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Abstract: Precipitation has been recognized as the most critical meteorological parameter in hy-
drological studies. Recent developments in space technology provide cost-effective alternative
ground-based observations to simulate the hydrological process. Here, this paper aims to evaluate
the performance of satellite-based datasets in the hydrological modeling of a sensitive area in terms of
water quality and safety watershed. Three precipitation products, i.e., rain gauge observations (RO),
the China Meteorological Assimilation Driving Datasets for the SWAT model (CMADS), and Tropical
Rainfall Measuring Mission Multi-satellite (TRMM) products, were used to develop the Soil and
Water Assessment Tool (SWAT) model to simulate the streamflow in the Danjiang River Basin (DRB).
The results show that: (1) these three precipitation products have a similar performance with regard
to monthly time scale compared with the daily scale; (2) CMADS and TRMM performed better than
RO in the runoff simulations. CMADS is a more accurate dataset when combined with satellite-based
and ground-based data; (3) the results indicate that the CMADS dataset provides reliable results on
both monthly and daily scales, and CMADS is a possible alternative climate product for developing a
SWAT model for the DRB. This study is expected to serve as a reference for choosing the precipitation
products for watersheds similar to DRB where the rain gauge data are limited.

Keywords: SWAT; CMADS; TRMM; the Danjiang river basin

1. Introduction

Precipitation has been recognized as the most critical meteorological parameter in
relation to developing hydrological models, because its spatiotemporal variability has a
significant impact on hydrological behavior and water distribution [1–3]. Previous research
studies have illustrated that having less precipitation information uncertainty has a sizable
effect on stabilizing model parameterization and calibration [4–6]. However, there are
severe limitations to describing rainfall inputs’ true spatiotemporal variability of a river
basin accurately, such as the rainfall pattern influenced by the complex topography and
impacted by a hierarchy of regionally dominated atmospheric cycles [7,8].

Precipitation observed from a rain gauge, in general, is considered to be actual rain-
fall [9,10]. In most cases, point rainfall measurements are spatially interpolated to illustrate
the rainfall field at a basin scale, and hence they are used as inputs in spatial-distributed
hydrological models [11,12]. Field rainfall obtained from such interpolation, however,
can represent the true distribution of precipitation well only if the rain gauges are de-
ployed with reasonable density and uniform distribution [13]. Unfortunately, in most
areas, especially in remote and developing areas, rain gauges are distributed irregularly
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and sparsely [14–17]. Consequently, the true rainfall field is poorly represented through
interpolation, challenging the application of hydrological models. The accidental missing
of the ground observations also exacerbate this challenge [18,19].

Recently, the feasibility of satellite-based data as alternatives for describing the tempo-
ral and spatial variability of the true rainfall field has been frequently tested. For example,
Hur et al. [20] compared two high-resolution satellite rainfall datasets (TRMM 3B42 v7.0
and GSMaP v5.222) with rain gauge observations in Singapore. It was found that TRMM
3B42 v7.0 and GSMaP v5.222 both tended to overestimate the light rain and frequency
but underestimate high-intensity precipitation when extreme precipitation was analyzed.
Jiang et al. [21] researched a middle-latitude basin in South China, pointing out that rainfall
was overall largely underestimated when using TMPA 3B42RT, Precipitation Estimation
from Remote Sensing Information using Artificial Neural Network (PERSIAN), and the
NOAA/Climate Precipitation Center Morphing Technique (CMORPH). Duncan et al. [22]
assessed the accuracy of satellite-derived precipitation estimation (TRMM) over Nepal and
found that though the precipitation of TRMM was significantly correlated with ground-
based observations in all seasons, satellite precipitation estimates consistently overesti-
mated the amount of precipitation and inaccurately detected extreme precipitation events.

The distributed hydrological model is beneficial for understanding the hydrological
process [23–25]. The most habitually utilized distributed hydrological models have been
appeared to effectively consolidate information from rain gauges, whereas satellite-based
precipitation has been persistently moved forward and integrated into distinctive modules
that assess its execution in simulating watershed streamflow [26,27]. The Soil and Water
Assessment Tool (SWAT) is the most widely used distributed hydrological model among
all the various hydrological models [28–31]. Huang et al.’s [32] study in the German
state of Baden-Württemberg used three precipitation datasets with different time scales
(daily, sub-daily, and diurnal) as inputs to drive a SWAT model to simulate the runoff,
and found that there is a positive correlation between model performance and higher
precipitation resolution. Yeganantham et al. [33] found that Climate Hazards Group
InfraRed Rainfall with Station (CHIRPS) performed better than Climate Forecast System
Reanalysis (CFSR) in simulating streamflow when using the SWAT model in ten watersheds
located in the USA, Brazil, Spain, Ethiopia, and India. Hamoud et al.’s research [34] showed
that the applicability of CHIRPS and TRMM 3B42 in runoff simulations were better than
that of CFSR, Artificial Neural Networks–Climate Data Record (PERSIANN-CDR), and
European Atmospheric Reanalysis (ERA-5) in the Highland Region of Yemen. Moreover,
the performances of the satellite-based data are various in different areas. For example,
Mararakanye et al.’s research in the lower Vaal River Catchment area (South Africa) [35]
found that the CFSR performed well in simulating runoff by using a hydrological model,
while according to Dao et al.’s study in the Cau River Basin (North Vietnam) [36], the
performance of CFSR in runoff simulation was unsatisfactory. Gao et al. [37] proved that
the performance of PERSIANN-CDR as an input to drive the SWAT model to simulate
runoff was not suitable for the Xiang River Basin (China); however, its performance when
simulating runoff was good in the Lancang River Basin (China). Like the studies above, the
results simulated using the data-based SWAT model are heterogeneous and the performance
of satellite-based datasets to simulate runoff should be evaluated for the specific basin.

