res. Appl. 2003, 19, 397–441. [Google Scholar] [CrossRef]
- Stoeglehner, G.; Edwards, P.; Daniels, P.; Narodoslawsky, M. The water supply footprint (WSF): A strategic planning tool for sustainable regional and local water supplies. J. Clean. Prod. 2011, 19, 1677–1686. [Google Scholar] [CrossRef]
- Davies-Colley, R.J. River Water Quality in New Zealand: An Introduction and Overview. In Ecosystem Services in New Zealand: Conditions and Trends; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 432–447.; Manaaki Whenua Press: Lincoln, New Zealand, 2013; pp. 432–447. [Google Scholar]
- Xu, H.S.; Xu, Z.X.; Wu, W.; Tang, F.F. Assessment and spatiotemporal variation analysis of water quality in the Zhangweinan River Basin, China. Procedia Environ. Sci. 2012, 13, 1641–1652. [Google Scholar] [CrossRef] [Green Version]
- Gyawali, S.; Techato, K.; Yuangyai, C.; Monprapusson, S. Evaluation of surface water quality using multivariate statistical techniques: A case study of Utapao river basin, Thailand. KMITL Sci. Technol. J. 2012, 12, 7–20. [Google Scholar]
- Rytwinski, T.; Taylor, J.J.; Bennett, J.R.; Smokorowski, K.E.; Cooke, S.J. What are the impacts of flow regime changes on fish productivity in temperate regions? A systematic map protocol. Environ. Evid. 2017, 9, 7. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Sudarshan, P.B.; Mahesh, M.K.; Vinay, S. Spatial patterns of heavy metal accumulation in sediments and macrophytes of Bellandur wetland, Bangalore. J. Environ. Manag. 2018, 206, 1204–1210. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Narayan, N.R. Heavy metal in the food chain—Consequences of polluting water bodies. Green Chem. Technol. Lett. 2021, 7, 7–17. [Google Scholar] [CrossRef]
- Naher, T.; Chowdhury, M.A. Assessment and correlation analysis of water quality parameters: A case study of Surma river at Sylhet division, Bangladesh. Int. J. Eng. Trends Technol. 2017, 53, 126–136. [Google Scholar] [CrossRef]
- Liyanage, C.P.; Yamada, K. Impact of population growth on the water quality of natural water bodies. Sustainability 2017, 9, 1405. [Google Scholar] [CrossRef] [Green Version]
- Chounlamany, V.; Tanchuling, M.A.; Inoue, T. Spatial and temporal variation of water quality of a segment of Marikina River using multivariate statistical methods. Wat. Sci. Technol. 2017, 76, 1510–1522. [Google Scholar] [CrossRef] [PubMed]
- Vadde, K.K.; Wang, J.; Cao, L.; Yuan, T.; McCarthy, A.J.; Sekar, R. Assessment of water quality and identification of pollution risk locations in Tiaoxi River (Taihu Watershed), China. Water 2018, 10, 183. [Google Scholar] [CrossRef] [Green Version]
- Varol, M.; Gökot, B.; Bekleyen, A.; Şen, B. Water quality assessment and apportionment of pollution sources of Tigris River (Turkey) using multivariate statistical techniques—A case study. River Res. Appl. 2012, 28, 1428–1438. [Google Scholar] [CrossRef]
- Pejman, A.H.; Bidhendi, G.N.; Karbassi, A.R.; Mehrdadi, N.; Bidhendi, M.E. Evaluation of spatial and seasonal variations in surface water quality using multivariate statistical techniques. Int. J. Environ. Sci. Technol. 2009, 6, 467–476. Available online: https://link.springer.com/content/pdf/10.1007%2FBF03326086.pdf (accessed on 12 January 2020). [CrossRef] [Green Version]
- Ramachandra, T.V.; Vinay, S.; Bharath, S.; Shashishankar, A. Eco-Hydrological footprint of a river basin in Western Ghats. Yale. J. Biol. Med. 2018, 91, 431–444. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6302628/ (accessed on 12 January 2020). [PubMed]
- Kamath, U.S. (Ed.) Gazetteer of India, Karnataka State-Uttara Kannada District; Director of Print, Stationery and Publications at the Government Press, Government of Karnataka: Bangalore, India, 1984. Available online: http://gazetteer.kar.nic.in/gazetteer/distGazetteer.html (accessed on 11 February 2020).
