Radon and Salinity Mass Balance Constraints on Groundwater Recharge on a Semi-Arid Island (Catalina, California)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methods
2.2.1. Radon Analysis
2.2.2. Radon Mass Balance Model
2.2.3. Tidal Correction and Scaling of Spatial Survey Radon Data
2.2.4. SGD Flux Estimation
2.2.5. Definition of Groundwater Radon End-Member
2.2.6. SWB Data Extraction
3. Results and Discussion
3.1. Radon and Tide Correlation
3.2. Spatial Survey Radon Patterns and Calculated SGD Fluxes
3.3. Comparison with Other Studies
3.4. Sensitivity Analysis
3.4.1. Effect of Water Depth
3.4.2. Effect of Terrestrial Groundwater Radon End-Member
4. Conclusions and Implications
- ⚬
- SGD in Toyon Bay was found to be mostly saline with limited freshwater component, where the large seawater component could be associated with tidal pumping. The total SGD fluxes, consisting of both freshwater and seawater components, were generally low in Toyon Bay, and these values were comparable to those reported in other sites with a similar climate.
- ⚬
- The fresh SGD flux was slightly lower than the groundwater recharge rate for the watershed estimated by the SWB model. This finding is consistent with previous results, where the SWB model was found to overestimate recharge compared to the chloride mass balance discerned from groundwater and precipitation data. More work on the temporal patterns of FSGD rates and the chloride mass balance in Toyon Bay groundwater could further refine the recharge estimate and illuminate the effects of recent droughts on recharge magnitude.
- ⚬
- The FSGD fluxes in Toyon Bay were very consistent between April and September 2019, supporting the importance of tidal pumping and mixing with offshore waters on controlling SGD magnitude. Spatial variation in the radon activities in the northern part of Toyon Bay, near a non-perennial stream, suggests underflow through a high-permeability feature below the streambed. Further research is needed to test this hypothesis and ascertain the depth at which the underflow reaches the ocean.
- ⚬
- Sensitivity analyses revealed SGD fluxes to be significantly influenced by uncertainties in the terrestrial groundwater radon end-member and water depth. Using lower values for the former and higher values for the latter would yield higher FSGD rates closer to the recharge estimates from the SWB model; however, these values may not be within the reasonable ranges for the Toyon Bay setting.
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Montiel, D.; Dimova, N.; Andreo, B.; Prieto, J.; García-Orellana, J.; Rodellas, V. Assessing Submarine Groundwater Discharge (SGD) and Nitrate Fluxes in Highly Heterogeneous Coastal Karst Aquifers: Challenges and Solutions. J. Hydrol. 2018, 557, 222–242. [Google Scholar] [CrossRef]
- Shellenbarger, G.G.; Monismith, S.G.; Genin, A.; Paytan, A. The Importance of Submarine Groundwater Discharge to the near Shore Nutrient Supply in the Gulf of Aqaba (Israel). Limnol. Oceanogr. 2006, 51, 1876–1886. [Google Scholar] [CrossRef] [Green Version]
- Kim, G.; Lee, K.K. Large Submarine Groundwater Discharge (SGD) from a Volcanic Island. Geophys. Res. Lett. 2003, 30, 2098. [Google Scholar] [CrossRef]