Originating from the Q-DM, the Danjiang River Basin (DRB) is the main water source
of the central route projects of the South-to-North Water Diversion Project [38]. This project
is one of the most important hydraulic engineering projects in China and aims to improve
the water shortage problem in northern China and improve the ecological environment
along the related region. The quantity and quality of the water delivered are influenced
by the erosion of the DRB [39,40]. Therefore, the DRB is considered to be a sensitive area
in terms of water quality and safety with regard to the watershed. However, the uneven
distribution of the meteorological stations in Q-DM makes it difficult to understand the real
hydrological process. A previous study [41] used CFSR-driven SWAT models to simulate
the runoff in the Bahe River Basin (Q-DM area) and found that the runoff simulated by
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uncorrected CFSR data were only satisfactory in this basin, while corrected data performed
better. This indicates that it is necessary to verify the applicability of meteorological data in
the DRB (Q-DM area).

Here, this study explores the results of the CMADS, TRMM, and rain gauge data
when simulating rainfall estimation and surface runoff at monthly and daily scales in
the DRB. The study aims to verify the applicability of the CMADS data and TRMM
data in the DRB, and it can, therefore, serve as a reference for choosing the precipitation
datasets in watersheds similar to the DRB where the ground-based rain gauge data are
unavailable. With the objectives above, this study involves (1) a comparison of rainfall
estimations from CMADS, TRMM 3B42 data, and rain gauge observations (Gauge) at
monthly, daily, and spatial scales, (2) setting up a SWAT model with CMADS, TRMM 3B42
data, and rain gauge observations to simulate monthly and daily runoff, (3) calibrating
and validating the simulated streamflow at three hydrological stations using the SWAT
Calibration Uncertainties Program (SWAT-CUP) which uses the Sequential Uncertainty
Fitting ver.2 (SUFI-2) algorithm, and (4) evaluating the multi-statistical performance of the
simulation against the observed streamflow data. The main goal of this study is to evaluate
the use of satellite-based and reanalysis precipitation products as model operation driving
data, and assess whether they can drive the model in a watershed similar to the DRB where
the gauge observations are limited.

2. Materials and Methods
2.1. Study Area

The largest tributary of the Hanjiang River, the Danjiang River, is a mountain river
that covers a drainage area of 8887 km2. The total length of its main stream is 280 km.
Originating from the South Qinling Mountains and flowing into the Hanjiang River [42],
the Danjiang River flows through the Shaanxi, Henan, and Hubei Provinces. It stretches
between 33◦04′10′′ N and 34◦11′09′′ N and across 109◦30′08′′ E and 111◦15′51′′ E. The
Danjiang River Basin (DRB) features a high-rising west and a low-lying east, with a relative
elevation difference of 1915 m. The continental monsoon climate contributes to the distinct
seasons of the DRB. According to the records from 1950 to 2015, the long-term annual
precipitation of the DRB is 732.29 mm and the spatial distribution difference shows an
increasing trend from the west to the east. Rainfall is concentrated in the period from May
to October, accounting for about 80% of the annual precipitation. Moreover, the annual
average temperature ranges from 7.8 ◦C to 13.9 ◦C and the annual runoff is 14.36 × 108 m3.

Forestland occupies the largest area in the DRB, followed by the cropland. The
yellow-brown soil and sandy loam are the dominant soil types in the DRB [38]. There
are 3 hydrological stations (Majie Station upstream, Danfeng Station midstream, and
Jingziguan Station downstream) and 58 ground-based rain gauges in the study area. The
digital elevation model (DEM), stream network, weather stations, and hydrological stations
are shown in Figure 1.

2.2. Hydrological Model and Data Sources

In this study, the SWAT model was used for hydrological modeling, which was
developed by USDA-ARS. Because the SWAT model is designed for long-term simulations
on a daily scale, it is suitable for evaluating the performance of three precipitation products.
To ensure the accuracy of relative changes induced by different precipitation inputs, all
input parameters, such as temperature, wind, solar radiation, and humidity, were kept
the same, except precipitation. Additionally, the temperature, wind, solar radiation, and
humidity inputs were simulated by the internal weather generator of SWAT.

Moreover, the target watershed is required by the SWAT model to be divided into
sub-watersheds. Each sub-watershed may include one or more Hydrologic Response Units
(HRUs). On the basis of the 30 m DEM and by choosing the Jingziguan Station as the outlet,
the controlled watershed was delineated. The threshold to discretize the sub-watershed
was based on the 2% area. Other input parameters, such as soil type and land use, were
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downloaded from websites (Table 1). The data of measured runoff were obtained from the
Department of Hydrology of the Ministry of Water Resources of China. Additionally, the
SPWA (Soil–Plant–Air–Water) software was used to analyze the soil–water characteristics
of each soil type.
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Table 1. Summary of the input parameters.