- Survey of India, Department of Science & Technology. Nakshe. 2018. Available online: http://www.soinakshe.uk.gov.in/ (accessed on 11 December 2019).
- University of Agriculture Sciences. E-Krishi. 2020. Available online: http://e-krishiuasb.karnataka.gov.in/Weather/ViewWeatherData.aspx?depID=10&QueryID=0 (accessed on 20 August 2020).
- Office of the Registrar General & Census Commissioner, The Ministry of Home Affairs. Census of India. 2011. Available online: http://www.censusindia.gov.in (accessed on 7 February 2017).
- National Bureau of Soil Survey and Land Use Planning. Soil status of Karnataka. ICAR-NBSS&LUP. 1996. Available online: https://www.nbsslup.in/ (accessed on 5 March 2019).
- United States Geological Survey. Earth Explorer; United States Geological Survey: Reston, VA, USA, 2015.
- Global Precipitation Climatology Centre (GPCC). National Oceanic and Atmospheric Administration. Earth System Research Laboratory. Available online: https://www.esrl.noaa.gov/psd/data/gridded/data.cpc.globalprecip.html (accessed on 17 February 2019).
- India Meteorological Department, The Ministry of Earth Sciences (MoES). Hydrometeorological Services. Available online: http://www.imd.gov.in/pages/services_hydromet.php (accessed on 15 June 2019).
- Karnataka Government. Directorate of Economics and Statistics. 2017. Available online: des.kar.nic.in/ (accessed on 12 September 2019).
- Food and Agriculture Organization. Meteorological Data. 2017. Available online: http://www.fao.org/docrep/X0490E/x0490e07.htm (accessed on 30 January 2019).
- Hijmans, R.J.; Cameron, S.E.; Parra, J.L.; Jones, P.; Jarvis, A.; Richardson, K. WorldClim, version 1.4. 2007. Available online: http://www.worldclim.org (accessed on 11 August 2019).
- Department of Animal Husbandry and Veterinary Services, Government of Karnataka. Livestock Census, 2012 and 2018. Available online: http://www.ahvs.kar.nic.in/en-reportsstat.html (accessed on 2 February 2017).
- Google. Google Earth. 2018. Available online: https://www.google.com/intl/en_in/earth/ (accessed on 20 May 2020).
- National Remote Sensing Centre, Indian Space Research Organization. Bhuvan. 2018. Available online: http://bhuvan.nrsc.gov.in/ (accessed on 20 May 2020).
- Mutreja, K.N. Applied Hydrology, 4th ed.; Tata McGraw-Hill: New Delhi, India, 1995. [Google Scholar]
- Jensen, J.R. Introductory Digital Image Processing: A Remote Sensing Perspective, 2nd ed.; Pearson: London, UK, 1996. [Google Scholar]
- Lillesand, T.M.; Kiefer, R.W.; Chipman, J.W. Remote Sensing and Image Interpretation; Lloydia: Cincinnati, OH, USA, 2004. [Google Scholar]
- Ramachandra, T.V.; Bharath, H.A.; Gouri, K.; Vinay, S. Green Spaces in Bengaluru: Quantification through Geospatial Techniques. Indian For. 2017, 143, 307–320. [Google Scholar]
- Ramachandra, T.V. Hydrological responses at regional scale to landscape dynamics. J. Biodivers. 2014, 5, 11–32. Available online: http://wgbis.ces.iisc.ernet.in/energy/water/paper/Hydrological-Responses/index.html (accessed on 20 May 2018). [CrossRef]
- American Public Health Association (APHA); American Water Works Association (AWWA); WEF (World Economic Forum). Standard Methods for the Examination of Water and Wastewater, 21st ed.; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- PAST Statistical Software. Available online: https://palaeo-electronica.org/2001_1/past/past.pdf (accessed on 2 February 2017).