- Mushtaha, A.; Walraevens, K. Quantification of Submarine Groundwater Discharge in the Gaza Strip. Water 2018, 10, 1818. [Google Scholar] [CrossRef] [Green Version]
- Urquidi-Gaume, M.; Santos, I.R.; Lechuga-Deveze, C. Submarine Groundwater Discharge as a Source of Dissolved Nutrients to an Arid Coastal Embayment (La Paz, Mexico). Environ. Earth Sci. 2016, 75, 154. [Google Scholar] [CrossRef]
- Wang, X.; Li, H.; Yang, J.; Zheng, C.; Zhang, Y.; An, A.; Zhang, M.; Xiao, K. Nutrient Inputs through Submarine Groundwater Discharge in an Embayment: A Radon Investigation in Daya Bay, China. J. Hydrol. 2017, 551, 784–792. [Google Scholar] [CrossRef]
- Hagedorn, B.; Becker, M.W.; Silbiger, N.J. Evidence of Freshened Groundwater below a Tropical Fringing Reef. Hydrogeol. J. 2020, 2, 2501–2517. [Google Scholar] [CrossRef]
- Michael, H.A.; Mulligan, A.E.; Harvey, C.F. Seasonal Oscillations in Water Exchange between Aquifers and the Coastal Ocean. Nature 2005, 436, 1145–1148. [Google Scholar] [CrossRef]
- Knee, K.L.; Paytan, A. Submarine Groundwater Discharge. In Treatise on Estuarine and Coastal Science; Elsevier: Amsterdam, The Netherlands, 2011; pp. 205–233. ISBN 978-0-08-087885-0. [Google Scholar]
- Bishop, J.M.; Glenn, C.R.; Amato, D.W.; Dulai, H. Effect of Land Use and Groundwater Flow Path on Submarine Groundwater Discharge Nutrient Flux. J. Hydrol. Reg. Stud. 2017, 11, 194–218. [Google Scholar] [CrossRef] [Green Version]
- Povinec, P.P.; Burnett, W.C.; Beck, A.; Bokuniewicz, H.; Charette, M.; Gonneea, M.E.; Groening, M.; Ishitobi, T.; Kontar, E.; Liong Wee Kwong, L.; et al. Isotopic, Geophysical and Biogeochemical Investigation of Submarine Groundwater Discharge: IAEA-UNESCO Intercomparison Exercise at Mauritius Island. J. Environ. Radioact. 2012, 104, 24–45. [Google Scholar] [CrossRef]
- Taniguchi, M.; Burnett, W.C.; Dulaiova, H.; Siringan, F.; Foronda, J.; Wattayakorn, G.; Rungsupa, S.; Kontar, E.A.; Ishitobi, T. Groundwater Discharge as an Important Land-Sea Pathway into Manila Bay, Philippines. J. Coast. Res. 2008, 1, 15–24. [Google Scholar] [CrossRef] [Green Version]
- Montiel, D.; Lamore, A.; Stewart, J.; Dimova, N. Is Submarine Groundwater Discharge (SGD) Important for the Historical Fish Kills and Harmful Algal Bloom Events of Mobile Bay? Estuaries Coasts 2019, 42, 470–493. [Google Scholar] [CrossRef]
- Cyronak, T.; Santos, I.R.; Erler, D.V.; Eyre, B.D. Groundwater and Porewater as Major Sources of Alkalinity to a Fringing Coral Reef Lagoon (Muri Lagoon, Cook Islands). Biogeosciences 2013, 10, 2467–2480. [Google Scholar] [CrossRef] [Green Version]
- Weinstein, Y.; Burnett, W.C.; Swarzenski, P.W.; Shalem, Y.; Yechieli, Y.; Herut, B. Role of Aquifer Heterogeneity in Fresh Groundwater Discharge and Seawater Recycling: An Example from the Carmel Coast, Israel. J. Geophys. Res. 2007, 112, C12016. [Google Scholar] [CrossRef] [Green Version]
- Boehm, A.B.; Paytan, A.; Shellenbarger, G.G.; Davis, K.A. Composition and Flux of Groundwater from a California Beach Aquifer: Implications for Nutrient Supply to the Surf Zone. Cont. Shelf Res. 2006, 26, 269–282. [Google Scholar] [CrossRef] [Green Version]