Parameters Dataset Developed
Organization Resolution Data Source

(Accessed on 1 August 2021)

DEM
Shuttle Radar

Topography Mission
(SRTM)

National Aeronautics
and Space

Administration
(NASA)

30 m https://earthexplorer.usgs.gov/

Land cover
30 m-resolution

Global Land Cover
(GLC30)

The National
Geomatics Center of

China (NGCC)
30 m http://www.globallandcover.com/

Soil type World Soil Database
(HWSD)

The Food and
Agriculture

Organization of the
United Nations

(FAO)

1000 m
http://www.fao.org/soils-portal/soil-

survey/soil-maps-and-databases/
harmonized-world-soil-database-v12/en/

Daily rainfall data were collected from weather gauge stations and the two satellite-
based and reanalysis precipitation products used were CMADS and TRMM 3B42 version 7.

Daily precipitation data obtained from the fifty-eight rain gauges in the DRB were
available from the website of the Department of Hydrology of the Ministry of Water
Resources of China. The rain gauge data covered from 1964 to 2015.

https://earthexplorer.usgs.gov/
http://www.globallandcover.com/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/harmonized-world-soil-database-v12/en/
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The dataset CMADS introduces the technology of The Space and Time Mesoscale
Analysis System (STMAS) assimilation algorithm. Multiple technologies and scientific
methods were used to develop CMADS [43,44]. The dataset, containing information relating
to precipitation, temperature, and other variables, can be used to run hydrological models
such as SWAT. The precipitation data of CMADS are merged with the hourly precipitation
data collected by the China National Meteorological Information Center using the CPC
MORPHing technique (CMORPH). CMADS stations provide information throughout the
day from 2008 to 2016 in the areas between 0–65◦ N and 60–160◦ E. There are a total of
19 CMADS stations in the study area.

In late 1997, the TRMM satellite was launched by the National Aeronautics and
Space Administration (NASA) and the Japanese Aerospace Exploration Agency (JAXA)
to monitor precipitation [45]. TRMM 3B42 is one of the RMM Multi-satellite Precipitation
Analysis (TMPA) products [46]. It provides daily precipitation data from 50◦ S to 50◦ N at a
resolution of 0.25◦ spatially and temporally from 1998 to 2015 [47,48]. There is a total of
19 TRMM 3B42 pixels in the study area. Further information about TRMM and CMADS
can be found in Table 2.

Table 2. Summary of remote-sensing/reanalysis precipitation datasets.

Full Name Abbreviation Coverage Spatiotemporal
Resolution Used

Data Source
(Accessed on 1 August 2021)

The China
Meteorological

Assimilation Driving
Datasets for the SWAT

model Version 1.1

CMADS V1.1 0–65◦ N 60–160◦ E Daily, 0.25◦ http://www.cmads.org/

Tropical Rainfall
Measuring Mission

Multi-satellite
Precipitation Analysis

3B42 Version 7

TRMM 3B42 V7 50◦ S–50◦ N Daily, 0.25◦ https://disc.gsfc.nasa.gov/

The SWAT model uses data from the station nearest to the centroid of each sub-basin
to categorize precipitation data into sub-basins [47].

2.3. Model Calibration and Evaluation

When all parameters were entered into the SWAT model, the SWAT model ran
with three precipitation products (rain gauge data, CMADS dataset, and TRMM dataset)
separately at the monthly and daily scale. The watershed was divided into a total of
237 sub-catchments by the SWAT model, and these sub-watersheds were further divided
into 980 HRUs on the basis of the land use, soil type, and slope classes. The simulated
period was selected to be the period from 2008 to 2015 to ensure its consistency, because
the available gauge data, CMADS data, and TRMM data were, respectively, collected from
1964 to 2015, 2008 to 2018, and 1998 to 2015. Here, 2008 was taken as the warm-up period.

The SUFI-2 algorithm in SWAT-CUP was used in the calibration procedure. On the
basis of Duan et al.’s research [48] and the official guide, 17 parameters were selected.
Considering the influence of elevation on precipitation, the precipitation lapse rate (PLAPS)
was introduced [49]. Moreover, the simulated results of the Majie Station, Danfeng Station,
and Jingziguan Station were calibrated together. The model was calibrated by first using the
initial value ranges of each parameter and then using the suggested ranges of the previous
simulation. The simulations were calibrated five times with 500 iterations each.

In this study, the coefficient of determination, Nash–Sutcliffe efficiency (NSE), and
percent bias (PBIAS) were used to evaluate the accuracy of runoff modeling results. The
formulas are as follows [35]:

http://www.cmads.org/
https://disc.gsfc.nasa.gov/
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R2 =


n
∑

i=1
(Qi −Qi)(Si − Si)√

n
∑

i=1
(Qi −Qi)

2

√
n
∑

i=1
(Si − Si)

2
)

 (1)

NSE =

n
∑

i=1
(Si −Qi)

2

n
∑

i=1
(Qi −Qi)

2
(2)

PBIAS =

n
∑

i=1
(Si −Qi)

n
∑

i=1
Qi

× 100% (3)

where Qi is the observed value, Si is the simulated value, and Qi and Si are the mean values
of the observed and simulated values. The statistical threshold values that were used to
evaluate the performance of the model are shown in Table 3.

Table 3. The statistical threshold values used for interpreting model performance.