- Daniels, R.R.J.; Venkatesan, J. Western Ghats-Biodiversity, People, Conservation; Rupa & Company: New Delhi, India, 2008. [Google Scholar]
- Jain, S.K. Assessment of environmental flow requirements. Hydrol. Process. 2012, 27, 3472–3476. [Google Scholar] [CrossRef]
- Karnataka Forest Department. Karnataka Forest Department Management Plan for Sharavathi Valley Wildlife Sanctuary; Karnataka Forest Department: Bangalore, India, 2007.
- Ramachandra, T.V.; Bharath, S.; Vinay, S. Visualisation of impacts due to the proposed developmental projects in the ecologically fragile regions-Kodagu district, Karnataka. Prog. Disaster Sci. 2019, 3, 1–14. [Google Scholar] [CrossRef]
- Santoso, E.B.; Erli, H.K.D.M.; Aulia, B.U.; Ghozali, A. Concept of carrying capacity: Challenges in spatial planning (case study of East Java Province, Indonesia). Procedia Soc. Behav. Sci. 2014, 135, 130–135. [Google Scholar] [CrossRef] [Green Version]
- Rao, G.R.; Chandran, M.D.S.; Ramachandra, T.V. Vegetation Studies in Sacred Groves and Adjacent Non-Sacred Forests of Central Western Ghats. In Proceedings of the Lake 2016: Conference on Conservation and Sustainable Management of Ecologically Sensitive Regions in Western Ghats, Moodbidri, India, 28–30 December 2016. [Google Scholar]
- Vinay, S.; Bharath, S.; Bharath, H.A.; Ramachandra, T.V. Hydrologic model with landscape dynamics for drought monitoring. In Proceedings of the Joint International Workshop of ISPRS VIII/1 and WG IV/4 on Geospatial Data for Disaster and Risk Reduction, Hyderabad, India, 21–22 November 2013; Available online: http://wgbis.ces.iisc.ernet.in/energy/water/paper/isprs_drought_monitoring/index.htm (accessed on 30 May 2019).
- Bhat, M.; Nayak, V.N.; Chandran, M.D.S.; Ramachandra, T.V. Fish distribution dynamics in the Aghanashini estuary of Uttara Kannada, west coast of India. Curr. Sci. 2014, 106, 1739–1744. [Google Scholar]
- Ali, S.; Gururaja, K.V.; Ramachandra, T.V. Schistura nilgiriensis (Menon) in Sharavathi River Basin, Western Ghats, Karnataka. Zoos’ Print J. 2005, 20, 1784–1785. Available online: http://wgbis.ces.iisc.ernet.in/biodiversity/sdev/sus_enews/menon/index.htm (accessed on 20 May 2019). [CrossRef]
- Sreekantha; Gururaja, K.V.; Ramachandra, T.V. Nestedness pattern in freshwater fishes of the Western Ghats: An indication of stream islands along riverscapes. Curr. Sci. 2008, 95, 1707–1714. [Google Scholar]
- Sreekantha; Chandran, M.D.S.; Mesta, D.K.; Rao, G.R.; Gururaja, K.V.; Ramachandra, T.V. Fish diversity in relation to landscape and vegetation in central Western Ghats, India. Curr. Sci. 2007, 92, 1592–1603. [Google Scholar]
- Sreekantha; Gururaja, K.V.; Remadevi, K.; Indra, T.J.; Ramachandra, T.V. Two species of fishes of the genus Schistura McClelland (Cypriniformes: Balitoridae) from Western Ghats. Zoos’ Print J. 2006, 21, 2211–2216. [Google Scholar] [CrossRef]
- ENVIS Sahyadri: Western Ghats Biodiversity Information System. 2017. Available online: http://wgbis.ces.iisc.ernet.in/biodiversity (accessed on 20 October 2017).
- India Biodiversity Portal. 2018. Available online: http://indiabiodiversity.org/ (accessed on 20 October 2017).