- Swarzenski, P.W.; Izbicki, J.A. Coastal Groundwater Dynamics off Santa Barbara, California: Combining Geochemical Tracers, Electromagnetic Seepmeters, and Electrical Resistivity. Estuar. Coast. Shelf Sci. 2009, 83, 77–89. [Google Scholar] [CrossRef]
- Alfarrah, N.; Walraevens, K. Groundwater Overexploitation and Seawater Intrusion in Coastal Areas of Arid and Semi-Arid Regions. Water 2018, 10, 143. [Google Scholar] [CrossRef] [Green Version]
- Barlow, P.M.; Reichard, E.G. Saltwater Intrusion in Coastal Regions of North America. Hydrogeol. J. 2010, 18, 247–260. [Google Scholar] [CrossRef]
- Werner, A.; Bakker, M.; Post, V.E.A.; Vandenbohede, A.; Lu, C.; Ataie-Ashtiani, B.; Simmons, G.T.; Barry, D.A. Seawater Intrusion Processes, Investigation and Management: Recent Advances and Future Challenges. Adv. Water Resour. 2013, 51, 3–26. [Google Scholar] [CrossRef]
- Burnett, W.C.; Aggarwal, P.K.; Aureli, A.; Bokuniewicz, H.; Cable, J.E.; Charette, M.A.; Kontar, E.; Krupa, S.; Kulkarni, K.M.; Loveless, A.; et al. Quantifying Submarine Groundwater Discharge in the Coastal Zone via Multiple Methods. Sci. Total Environ. 2006, 367, 498–543. [Google Scholar] [CrossRef]
- Burnett, W.C.; Dulaiova, H. Estimating the Dynamics of Groundwater Input into the Coastal Zone via Continuous Radon-222 Measurements. J. Environ. Radioact. 2003, 69, 21–35. [Google Scholar] [CrossRef]
- Schubert, M.; Petermann, E.; Stollberg, R.; Gebel, M.; Scholten, J.; Knöller, K.; Lorz, C.; Glück, F.; Riemann, K.; Weiß, H. Improved Approach for the Investigation of Submarine Groundwater Discharge by Means of Radon Mapping and Radon Mass Balancing. Water 2019, 11, 749. [Google Scholar] [CrossRef] [Green Version]
- Rodellas, V.; Stieglitz, T.C.; Tamborski, J.J.; van Beek, P.; Andrisoa, A.; Cook, P.G. Conceptual Uncertainties in Groundwater and Porewater Fluxes Estimated by Radon and Radium Mass Balances. Limnol. Oceanogr. 2021, 66, 1237–1255. [Google Scholar] [CrossRef]
- Colbert, S.L.; Hammond, D.E.; Berelson, W.M. Radon-222 Budget in Catalina Harbor, California: 1. Water Mixing Rates. Limnol. Oceanogr. 2008, 53, 651–658. [Google Scholar] [CrossRef]
- Colbert, S.L.; Berelson, W.M.; Hammond, D.E. Radon-222 Budget in Catalina Harbor, California: 2. Flow Dynamics and Residence Time in a Tidal Beach. Limnol. Oceanogr. 2008, 53, 659–665. [Google Scholar] [CrossRef] [Green Version]
- Harlow, J.; Hagedorn, B. SWB Modeling of Groundwater Recharge on Catalina Island, California, during a Period of Severe Drought. Water 2019, 11, 58. [Google Scholar] [CrossRef] [Green Version]
- Ballmer, M. Soil Survey of Santa Catalina Island, California; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2008; p. 345.
- Schumann, R.R.; Minor, S.A.; Muhs, D.R.; Groves, L.T.; McGeehin, J.P. Tectonic Influences on the Preservation of Marine Terraces: Old and New Evidence from Santa Catalina Island, California. Geomorphology 2012, 179, 208–224. [Google Scholar] [CrossRef]
- Rowland, S.M. Geology of Santa Catalina Island. Calif. Geol. 1984, 39, 239–251. [Google Scholar]
- PRISM Parameter-Elevation Relationships on Independent Slopes Model—Precipitation Maps. Northwest Alliance for Computational Science and Engineering. 2010. Available online: http://www.prism.oregonstate.edu/ (accessed on 5 November 2019).