Performance Ratings R2 NSE PBIAS

Very Good 0.7~1 0.75~1 <±10
Good 0.6~0.7 0.65~0.75 ±10~±15

Satisfactory 0.5~0.6 0.50~0.65 ±15~±25
Unsatisfactory ≤0.5 ≤0.5 ≥±25

3. Results
3.1. Evaluation of the Three Precipitation Products
3.1.1. Monthly Scale

The comparison of the SWAT model results using the three precipitation products
from 2009 to 2015 in the study area is shown in Figure 2. The dry (drought), wet (rainy),
and normal years were defined on the basis of the commonly used precipitation year
classification standard [50]. In this study, 2010, 2013, and 2015 were denoted as drought
years and 2009, 2011, and 2012 were denoted as rainy years. It is noted from Figure 2
that the annual rainfall mainly concentrates in the period from June to August (the flood
season), and the precipitation calculated by the rain gauge, CMADS, and TRMM from June
to August, respectively, account for 51.53%, 54.61%, and 54.60% of the annual precipitation.
Figure 2 also shows that, before 2013, the CMADS and TRMM both underestimated the
rainfall severely in the flood season of the rainy years compared with actual precipitation,
by 32.51% and 11.66%, respectively, and that the CMADS and TRMM overestimated the
rainfall by 18.12% and 40.48%, respectively, in the flood season of the drought years.
The rainfall estimated by CMADS and TRMM was similar to the estimation of Gauge
in non-flood seasons. The situation has improved since 2013. The precipitation trend of
CMADS and Gauge became similar after 2013 because the underestimation of CMADS’s
precipitation was narrowed. However, TRMM still underestimated the rainfall in the flood
season of rainy years and overestimated the rainfall in the flood season of normal years after
2013, though the precipitation deviation was reduced. In addition, the Pearson correlation
coefficient of Gauge and CMADS (Gauge-CMADS) and Gauge and TRMM (Gauge-TRMM)
were 0.74 and 0.75, respectively, indicating that the precipitation of CMADS and TRMM
were highly similar to the precipitation of the rain gauges. In other words, the rainfall in
this area can be effectively represented by CMADS and TRMM.
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Figure 2. Three different precipitation records at monthly scale in the DRB (the CC value of Gauge-
CMADS and Gauge–TRMM were 0.74 and 0.75, respectively; 2009, 2011, and 2012 were denoted as
rainy years, 2014 was denoted as the normal year, and 2010, 2013, and 2015 were denoted as drought
years. Additionally, the data in this figure were given as year and month.

It can be seen from the box plot of Figure 3 that the precipitation featured three peaks,
with the peak values appearing in May, July, and September. The monthly precipitation of
CMADS had the largest average and median line, while the average and median line of
TRMM was the smallest. Moreover, CMADS reported the largest maximum rainfall except
in October and December, and TRMM had the smallest minimum precipitation throughout
the year. In addition, the PBIAS values of Gauge-CMADS and Gauge-TRMM were −18.86
and 3.20, respectively, indicating that the CMADS precipitation was underestimated com-
pared to the Gauge precipitation, with the TRMM estimation the exact opposite. However,
the total precipitation was not much different. In summary, compared with the Gauge
records, CMADS tends to overestimate the rainfall, while TRMM tends to underestimate
the rainfall.

3.1.2. Daily Scale

The intensity and frequency of precipitation are the critical parameters used to describe
the characteristic of daily rainfall [51]. It is noted from Figure 4 that the angle between
the CMADS model’s 95%-line estimates and the horizontal axis was <45◦ and that the
angle between the TRMM model’s 95%-line estimates and the horizontal axis was <45◦ as
well. This suggested that although the precipitation trends of CMADS and TRMM were
similar to that of the Gauge records at a daily scale, the CMADS and the TRMM rainfall
data tended to be underestimated when extreme rainstorms occurred. The CMADS and
the TRMM, respectively, underestimated the storm rainfall (>50 mm/day) by 13.11% and
10.65%, showing that the CMADS and TRMM were less capable of accurately simulating
the storm rainfall than Gauge.
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Moreover, the Pearson correlation coefficients of Gauge-CMADS and Gauge-TRMM
were 0.39 and 0.32, respectively, and the Pearson correlation coefficient of CMADS-TRMM
was 0.80, indicating that there were big differences between Gauge and CMADS data and
between Gauge and TRMM data, while the CMADS and TRMM data were similar.

The cumulative daily precipitation intensity frequencies of the three precipitation
products are shown in Figure 5. Taking 50 mm/day as the panel line, Figure 5a was
divided into Figure 5b,c to describe the frequency trend of the three precipitation products
clearly. It can be noticed that the three products have the smallest difference in the events
of less-than-heavy rain (30 mm/d), but the largest difference in the events of torrential rain
(>50 mm/d). Additionally, the number of torrential rain events identified by TRMM was
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lower than that in Gauge records, and the frequency of torrential rain identified by CMADS
was the lowest among the three precipitation products.
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3.1.3. Spatial Scale

The spatial distributions suggested by the three precipitation products were almost
completely different, as shown in Figure 6. CMADS suggested that the rainfall increased
from the center to the surroundings, with the highest rainfall in the central north. The clear
trend of precipitation suggested by TRMM was that rainfall increased from upstream to
downstream, with the highest rainfall in the east. However, the rainfall of Gauge in each
sub-basin varied greatly, and there was no obvious spatial distribution pattern mainly due
to the distribution of the rain gauge stations. Though there are a large number of rain gauge
stations (58 stations) in the study area, most of them are located in the north and the east,
leaving a vast area in the central west and southeast of the basin with no rainfall stations.
Meanwhile, the CMADS (15 stations) and TRMM (15 stations) grid data were collected
from uniformly distributed stations, causing the different spatial distribution of rainfall.
Moreover, regardless of the daily or the monthly scale, the similarity of rainfall between
CMADS and Gauge was higher than that of TRMM.
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Though the rainfall gauges are able to reflect more information than CMADS and
TRMM when describing the variation of precipitation, the areal rainfall interpolated from
the gauges may be distorted because the gauges’ observations are point data. However,
the CMADS and TRMM data are evenly distributed grid data with a resolution of 0.25◦

and reflect the areal rainfall. Thus, despite the better performance of the rain gauge data in
describing watershed areal rainfall among three products, which products perform the best
in driving SWAT model to simulate runoff is uncertain.