- Ramachandra, T.V.; Chandran, M.D.S.; Joshi, N.V.; Karthick, B.; Mukri, V.D. Ecohydrology of lotic systems in Uttara Kannada, Central Western Ghats, India. In Environmental Management of River Basin Ecosystems; Springer: Cham, Switzerland, 2015; pp. 621–665. [Google Scholar] [CrossRef]
- Ramachandra, T.V.; Chandran, M.D.S.; Prakash, M.; Rao, G.R.; Bharath, S.; Bharath, H.A.; Harish, R.B.; Sumesh, D.; Gautham, K.; Sudarshan, P.B.; et al. Biological Diversity, Ecology and Environment Impact Assessment with Mitigation Measures: Hubli-Ankola New Broad Gauge Railway Line; CES Technical Report 125; Environmental Information, System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2012. [Google Scholar]
- Talling, J.F. pH, the CO2 system and freshwater science. Freshw. Rev. 2010, 3, 133–146. [Google Scholar] [CrossRef]
- Alam, M.J.B.; Islam, M.R.; Muyen, Z.; Mamun, M.; Islam, S. Water quality parameters along rivers. Int. J. Environ. Sci. Tech. 2007, 4, 159–167. [Google Scholar] [CrossRef] [Green Version]
- Kumar, M.; Puri, A. A review of permissible limits of drinking water. Indian J. Occup. Environ. Med. 2012, 16, 40–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nas, S.S.; Bayram, A.; Nas, E.; Bulut, V.N. Effects of some water quality parameters on the dissolved oxygen balance of streams. Pol. J. Environ. Stud. 2008, 17, 531–538. Available online: http://www.pjoes.com/Effects-of-Some-Water-Quality-Parameters-r-non-the-Dissolved-Oxygen-Balance-of-Streams,88139,0,2.html (accessed on 12 January 2020).
- Kale, V.S. Consequence of temperature, pH, turbidity and dissolved oxygen water quality parameters. Int. Adv. Res. J. Sci. Eng. Technol. 2016, 3, 186–190. [Google Scholar] [CrossRef]
- Lescesen, I.; Pavić, D.; Dolinaj, D. Correlation between discharge and water quality: Case study Nišavariver: Serbia. Geogr. Pannon. 2018, 22, 97–103. [Google Scholar] [CrossRef] [Green Version]
- Barakat, A.; El Baghdadi, M.; Rais, J.; Aghezzaf, B.; Slassi, M. Assessment of spatial and seasonal water quality variation of Oum Er Rbia River (Morocco) using multivariate statistical techniques. Int. Soil Water Conserv. Res. 2018, 4, 284–292. [Google Scholar] [CrossRef]
- Maqbool, F.; Malik, A.H.; Bhatti, Z.A.; Pervez, A.; Suleman, M. Application of regression model on stream water quality parameters. Pak. J. Agric. Sci. 2012, 49, 95–100. Available online: https://pakjas.com.pk/papers/1982.pdf (accessed on 14 January 2020).
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water quality assessment in terms of water quality index. Am. J. Water Resour. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Etim, E.E.; Odoh, R.; Itodo, A.U.; Umoh, S.D.; Lawal, U. Water quality index for the assessment of water quality from different sources in the Niger Delta Region of Nigeria. Front. Sci. 2013, 3, 89–95. [Google Scholar] [CrossRef]
- Oni, O.; Fasakin, O. The use of water quality index method to determine the potability of surface water and groundwater in the vicinity of a municipal solid waste dumpsite in Nigeria. Am. J. Eng. Res. 2016, 5, 96–101. Available online: http://www.ajer.org/papers/v5(10)/O0501096101.pdf (accessed on 14 January 2020).
- Seth, R.; Mohan, M.; Singh, P.; Singh, R.; Dobhal, R.; Singh, K.P.; Gupta, S. Water quality evaluation of Himalayan rivers of Kumaun region, Uttarakhand, India. Appl. Water Sci. 2016, 6, 137–147. [Google Scholar] [CrossRef] [Green Version]
- Qian, Y.; Migliaccio, K.W.; Wan, Y.; Li, Y. Surface water quality evaluation using multivariate methods and a new water quality index in the Indian River Lagoon, Florida. Water Resour. Res. 2007, 43, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Devi, W.S.; Singh, K.; Meitei, N. Assessment of water quality index of Nambol river, Manipur, India. Univers. J. Environ. Res. Technol. 2015, 5, 165–172. Available online: http://www.environmentaljournal.org/5-3/ujert-5-3-5.pdf (accessed on 14 January 2020).