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Mu, Q.; Heinsch, F.A.; Zhao, M.; Running, S.W. Development of a Global Evapotranspiration Algorithm Based on MODIS and Global Meteorology Data. Remote Sens. Environ. 2007, 111, 519–536. [Google Scholar] [CrossRef]
- Otton, J.K. The Geology of Radon; General Interest Publication: Washington, DC, USA, 1992. [Google Scholar]
- Swarzenski, P.W. U/Th Series Radionuclides as Coastal Groundwater Tracers. Chem. Rev. 2007, 107, 663–674. [Google Scholar] [CrossRef] [PubMed]
- Petermann, E.; Schubert, M. Quantification of the Response Delay of Mobile Radon-in-Air Detectors Applied for Detecting Short-Term Fluctuations of Radon-in-Water Concentrations. Eur. Phys. J. Spec. Top. 2015, 224, 697–707. [Google Scholar] [CrossRef]
- Corbett, D.R.; Burnett, W.C.; Cable, P.H.; Clark, S.B. A Multiple Approach to the Determination of Radon Fluxes from Sediments. J. Radioanal. Nucl. Chem. 1998, 236, 247–253. [Google Scholar] [CrossRef]
- Luo, M.; Zhang, Y.; Li, H.; Wang, X.; Xiao, K. Submarine Groundwater Discharge in a Coastal Bay: Evidence from Radon Investigations. Water 2020, 12, 2552. [Google Scholar] [CrossRef]
- Oehler, T.; Bakti, H.; Lubis, R.F.; Purwoarminta, A.; Delinom, R.; Moosdorf, N. Nutrient Dynamics in Submarine Groundwater Discharge through a Coral Reef (Western Lombok, Indonesia). Limnol. Oceanogr. 2019, 64, 2646–2661. [Google Scholar] [CrossRef]
- Martens, C.S.; Kipphut, G.W.; Klump, J.V. Sediment-Water Chemical Exchange in the Coastal Zone Traced by in Situ Radon-222 Flux Measurements. Science 1980, 208, 285–288. [Google Scholar] [CrossRef] [PubMed]
- Peng, T.-H.; Takahashi, T.; Broecker, W.S. Surface Radon Measurements in the North Pacific Ocean Station Papa. J. Geophys. Res. 1974, 79, 1772–1780. [Google Scholar] [CrossRef]
- Zappa, C.J.; McGillis, W.R.; Raymond, P.A.; Edson, J.B.; Hintsa, E.J.; Zemmelink, H.J.; Dacey, J.W.H.; Ho, D.T. Environmental Turbulent Mixing Controls on Air-Water Gas Exchange in Marine and Aquatic Systems. Geophys. Res. Lett. 2007, 34, L10601. [Google Scholar] [CrossRef] [Green Version]
- Wanninkhof, R. Relationship between Wind Speed and Gas Exchange over the Ocean Revisited. Limnol. Oceanogr. Methods 2014, 12, 351–362. [Google Scholar] [CrossRef]
- Correa, R.E.; Cardenas, M.B.; Rodolfo, R.S.; Lapus, M.R.; Davis, K.L.; Giles, A.B.; Fullon, J.C.; Hajati, M.-C.; Moosdorf, N.; Sanders, C.J.; et al. Submarine Groundwater Discharge Releases CO2 to a Coral Reef. ACS EST Water 2021, 1, 1756–1764. [Google Scholar] [CrossRef]
- Tait, D.R.; Santos, I.R.; Erler, D.V.; Befus, K.M.; Cardenas, M.B.; Eyre, B.D. Estimating Submarine Groundwater Discharge in a South Pacific Coral Reef Lagoon Using Different Radioisotope and Geophysical Approaches. Mar. Chem. 2013, 156, 49–60. [Google Scholar] [CrossRef]