3.2. The Performance of Different Precipitation Products in Simulating Runoff
3.2.1. Pre-Calibration Model Results

Before the model was calibrated, we conducted a statistical analysis of the simulation
results of runoff during the simulation period (2008–2015) of the model. As is shown
in Table 4, the runoff simulation results of the three precipitation products downstream,
midstream, and upstream showed different trends. The best simulation effect was upstream
(Majie Station), while the worst performance was midstream (Danfeng Station). Moreover,
the best simulation performance was achieved by CMADS, whose NSE was 0.74 upstream
and 0.63 downstream (Jingziguan Station), while the worst simulation effect occurred in
Gauge with its NSE almost all below zero (it was only above zero in the Majie Station).



Water 2022, 14, 1105 11 of 22

Furthermore, the PBIAS values of the Gauge model were all below zero, showing that
the simulation value of the Gauge model was smaller than the measured runoff. The
PBIAS values of the CMADS model and TRMM model were both above zero upstream
and below zero midstream and downstream, indicating that the simulation values of these
two products were larger than the measured runoff in the upper stream and smaller than
the actual runoff in the middle and downstream.

Table 4. The pre-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on a monthly scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.79 0.5 0.68 0.74 0.43 0.66 23.4 −22.38 10.44
Danfeng Station 0.04 0.05 0.05 −0.7 −1.52 −7.24 −7.67 −56.43 −32.1

Jingziguan Station 0.7 0.06 0.63 0.63 −0.82 0.51 −63.35 −164.97 −164.7

The pre-calibration results of the monthly scale indicated that the CMADS and TRMM
data were reliable in estimating runoffs; the R2 values of CMADS-SWAT and TRMM-SWAT
were 0.79 and 0.68, respectively. Though the performance of Gauge-SWAT was not as
good as CMADS-SWAT, it was still a valuable data source for use in the model, for its R2

was 0.50.
It is noted from Table 5 that the simulation results of the three precipitation products

on a daily scale showed the same trend as that on a monthly scale in the upper, middle,
and lower reaches of the basin. The simulation performance in the upstream was the best
and the performance downstream was the worst. Moreover, the NSE values of the CMADS
model and the TRMM model were all below 0.6 in the entire basin, meaning that their
performances were unsatisfactory. Additionally, the PBIAS values of the CMADS model
were all above zero, the PBIAS values of the Gauge model were all below zero, and the
PBIAS values of the TRMM model were above zero in the upstream and below zero in the
midstream and downstream, indicating that the simulation values of the CMADS model
and Gauge model were, respectively, higher and lower than the measured runoff in the
whole basin and that the simulation value of TRMM model was higher in the upper reach
but lower in the middle and lower reaches.

Table 5. The pre-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on the daily scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.39 0.18 0.22 0.38 0.11 0.18 22.98 −23.02 9.83
Danfeng Station 0.32 0.05 0.2 0.16 −1.24 −0.23 1.65 −47.57 −24.83

Jingziguan Station 0.26 0.02 0.16 0.25 −0.57 0.03 60.82 −160.86 −143

All these three datasets seriously overestimate the runoff in the middle stream and
downstream, according to Figure 7B,C. Moreover, the average observed streamflow was
smaller than the average simulated runoff throughout the year in the upstream, except in
September. The mean standard deviation of the three precipitation products computed at
the monthly time scale and averaged over the 8 years considered are 0.28, 1.71, and 4.30 for
the Majie Station, Danfeng Station, and Jingziguan Station, respectively. Additionally, the
mean standard deviation of three products computed at the daily time scale are 0.21, 0.87,
and 1.62, respectively.
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3.2.2. Post-Calibration Model Results

Seventeen parameters related to the hydrological process were selected to calibrate
the SWAT model and the range of the parameters, as well as the result of the calibration,
which are shown in Table 6. Be aware that the streamflow of Majie Station, Danfeng Station,
and Jingziguan Station were calibrated together.

It is noted from Figure 8 that there is a positive correlation between the simulated
runoff and rainfall. Moreover, the runoff of the CMADS model had a positive correlation
with the measured runoff, but the smaller flood peaks were not simulated in the year when
extreme flood events occurred or flood events were relatively continuous. The runoff trend
of the TRMM model was similar to the measured runoff in the upper and lower reaches,
but several consecutive flood events were simulated as a larger one in the middle stream.
Though the runoff of the Gauge model was positively correlated with measured runoff in
the upper stream, large floods in certain months were simulated as several smaller flood
events in the midstream and downstream.