- Rameshbabu, K.; Selvanayagam, M. Water quality index of Kolavailake, Chengalpet, Tamil Nadu, India. Int. J. Chem. Concepts 2015, 1, 15–18. [Google Scholar]
- Zeinalzadeh, K.; Rezaei, E. Determining spatial and temporal changes of surface water quality using principal component analysis. J. Hydrol. Reg. Stud. 2017, 13, 1–10. [Google Scholar] [CrossRef]
- Najar, I.A.; Khan, A.B. Assessment of water quality and identification of pollution sources of three lakes in Kashmir, India, using multivariate analysis. Environ. Earth Sci. 2012, 66, 2367–2378. [Google Scholar] [CrossRef]
- Chowdhury, S.; Al-Zahrani, M. Water quality change in dam reservoir and shallow aquifer: Analysis on trend, seasonal variability and data reduction. Environ. Monit. Assess. 2014, 186, 6127–6143. [Google Scholar] [CrossRef] [PubMed]
- Mazlum, N.; Özer, A.; Mazlum, S. Interpretation of water quality data by principal components analysis. Turk. J. Eng. Env. Sci. 1999, 23, 19–26. Available online: http://journals.tubitak.gov.tr/engineering/issues/muh-99-23-1/muh-23-1-3-96116.pdf (accessed on 15 January 2020).
- Shrestha, S.; Kazama, F. Assessment of surface water quality using multivariate statistical techniques: A case study of the Fuji river basin. Japan. Environ. Modell. Softw. 2007, 22, 464–475. [Google Scholar] [CrossRef]
- Park, S.; Kazama, F.; Lee, S. Assessment of water quality using multivariate statistical techniques: A case study of the Nakdong River basin, Korea. Environ. Eng. Res. 2014, 19, 197–203. [Google Scholar] [CrossRef]
- Liu, W.X.; Li, X.D.; Shen, Z.G.; Wang, D.C.; Wai, O.W.H.; Li, S.Y. Multivariate statistical study of heavy metal enrichment in sediments of the Pearl River Estuary. Environ. Pollut. 2003, 121, 377–388. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, P.; Bai, Y.; Tian, Z.; Li, J.; Shao, X.; Mustavich, L.F.; Li, B.L. Assessment of surface water quality via multivariate statistical techniques: A case study of the Songhua River Harbin region, China. J. Hydro. Environ. Res. 2013, 7, 30–40. [Google Scholar] [CrossRef]
- Isah, A.; Abdullahi, U.; Ndamitso, M.M. Application of multivariate methods for assessment of variations in rivers/streams water quality in Niger State, Nigeria. Am. J. Theor. Appl. Stat. 2013, 2, 176–183. [Google Scholar] [CrossRef] [Green Version]
- Mushatq, B.; Raina, R.; Yaseen, T.; Wanganeo, A.; Yousuf, A.R. Variations in the physicochemical properties of Dal Lake, Srinagar, Kashmir. Afr. J. Environ. Sci. Technol. 2013, 7, 624–633. [Google Scholar] [CrossRef]
- Azhar, S.C.; Aris, A.Z.; Yusoff, M.K.; Ramli, M.F.; Juahir, H. Classification of river water quality using multivariate analysis. Procedia Environ. Sci. 2015, 30, 79–84. [Google Scholar] [CrossRef] [Green Version]
- Raghunath, H.M. Hydrology—Principles, Analysis and Design; Wiley Eastern Limited: New Delhi, India, 1985. [Google Scholar]
- Kitamura, H. Leaching characteristics of anions and cations from evergreen leaves supplied to the stream bed and influences on stream water composition in the Southern Kyusyu Mountains. Bull. Minamikyushu Univ. 2009, 39A, 57–66. Available online: http://www.nankyudai.ac.jp/library/pdf/39A57-66.pdf (accessed on 15 January 2020).
