Editorial to Efficient Catalytic and Microbial Treatment of Water Pollutants
1. Introduction
- To use microorganisms for dyes bioremediation.
- To investigate the degradation potential of the microorganisms.
- To use microorganisms for environment cleanup.
- To investigate the removal of dyes through physical and chemical processes and the biological process.
- To find out the toxic nontoxic nature of the dye-degraded products.
2. Selection of the Specific Bacterial Strains
3. Optimization of Degradation
4. Degradation of Dye in Optimal Conditions
5. Isolation and Purification of Metabolites by Using Silica Gel and Pencil Column
6. Spectroscopic Analysis of the Metabolites or Fractions
7. Further Treatment of the Dye-Degraded Products by Physical and Chemical Processes
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Balakrishnan, M. Impact of dyeing industrial effluents on the groundwater quality in Kancheepuram (India). Indian J. Sci. Technol. 2008, 1, 1–8. [Google Scholar] [CrossRef]
- Aksu, Z. Application of biosorption for the removal of organic pollutants: A review. Process. Biochem. 2005, 40, 997–1026. [Google Scholar] [CrossRef]
- Singh, V.K.; Singh, J. Toxicity of industrial wastewater to the aquatic plant Lemna minor L. J. Environ. Biol. 2006, 27, 385–390. [Google Scholar]
- Daneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological decolorization of dye solution containing Malachite Green by microalgae Cosmarium sp. Bioresour. Technol. 2007, 98, 1176–1182. [Google Scholar] [CrossRef]
- Khaled, A.; El Nemr, A.; El-Sikaily, A.; Abdelwahab, O. Removal of Direct N Blue-106 from artificial textile dye effluent using activated carbon from orange peel: Adsorption isotherm and kinetic studies. J. Hazard. Mater. 2009, 165, 100–110. [Google Scholar] [CrossRef] [PubMed]
- Alinsafi, A.; Evenou, F.; Abdulkarim, E.; Pons, M.; Zahraa, O.; Benhammou, A.; Yaacoubi, A.; Nejmeddine, A. Treatment of textile industry wastewater by supported photocatalysis. Dye. Pigment. 2007, 74, 439–445. [Google Scholar] [CrossRef]
- Zhang, F.; Yediler, A.; Liang, X.; Kettrup, A. Effects of dye additives on the ozonation process and oxidation by-products: A comparative study using hydrolyzed C.I. Reactive Red 120. Dye. Pigment. 2004, 60, 1–7. [Google Scholar] [CrossRef]
- Rai, H.S.; Bhattacharyya, M.; Singh, J.; Bansal, T.K.; Vats, P.; Banerjee, U.C. Removal of Dyes from the Effluent of Textile and Dyestuff Manufacturing Industry: A Review of Emerging Techniques With Reference to Biological Treatment. Crit. Rev. Environ. Sci. Technol. 2005, 35, 219–238. [Google Scholar] [CrossRef]
- Delnavaz, M.; Ayati, B.; Ganjidoust, H. Biodegradation of aromatic amine compounds using moving bed biofilm reactors. J. Environ. Health Sci. Eng. 2008, 5, 243–250. [Google Scholar]
- Borghei, S.M.; Hosseini, S. The treatment of phenolic wastewater using a moving bed biofilm reactor. Process. Biochem. 2004, 39, 1177–1181. [Google Scholar] [CrossRef]
- Erysipelothrix, A. Decolorization of synthetic dyes using bacteria isolated from textile industry effluent. Asian J. Biotechnol. 2012, 4, 129–136. [Google Scholar]
- Pajot, H.F.; Delgado, O.D.; de Figueroa, L.I.; Farina, J.I. Unraveling the decolourizing ability of yeast isolates from dye-polluted and virgin environments: An ecological and taxonomical overview. Antonie Van Leeuwenhoek 2011, 99, 443–456. [Google Scholar] [CrossRef] [PubMed]
- Daneshvar, N.; Ayazloo, M.; Khataee, A.R.; Pourhassan, M. Biological treatment of Azo dyes and textile industry effluent by newly isolated White rot fungi Schizophyllum commune and Lenzites eximia. Int. J. Environ. Sci. 2007, 2, 1926. [Google Scholar]
- Lin, Y.H.; Leu, J.Y. Kinetics of reactive azo-dye decolorization by Pseudomonas luteola in a biological activated carbon process. Biochem. Eng. J. 2008, 39, 457–467. [Google Scholar] [CrossRef]
- Tripathi, A.; Srivastava, S.K. Ecofriendly Treatment of Azo Dyes: Biodecolorization using Bacterial Strains. Int. J. Biosci. Biochem. Bioinform. 2011, 1, 37–40. [Google Scholar] [CrossRef]
- Fulekar, M.H.; Wadgaonkar, S.L.; Singh, A. Decolourization of dye compounds by selected bacterial strains isolated from dyestuff industrial area. Int. J. Adv. Res. Technol. 2013, 2, 182–192. [Google Scholar]
- Birmole, R.; Patade, S.; Sirwaiya, V.; Bargir, F.; Aruna, K. Biodegradation study of Reactive Blue 172 by Shewanella haliotis DW01 isolated from lake sediment. Indian J. Sci. Res. 2014, 11, 139–153. [Google Scholar]