- Santos, I.R.; Erler, D.; Tait, D.; Eyre, B.D. Breathing of a Coral Cay: Tracing Tidally Driven Seawater Recirculation in Permeable Coral Reef Sediments. J. Geophys. Res. Oceans 2010, 115, 10. [Google Scholar] [CrossRef]
- Elmaghraby, E.K.; Ataalla, N.N.; Afifi, M.B.; Salem, E. Radon Exhalation and Transfer Processes in Aqueous Media. Eur. Phys. J. Plus 2021, 136, 1217. [Google Scholar] [CrossRef]
- Cyronak, T.; Santos, I.R.; Erler, D.V.; Maher, D.T.; Eyre, B.D. Drivers of PCO2 Variability in Two Contrasting Coral Reef Lagoons: The Influence of Submarine Groundwater Discharge. Glob. Biogeochem. Cycles 2014, 28, 398–414. [Google Scholar] [CrossRef]
- El-Gamal, A.A.; Peterson, R.N.; Burnett, W.C. Detecting Freshwater Inputs via Groundwater Discharge to Marina Lagoon, Mediterranean Coast, Egypt. Estuaries Coasts 2012, 35, 1486–1499. [Google Scholar] [CrossRef]
- Wu, Z.; Zhou, H.; Zhang, S.; Liu, Y. Using 222Rn to Estimate Submarine Groundwater Discharge (SGD) and the Associated Nutrient Fluxes into Xiangshan Bay, East China Sea. Mar. Pollut. Bull. 2013, 73, 183–191. [Google Scholar] [CrossRef]
- Befus, K.M.; Cardenas, M.B.; Tait, D.R.; Erler, D.V. Geoelectrical Signals of Geologic and Hydrologic Processes in a Fringing Reef Lagoon Setting. J. Hydrol. 2014, 517, 508–520. [Google Scholar] [CrossRef]
- Dimova, N.T.; Swarzenski, P.W.; Dulaiova, H.; Glenn, C.R. Utilizing Multichannel Electrical Resistivity Methods to Examine the Dynamics of the Fresh Water–Seawater Interface in Two Hawaiian Groundwater Systems. J. Geophys. Res. C Ocean. 2012, 117, C02012. [Google Scholar] [CrossRef] [Green Version]
- Fan, J.; Oestergaard, K.T.; Guyot, A.; Lockington, D.A. Estimating Groundwater Recharge and Evapotranspiration from Water Table Fluctuations under Three Vegetation Covers in a Coastal Sandy Aquifer of Subtropical Australia. J. Hydrol. 2014, 519, 1120–1129. [Google Scholar] [CrossRef] [Green Version]
- Hagedorn, B.; El-Kadi, A.; Mair, A.; Whittier, R.; Ha, K. Estimating Recharge in Fractured Aquifers of a Temperate Humid to Semiarid Volcanic Island (Jeju, Korea) from Water Table Fluctuations, and Cl, CFC-12 and 3H Chemistry. J. Hydrol. 2011, 409, 650–662. [Google Scholar] [CrossRef]
- Basterretxea, G.; Tovar-Sanchez, A.; Beck, A.J.; Masqué, P.; Bokuniewicz, H.J.; Coffey, R.; Duarte, C.M.; Garcia-Orellana, J.; Garcia-Solsona, E.; Martinez-Ribes, L.; et al. Submarine Groundwater Discharge to the Coastal Environment of a Mediterranean Island (Majorca, Spain): Ecosystem and Biogeochemical Significance. Ecosystems 2010, 13, 629–643. [Google Scholar] [CrossRef] [Green Version]
- Burnett, W.C.; Dulaiova, H. Radon as a Tracer of Submarine Groundwater Discharge into a Boat Basin in Donnalucata, Sicily. Cont. Shelf Res. 2006, 26, 862–873. [Google Scholar] [CrossRef]