- Kashaigili, J.J. Impacts of land-use and land-cover changes on flow regimes of the Usangu wetland and the Great Ruaha River, Tanzania. Phys. Chem. Earth 2008, 33, 640–647. [Google Scholar] [CrossRef]
- Rodriguez-Martínez, J.; Santiago, M. The Effects of Forest Cover on Base Flow of Streams in the Mountainous Interior of Puerto Rico; 2010 (No. 2016-5142). U.S. Geological Survey Scientific Investigations Report 2016–5142; U.S. Geological Survey: Reston, VA, USA, 2017. Available online: https://pubs.usgs.gov/sir/2016/5142/sir20165142.pdf (accessed on 15 January 2020).
- Guzha, A.C.; Rufino, M.C.; Okoth, S.; Jacobs, S.; Nóbrega, R.L.B. Impacts of land use and land cover change on surface run-off, discharge and low flows: Evidence from East Africa. J. Hydrol. Reg. Stud. 2018, 15, 49–67. [Google Scholar] [CrossRef]
- Alobaidy, A.H.M.J.; Abid, H.S.; Maulood, B.K. Application of water quality index for assessment of Dokan lake ecosystem, Kurdistan region, Iraq. J. Water Resour. Prot. 2010, 2, 792–798. [Google Scholar] [CrossRef] [Green Version]
- Bunn, S.E.; Arthington, A.H. Basic principles and ecological consequences of altered flow regimes for aquatic biodiversity. Environ. Manag. 2002, 30, 492–507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ramachandra, T.V.; Bharath, S. Geoinformatics based valuation of forest landscape dynamics in Central Western Ghats, India. J. Remote Sens. GIS 2018, 7, 2. [Google Scholar] [CrossRef]
- Sincy, V.; Asulabha, K.S.; Vinay, S.; Vishnu, D.M.; Srikanth, N.; Subashchandran, M.D.; Ramachandra, T.V. Ecological status of lotic ecosystems in kans and non-kans of central Western Ghats. In Proceedings of the Lake 2016: Conference on Conservation and Sustai nable Management of Ecologically Sensitive Regions in Western Ghats, Moodbidri, India, 28–30 December 2016; Sahyadri Conservation Series 65, ENVIS Technical Report 120. Environmental Information System (ENVIS), Centre for Ecological Sciences, Indian Institute of Science: Bangalore, India, 2016. [Google Scholar]
- Vinay, S.; Bharath, S.; Chandran, M.D.S.; Bharath, H.A.; Shashishankar, A.; Ramachandra, T.V. Hydro-ecological footprint of Sharavathi river basin. In Proceedings of the Lake 2018: Conference on Conservation and Sustainable Management of Riverine Ecosystems, Sirsi, India, 22–25 November 2018; Available online: wgbis.ces.iisc.ernet.in/biodiversity/sahyadri_enews/newsletter/Issue69/vinay.html (accessed on 20 January 2020).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramachandra, T.V.; Shivamurthy, V.; Subramanian, A.K.; Varghese, S.; Setturu, B.; Aithal, B.H. Appraisal of Environmental Health and Ecohydrology of Free-Flowing Aghanashini River, Karnataka, India. Water 2022, 14, 977. https://doi.org/10.3390/w14060977
Ramachandra TV, Shivamurthy V, Subramanian AK, Varghese S, Setturu B, Aithal BH. Appraisal of Environmental Health and Ecohydrology of Free-Flowing Aghanashini River, Karnataka, India. Water. 2022; 14(6):977. https://doi.org/10.3390/w14060977
Chicago/Turabian StyleRamachandra, T. V., Vinay Shivamurthy, Asulabha K. Subramanian, Sincy Varghese, Bharath Setturu, and Bharath H. Aithal. 2022. "Appraisal of Environmental Health and Ecohydrology of Free-Flowing Aghanashini River, Karnataka, India" Water 14, no. 6: 977. https://doi.org/10.3390/w14060977
APA StyleRamachandra, T. V., Shivamurthy, V., Subramanian, A. K., Varghese, S., Setturu, B., & Aithal, B. H. (2022). Appraisal of Environmental Health and Ecohydrology of Free-Flowing Aghanashini River, Karnataka, India. Water, 14(6), 977. https://doi.org/10.3390/w14060977