- Elisangela, F.; Andrea, Z.; Fabio, D.G.; de Menezes Cristiano, R.; Regina, D.L.; Artur, C.P. Biodegradation of textile azo dyes by a facultative Staphylococcus arlettae strain VN-11 using a sequential microaerophilic/aerobic process. Int. Biodeterior. Biodegrad. 2009, 63, 280–288. [Google Scholar] [CrossRef]
- Ogugbue, C.J.; Sawidis, T. Bioremediation and detoxification of synthetic wastewater containing triarylmethane dyes by Aeromonas hydrophila isolated from industrial effluent. Biotechnol. Res. Int. 2011. [Google Scholar] [CrossRef]
- Kamboh, M.A.; Solangi, I.B.; Sherazi, S.; Memon, S. Synthesis and application of calix[4]arene based resin for the removal of azo dyes. J. Hazard. Mater. 2009, 172, 234–239. [Google Scholar] [CrossRef]
- Shah, A.K.; Ali, Z.M.; Laghari, A.J.; Shah, S.F.A. Utilization of Fly Ash as Low-Cost Adsorbent for the Treatment of Industrial Dyes Effluents: A Comparative Study. Res. Rev. J. Eng. Technol. 2013, 2, 1. [Google Scholar]
- Tanaka, H.; Fujimoto, S.; Fujii, A.; Hino, R.; Kawazoe, T. Microwave assisted two-step process for rapid synthesis of Na—A zeolite from coal fly ash. Ind. Eng. Chem. Res. 2008, 47, 226–230. [Google Scholar] [CrossRef]
- Zekker, I.; Mandel, A.; Rikmann, E.; Jaagura, M.; Salmar, S.; Ghangrekar, M.M. Ameliorating effect of nitrate on nitrite inhibition for denitrifying P-accumulating organisms. Sci. Total Environ. 2021, 797, 149133. [Google Scholar] [CrossRef] [PubMed]
- Zekker, I.; Artemchuk, O.; Rikmann, E.; Ohimai, K.; Dhar Bhowmick, G. Start-up of anammox SBR from non-specific inoculum and process acceleration methods by hydrazine. Water 2021, 13, 350. [Google Scholar] [CrossRef]
- Zekker, I.; Rikmann, E.; Tenno, T.; Seiman, A.; Loorits, L.; Kroon, K.; Tomingas, M. Nitritating-anammox biomass tolerant to high dissolved oxygen concentration and C/N ratio in treatment of yeast factory wastewater. Environ. Technol. 2014, 35, 1565–1576. [Google Scholar] [CrossRef] [PubMed]
- Zekker, I.; Rikmann, E.; Tenno, T.; Menert, A.; Lemmiksoo, V.; Saluste, A. Modification of nitrifying biofilm into nitritating one by combination of increased free ammonia concentrations, lowered HRT and dissolved oxygen concentration. J. Environ. Sci. 2011, 23, 1113–1121. [Google Scholar] [CrossRef]
- Zekker, I.; Rikmann, E.; Tenno, T.; Kroon, K.; Seiman, A.; Loorits, L.; Fritze, H. Start-up of low-temperature anammox in UASB from mesophilic yeast factory anaerobic tank inoculum. Environ. Technol. 2015, 36, 214–225. [Google Scholar] [CrossRef]
- Tenno, T.; Rikmann, E.; Uiga, K.; Zekker, I.; Mashirin, A.; Tenno, T. A novel proton transfer model of the closed equilibrium system H2O–CO2–CaCO3–NHX. Proc. Est. Acad. Sci. 2018, 4017, 2. [Google Scholar] [CrossRef]
- Zekker, I.; Bhowmick, G.D.; Priks, H.; Nath, D.; Rikmann, E.; Jaagura, M.; Tenno, T. ANAMMOX-denitrification biomass in microbial fuel cell to enhance the electricity generation and nitrogen removal efficiency. Biodegradation 2020, 31, 249–264. [Google Scholar] [CrossRef]
- Zekker, I.; Rikmann, E.; Tenno, T.; Vabamäe, P.; Kroon, K.; Loorits, L.; Saluste, A. Effect of concentration on anammox nitrogen removal rate in a moving bed biofilm reactor. Environ. Technol. 2012, 33, 2263–2271. [Google Scholar] [CrossRef]
- Alam, S.; Khan, M.S.; Bibi, W.; Zekker, I.; Burlakovs, J.; Ghangreka, M.M. Preparation of activated carbon from the wood of Paulownia tomentosa as an efficient adsorbent for the removal of acid red 4 and methylene blue present in wastewater. Water 2021, 13, 1453. [Google Scholar] [CrossRef]
- Umar, A.; Khan, M.S.; Alam, S.; Zekker, I.; Burlakovs, J.; dC Rubin, S.S. Synthesis and characterization of Pd-Ni bimetallic nanoparticles as efficient adsorbent for the removal of acid orange 8 present in wastewater. Water 2021, 13, 1095. [Google Scholar] [CrossRef]
- Zahoor, M.; Nazir, N.; Iftikhar, M.; Naz, S.; Zekker, I.; Burlakovs, J.; Uddin, F. A review on silver nanoparticles: Classification, various methods of synthesis, and their potential roles in biomedical applications and water treatment. Water 2021, 13, 2216. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zekker, I. Editorial to Efficient Catalytic and Microbial Treatment of Water Pollutants. Water 2022, 14, 995. https://doi.org/10.3390/w14060995
Zekker I. Editorial to Efficient Catalytic and Microbial Treatment of Water Pollutants. Water. 2022; 14(6):995. https://doi.org/10.3390/w14060995
Chicago/Turabian StyleZekker, Ivar. 2022. "Editorial to Efficient Catalytic and Microbial Treatment of Water Pollutants" Water 14, no. 6: 995. https://doi.org/10.3390/w14060995
APA StyleZekker, I. (2022). Editorial to Efficient Catalytic and Microbial Treatment of Water Pollutants. Water, 14(6), 995. https://doi.org/10.3390/w14060995