It is also noted form Table 7 that the R2 values of the CMADS-SWAT (SWAT model
derived from CMADS) and TRMM-SWAT were above 0.8 in the whole basin, except for
the R2 of the TRMM-SWAT in the middle reaches, which was 0.77. The NSE values of the
CMADS-SWAT and TRMM-SWAT were all close to 0.8. However, the R2 and NSE values
of Gauge-SWAT were all below 0.6 in the whole basin and its R2 and NSE values were only
greater than 0.5 in the upstream. This suggested that the performances of CMADS-SWAT
and TRMM-SWAT were better, while the performance of Gauge-SWAT was unsatisfactory.
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Moreover, the PBIAS values of CMADS-SWAT and TRMM-SWAT were both greater than
25% in the upper and lower reaches and the PBIAS values in the middle stream were
9.9% and 0.0%, respectively, indicating that the CMADS-SWAT and TRMM-SWAT severely
overestimated the runoff in the upper reach, severely underestimated the runoff in the
downstream, and slightly overestimated the runoff in the middle reach. The PBIAS values
of the Gauge-SWAT were both smaller than 15% in the middle and upper reaches and the
PBIAS in the downstream was −89.3, showing that the simulation values in the upper and
middle reaches were higher and the simulation value was severely low in the downstream.

Table 6. Hydrological parameters chosen to calibrate the model (r_ and v_ mean a relative change
and a replacement to the initial parameter values, respectively).

Paraments Description
Monthly Scale Daily Scale

CMADS Gauge TRMM CMADS Gauge TRMM

r__SOL_AWC().sol
Available water capacity of

the soil layer
(mm HzO/mm soil)

−0.06 −0.26 −0.06 0.52 −0.76 −0.22

r__CN2.mgt scS runoff curve number 0.14 −0.04 0.17 −0.21 −0.03 0.32
v__ALPHA_BF.gw Baseflow alpha factor (days) 0.6 0.98 0.51 1.01 1.04 0.62
v__GW_DELAY.gw Groundwater delay (days) −139.76 234.5 −198.89 −216.84 209.46 481.86

r__GWQMN.gw
Threshold depth of water in
the shallow aquifer required

for return
−0.07 0.46 −0.64 −0.11 2.01 0.21

v__CH_K2.rte Effective hydraulic
conductivity (mm/h) −367.12 175.49 −12.96 232.1 249.42 131.99

v__CH_N2.rte Manning’s n value for
main channel 0 0.04 0.13 0.03 0.15 0.13

v__REVAPMN.gw
Threshold depth of water in

the shallow aquifer for
“revamp” to occur

81.71 326.5 421.85 387.87 481.2 571.41

r__GW_REVAP.gw Groundwater “revap”
coefficient −0.39 −0.38 −0.23 0.44 −0.34 0.21

r__OV_N.hru Manning’s “n” value for
overland flow 0.32 0.05 0.39 0.21 0.06 −1.11

r__SLSUBBSN.hru Average slope length (m) 0.9 0.45 1.12 0.84 0.7 −0.52

r__HRU_SLP.hru Average slope
steepness (m/m) −0.1 −0.38 −0.18 0.02 0.08 −0.47

v__EPCO.hru Plant uptake
compensation factor 0.34 0.59 −0.47 0.07 0.26 0.43

v__ESCO.hru Soil evaporation
compensation factor 0.15 0.05 0.02 0.89 0.15 0.37

r__SOL_BD().sol Moist bulk density (g/cm3) 2.19 1.5 1.22 1.31 1.79 1.64

r__SOL_K().sol Saturated hydraulic
conductivity (mm/h) −0.55 −0.35 −0.56 −0.68 −0.75 −0.98

v__PLAPS.sub Precipitation lapse rate (mm) −716.86 690 −368.75 −867.07 615.05 −660.12

In summary, the performances of the CMADS model and TRMM model in the DRB
were satisfactory across the sub-basins, but the performance of the Gauge-SWAT was only
satisfactory in the upstream, deviating significantly from the observed data in the middle
stream and downstream.

As was shown in Figure 9, though the CMADS and TRMM inputs replicated the runoff
successfully at a daily scale, some small flood peaks were not simulated and the discharge
of extreme floods during the flood season was significantly underestimated. The runoff of
the Gauge model was notably different from the measured records and most of the floods
were not simulated by the Gauge model.
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Table 7. The post-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on a monthly scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.86 0.54 0.85 0.77 0.53 0.74 40.09 11.3 37
Danfeng Station 0.82 0.21 0.77 0.71 0.1 0.66 9.9 13.1 0

Jingziguan Station 0.89 0.08 0.87 0.84 0.12 0.82 −32.1 −89.3 −67.9

Specifically, according to Table 8, the CMADS-SWAT was the most successful in esti-
mating runoffs because its R2 and NSE values in the upstream and middle stream were all
above 0.5, while its R2 and NSE values were 0.42 and 0.34 in the downstream. The R2 and
NSE values of the TRMM-SWAT in the upper and lower reaches were all below 0.5, with the
exception of that in the midstream, which was above 0.5, showing that the TRMM-SWAT
underperformed in the upstream and downstream. Different from the CMADS-SWAT
and the TRMM-SWAT, the performance of the Gauge-SWAT was unsatisfactory in the
whole basin, for its R2 and NSE values were all below 0.5. In addition, the PBIAS values
of the CMADS-SWAT and the Gauge-SWAT were above zero in the upstream, below zero
in the middle stream, and below 0.5 in the downstream, indicating that the discharge
values of the CMADS-SWAT and the Gauge-SWAT were overestimated in the upstream
and underestimated in the middle and lower reaches, especially in the downstream. Fur-
thermore, the PBIAS values of the TRMM-SWAT in the upper, middle, and lower reaches
were 42.8%, 20.4%, and −59.7%, respectively, showing that the discharge values derived
from TRMM-SWAT were too high in the upstream and too low in the downstream.