- Sawyer, A.H.; David, C.H.; Famiglietti, J.S. Continental Patterns of Submarine Groundwater Discharge Reveal Coastal Vulnerabilities. Science 2016, 353, 705–707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Period | FSGDw | ff | fs | FfSGDw | FsSGDw |
---|---|---|---|---|---|
(m3/m/d) | (m3/m/d) | (m3/m/d) | |||
Apr. 2019 | 3.31 | 0.082 | 0.918 | 0.27 | 3.04 |
Sep. 2019 | 5.47 | 0.051 | 0.949 | 0.28 | 5.19 |
Mean | 4.39 | 0.066 | 0.934 | 0.27 | 4.11 |
Climate | Site | Method | Total SGD Flux (m/d) | References |
---|---|---|---|---|
Arid/Semi-Arid | Gulf of Aqaba, Israel | Ra Isotopes | 0.06–0.26 | Shellenbarger et al. [2] |
Gaza Strip | Radon | 0.01–0.06 | Mushtaha and Walraevens [4] | |
Marina Lagoon, Egypt | Radon | 0.02–0.06 | El-Gamal et al. [49] | |
La Paz Bay, Mexico | Radon | 0.02–0.18 | Urquidi-Gaume et al. [5] | |
Mediterranean | False Bay, South Africa | Radon | 0.01 | Schubert et al. [23] |
Dor Beach, Israel | Radon | 0.08 | Weinstein et al. [15] | |
Donnalucata, Italy | Radon | 0.14–0.87 | Burnett and Dulaiova [56] | |
Mallorca Island, Spain | Seepage Meter | 0.004–0.65 | Basterretxea et al. [55] | |
Maro-Cerro Gordo, Spain | Radon | 0.22–0.52 | Montiel et al. [1] | |
Santa Barbara, CA, USA | Radon | 0.03–0.09 | Swarzenski and Izbicki [17] | |
Toyon Bay, CA, USA | Radon | 0.14–0.29 | This study |
Site | Terrestrial Groundwater Radon End-Member (dpm/L) | References |
---|---|---|
Gaza Strip | 340–390 | Mushtaha and Walraevens [4] |
Marina Lagoon, Egypt | 113, 298 | El-Gamal et al. [49] |
La Paz Bay, Mexico | 439 | Urquidi-Gaume et al. [5] |
False Bay, South Africa | 288 | Schubert et al. [23] |
Dor Beach, Israel | 242 | Weinstein et al. [15] |
Donnalucata, Italy | 149, 293, 906 | Burnett and Dulaiova [56] |
Maro-Cerro Gordo, Spain | 300, 370 | Montiel et al. [1] |
Santa Barbara, CA, USA | 463 | Swarzenski and Izbicki [17] |
Toyon Bay, CA, USA | 57, (49–267) | Colbert et al. [26], this study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagedorn, B.; Tsuda, M. Radon and Salinity Mass Balance Constraints on Groundwater Recharge on a Semi-Arid Island (Catalina, California). Water 2022, 14, 1068. https://doi.org/10.3390/w14071068
Hagedorn B, Tsuda M. Radon and Salinity Mass Balance Constraints on Groundwater Recharge on a Semi-Arid Island (Catalina, California). Water. 2022; 14(7):1068. https://doi.org/10.3390/w14071068
Chicago/Turabian StyleHagedorn, Benjamin, and Mitsuyo Tsuda. 2022. "Radon and Salinity Mass Balance Constraints on Groundwater Recharge on a Semi-Arid Island (Catalina, California)" Water 14, no. 7: 1068. https://doi.org/10.3390/w14071068
APA StyleHagedorn, B., & Tsuda, M. (2022). Radon and Salinity Mass Balance Constraints on Groundwater Recharge on a Semi-Arid Island (Catalina, California). Water, 14(7), 1068. https://doi.org/10.3390/w14071068