Table 8. The post-calibration performance error amounts of the SWAT model simulated with CMADS,
TRMM, and Gauge data on a daily monthly scale.

Station
R2 NSE PBIAS

CMADS Gauge TRMM CMADS Gauge TRMM CMADS Gauge TRMM

Majie Station 0.59 0.35 0.49 0.51 0.33 0.45 20.3 10.6 42.8
Danfeng Station 0.52 0.1 0.54 0.52 0.07 0.52 −4.5 −12.9 −20.4

Jingziguan Station 0.42 0.03 0.53 0.34 0.05 0.49 −65.5 −86.9 −59.7

The results after calibration indicated that CMADS-SWAT was superior to the other
two precipitation products in both monthly and daily runoff simulation with the highest
R2 and NSE and a similar hydrological process line to the observed runoff. However, it
was unexpected that the performance of the Gauge-SWAT was the worst, although the
simulated runoff and rainfall had the same trend as the other two products. Moreover, all
the three products tended to overestimate the runoff in the upper and middle reaches and
underestimate that in downstream at the monthly scale. When it comes to the daily scale,
all these three products overestimated the streamflow in upstream and underestimated the
runoff in the lower and middle streams.
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4. Discussion

Precipitation inputs play an important role in runoff simulation, and the errors can
influence the accuracy of the hydrographical outputs [52]. Generally, precipitation inputs
are evaluated on the basis of their predictable performances with hydrological parameters
at the watershed scale, which avoids the scale difference found when using ground-based
observations for validation [53]. This study evaluated the performance of RO and satellite-
based precipitation datasets (CMADS and TRMM) in driving the SWAT model to simulate
streamflow in the DRB on both monthly and daily scales. All modeling scenarios were
calibrated and validated against runoff data measured at Majie Station, Danfeng Station,
and Jingziguan Station. The SWAT-Cup’s SUFI-2 algorithm was used for calibration and
validation. Indices, including NSE, R2, and PBIAS, were selected to evaluate the efficiency
of simulation runoff outcomes.

We found that compared with rainfall gauge observations, TRMM tended to under-
estimate the precipitation on both monthly and daily scales, while CMADS tended to
overestimate the rainfall on the monthly scale but understate the rainfall on the daily scale.
These findings are similar with previous studies. For example, Jiang et al. [21] found that
TRMM underestimated precipitation on a daily scale in the Mishui Basin, Jiang et al. [47]
found an average bias of −20.5% for CMADS over Xixian Basin, and Guo et al. [38] cal-
culated an average bias of −28.7% for CMADS over Jinhua River Basin. The reason why
CMADS underestimated the precipitation was the underestimation of the background
field CMORPH data [54]. Additionally, the ability of TRMM and CMADS to identify the
torrential rain events was worse than that of Gauge. In summary, the performance of
CMADS in precipitation simulation was better than that of TRMM, maybe because the cor-
rect process of TRMM was simpler than that of CMADS [55]. The spatial distribution of the
precipitation varied from dataset to dataset, namely, the rainfall of CMADS increased from
the center to the surroundings and its rainfall in the central north was the highest. TRMM
increased from upstream to downstream and the highest rainfall occurred in the east, but
there is no obvious spatial distribution pattern with the rainfall of Gauge. This result can
be explained by the different distributions of the rain gauge. In addition, all meteorological
data were categorized into each sub-basin by the “nearest-distance” principle in the SWAT
model [49], which contributed to the difference in the precipitation data from CMADS,
TRMM, and Gauge as well. Moreover, the similarity between the rainfall of CMADS and
Gauge was higher than that of the TRMM on both the monthly and daily scales, which
is consistent with Wang’s [56] research in the Ganjiang River Basin, where the area and
elevation are similar to the DRB. Wang et al. [56] found that CMADS performed better than
TRMM in precipitation estimation because of the different development processes of these
two products. Only 500 stations were used to correct the TRMM data, while 2421 stations
were used to correct the CMADS data [57,58]. Song et al. [59] conducted research on the
Qujiang River Basin, (38,900 km2) finding that the spatial distribution of CMADS and
TRMM was different from that of Gauge, which is consistent with our study.

Pre-calibration results showed that CMADS and TRMM were reliable enough to
estimate runoffs on the monthly scale at Majie Station and Jingziguan Station, while they
performed unsatisfactorily in simulating streamflow at Danfeng Station. The performances
of Gauge in estimating runoff on the monthly scale in the middle stream and downstream
were both unreliable, and only its performances in runoff simulation at the Majie Station was
satisfactory. The performances of that on the daily scale, however, were all unsatisfactory.
Moreover, all three datasets seriously overestimated the runoff in the middle stream and
downstream on the monthly scale. Moreover, underestimation is probably better attributed
to poor representation of the spatial variability of precipitation patterns in the middle
and downstream, thereby causing the low ratio of streamflow to precipitation. According
to Vu et al.’s [60] research, the underestimation can be attributed to the spatiotemporal
uncertainty of the precipitation inputs. Previous studies indicated that the spatiotemporal
uncertainty of the catchment rainfall was one of the main sources of uncertainty in runoff
simulation using rainfall–runoff models [61–63]. Additionally, satellite-based precipitation
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estimations have their own uncertainties [13]. This means that the satellite-based rainfall
estimation affects the runoff simulation significantly [64]. Moreover, Rivera’s research [65]
found that previous conditions were more important before extreme floods, while previous
conditions had little effect on conditions after extreme floods. It explains the result that the
average observed streamflow was lower than the average simulated runoff and the average
measured runoff was higher than the average observed runoff throughout the year in the
upstream, except for September, because the underestimation in September in the Majie
Station is the continuous precipitation before an extreme flood occurred in September.

When it comes to the post-calibration results, all three products tended to overestimate
the runoff in the upper and middle reaches and underestimate the downstream at the
monthly scale, while all three products overestimate the streamflow upstream and underes-
timate the runoff in the lower and middle streams at the daily scale. The overestimation
at the monthly scale and the underestimation at the daily scale may be due to the overall
inaccurate estimation of precipitation with the CMADS and TRMM data. In most cases,
RO performed better than satellite precipitation in runoff simulation, even in sparsely
gauged areas, when SWAT was used for modeling both monthly and daily scales, such
as Vu et al.’s [60] research. Namely, they tested the accuracy of four satellite precipita-
tion products, including TRMM 3B42 V7, PERSIANN, PERSIANN-Climate Data Record
(PERSIANN-CDR), and CMADS, by using these four products to drive the SWAT model
and comparing the runoff simulation results with the runoff simulated by gauged rainfall
data in the Han River Basin in South Korea. Their results illustrated that the application
of TRMM and CMADS in runoff simulation was worse than that of the gauges. However,
our results vary from theirs. It is found in this paper that CMADS-SWAT was superior to
the other two precipitation products in both monthly and daily runoff simulations, but
Gauge-SWAT performed the worst in both monthly and daily streamflow simulations. This
finding is not uncommon; for example, Song et al.’s [59] research on the Qujiang River
Basin (38,900 km2) proved that the CMADS-SWAT performed best in the whole basin,
followed by TRMM-SWAT and Gauge-SWAT, which performed the worst. That was mainly
because of the non-uniform distribution of the gauges. According to Wang et al.’s [66]
research, when the number of the stations is similar, the more uniform distribution of
rainfall stations, the greater the NSE. In this study, the distribution of the Gauge was the
most nonuniform, causing the performance of Gauge-SWAT to be the least satisfactory
among the three products. Moreover, the gauge data only represent the observed rainfall at
a specific station, whereas the CMADS and TRMM data represent precipitation averages
over a large area [67]. For the variation of the topography that causes the precipitation
variations over a short distance, the heterogeneity of the landscape of the weather forecasts
by CMADS and TRMM is better. In addition, CMADS is a combination of the gauge and
satellite data; therefore, its accuracy is higher than that of Gauge and TRMM.

At present, few studies have compared the performance of CMADS and TRMM data
by using the SWAT model, because CMADS only covers East Asia and is a newly released
dataset. Additionally, most studies are focused on evaluating the performance of CMADS,
CHIPRS, and CPC data or only studying the applicability of CFSR data by using the SWAT
model [35,68]. Using different models or inputting different parameters will cause different
results [69]. Therefore, the satellite or satellite-based products (including CMADS and
TRMM) can be applied to the SWAT model or other models in the future to ensure that their
replications of runoff are accurate and their predictions of rainfall are credible. Nonetheless,
the datasets evaluated in this study can serve as viable alternatives in watersheds similar
to the DRB where the observed precipitation data are unavailable.

5. Conclusions

In this study, CMADS and TRMM were evaluated on the basis of the measured records
of the DRB using the SWAT model, and the main conclusions are as follows:

(1) On the monthly scale, the precipitation measurements of CMADS and TRMM are
similar to the rain gauge data. However, the rainfall data derived from TRMM and
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CMADS have a different pattern from the precipitation of Gauge at the daily scale.
Both TRMM and CMADS underestimate the precipitation, especially TRMM data.
Moreover, the ability of CMADS and TRMM to simulate extreme precipitation (e.g.,
torrential rain) is worse than that of Gauge. The CMADS and TRMM data are also
different from the Gauge data on the spatial scale. The rainfall data derived from
CMADS tend to increase from the middle to the surroundings and the rainfall data
derived from TRMM tend to decrease from upstream to downstream, while the
precipitation of Gauge has no clear pattern.

(2) The performance of CMADS-SWAT and TRMM-SWAT is consistent with the observed
data from upstream to downstream at a monthly scale, while they both underestimate
the runoff. However, Gauge-SWAT only performs satisfactorily in the upstream and
its performance in the midstream and downstream is unsatisfactory. The ability of
Gauge-SWAT to simulate extreme floods is poor, and the runoff is underestimated by
Guage-SWAT as well. However, only CMADS-SWAT performs satisfactorily in the
whole basin at a daily scale, while both TRMM-SWAT and Gauge-SWAT performed
unsatisfactorily in the middle and lower reaches. CMADS-SWAT, TRMM-SWAT, and
Gauge-SWAT have all underestimated the runoff at a daily scale.

(3) Among the three precipitation products, the performance of CMADS-SWAT is the
best, followed by TRMM-SWAT. Gauge-SWAT had the worst performance, whether
on the monthly scale or the daily scale.
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