The Content Level, Spatial and Temporal Distribution Characteristics, and Health-Risk Assessment of Trace Elements in Upper Lancang River (Changdu Section)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling
2.3. Data Collection and Data-Quality Assessment
2.4. Analytical Method
- (1)
- Enrichment of trace elements
- (2)
- Health-risk assessment model
- (i)
- Calculation of average daily dose:
- (ii)
- Calculation of skin exposure dose to water:
3. Result and Discussion
3.1. Trace Elements in Water
3.2. Temporal and Spatial Distribution Characteristics of Trace Elements
3.3. Vertical Distribution of Trace Elements
3.4. Health-Risk Assessment
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alexakis, D.E.; Kiskira, K.; Gamvroula, D.; Emmanouil, C.; Psomopoulos, C.S. Evaluating toxic element contamination sources in groundwater bodies of two Mediterranean sites. Environ. Sci. Pollut. 2021, 28, 34400–34409. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Zhao, L.; Li, Q.; Hu, Y.; Huang, H.; Zou, J.; Gao, F.; Zhang, Y.; Xu, P.; Wu, Z. Disribution characteristics, Enrichment patterns and health risk assessment of dissolved trace elements in river water in the source region of the Yangtze River. J. Water Clim. Change 2021, 12, 2288–2298. [Google Scholar] [CrossRef]
- Adamiec, E.; Jarosz-Krzemińska, E.; Bilkiewicz-Kubarek, A. Adverse health and environmental outcomes of cycling in heavily polluted urban environments. Sci. Rep. 2022, 12, 148. [Google Scholar] [CrossRef]
- Zhao, L.; Li, W.; Lin, L.; Guo, W.; Zhao, W.; Tang, X.; Gong, D.; Li, Q.; Xu, P. Field investigation on river hydrochemical characteristics and larval and juvenile fish in the source region of the yangtze river. Water 2019, 11, 1342. [Google Scholar] [CrossRef] [Green Version]
- Carlin, D.J.; Naujokas, M.F.; Bradham, K.D.; Cowden, J.; Suk, W.A. Arsenic and Environmental Health: State of the Science and Future Research Opportunities. Enviorn. Health Perspect. 2016, 124, 890–899. [Google Scholar] [CrossRef] [PubMed]
- Juhasz, A.L.; Smith, E.; Weber, J.; Rees, M.; Rofe, A.; Kuchel, T.; Sansom, L.; Naidu, R. In vivo assessment of arsenic bioavailability in rice and its significance for human health risk assessment. Environ. Health Perspect. 2006, 114, 1826–1831. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Naujokas, M.F.; Anderson, B.; Ahsan, H.; Aposhian, H.V.; Suk, W. The broad scope of health effects from chronic arsenic exposure: Update on a worldwide public health problem. Environ. Health Perspect. 2013, 121, 295–302. [Google Scholar] [CrossRef]
- Huang, P.C.; Su, P.H.; Chen, H.Y.; Huang, H.B.; Tsai, J.L.; Huang, H.I.; Wang, S.L. Childhood blood lead levels and intellectual development after ban of leaded gasoline in Taiwan a 9-year prospective study. Environ. Int. 2012, 40, 88–96. [Google Scholar] [CrossRef]
- Lim, S.S.; Vos, T.; Flaxman, A.D.; Danaei, G.; Shibuya, K.; Adair-Rohani, H.; AlMazroa, M.A.; Amann, M.; Anderson, H.R.; Andrews, K.G.; et al. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: A systematic analysis for the Global Burden of Disease Study. Lancet 2010, 380, 2224–2260. [Google Scholar] [CrossRef] [Green Version]
- Kavcar, P.; Sofuoglu, A.; Sofuoglu, S.C. A health risk assessment for exposure to trace metals via drinking water ingestion pathway. Int. J. Hyg. Environ. Health. 2009, 212, 216–227. [Google Scholar] [CrossRef] [Green Version]
- Hasan, M.F.; Nur-E-Alam, M.; Salam, M.A.; Rahman, M.H.; Paul, S.C.; Rak, A.E.; Ambade, B.; Islam, A.R.M.T. Health Risk and Water Quality Assessment of Surface Water in an Urban River of Bangladesh. Sustainability 2021, 13, 6832. [Google Scholar] [CrossRef]
- Liu, R.; Yang, C.; Li, S.; Sun, P.; Shen, S.; Li, Z.; Kai, L. Arsenic mobility in the arsenic-contaminated Yangzonghai Lake in China. Ecotoxicol. Environ. Saf. 2014, 107, 321–327. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Wang, X.; Zhu, E.; Liu, Z.; Zhang, X.; Guo, J.; Liu, X.; He, C.; HOU, S.; Fu, P.; et al. Evolution of the Dissolved Organic Matter Composition along the Upper Mekong (Lancang) River. ACS Earth Space Chem. 2021, 5, 319–330. [Google Scholar] [CrossRef]
- Yi, Z.; Gao, F.U.; Daming, H.E.; Shaojuan, L.I. Comparison of spatial-temporal distribution characteristics of water temperatures between Lancang River and Mekong River. Chin. Sci. Bull. 2007, 52, 141–147. [Google Scholar]
- Zhao, Z.; Li, S.; Xue, L.; Liao, J.; Yang, Q. Effects of dam construction on arsenic mobility and transport in two large rivers in Tibet, China. Sci. Total Environ. 2020, 741, 140406. [Google Scholar] [CrossRef]
- Song, J.; Fu, K.; Su, B.; Huang, Q.; Zhang, J. Spatial distribution of heavy metal concentrations and pollution assessment in the bed loads of the Lancang River system. Acta Geogr. Sin. 2013, 68, 389–397. [Google Scholar]
- Zhang, J.L.; Fu, K.D.; Wang, B.; Chen, L.Q.; Son, J.Y.; Su, B. Assessment of heavy metal pollution of bed sediment in the Lancang River. Prog. Geogr. 2014, 33, 1136–1144. [Google Scholar]
- Cheng, S.F.; Yun-Liang, L.I.; Zhong, H. Key points of project safety monitoring of Tibet Zhaqu Guoduo Hydropower Station. Electr. Power Surv. Des. 2013, 3, 71–77. [Google Scholar]
- Wang, L.H.; Jiao, Y.M.; Ming, Q.Z.; He, L.L.; Zhou, H.B. Evaluation of heavy metal pollution in Bijiang Basin in Yunnan Provinc. Res. Environ. Sci. 2009, 22, 595–600. [Google Scholar]
- Political Research Office of the CPC Changdu Municipal Committee. New Era new Style New Changdu-Summary of Economic and social development of Changdu since the sixth Central Tibet Work Symposium. New Tibet. 2020, 9, 35–39. [Google Scholar]
- He, D.M. Analysis on hydrological characteristics of Lancang—Mekong River. Yunnan Geogr. Environ. Res. 1995, 7, 139–146. [Google Scholar]
- Xue, H.T.; Bing, R.; Qi, W.X. Influencing factors of arsenic adsorption and desorption in sediments from Angqu River. Acta Sci. Circumstantiae 2020, 40, 3269–3276. [Google Scholar]
- Tao, Y.; Bi, X.; Xin, Z.; Zhu, F.; Liao, M.; Li, Y. Geological and geochemical characteristics and genetic analysis of the La Norma lead-zinc-antimony polymetallic deposit in the Changdu a of Tibet. Miner. Deposits 2011, 30, 599–615. [Google Scholar]
- Liu, Y.; Hou, Z.; Yu, Y.; Tian, S.; Li, Y.; Yang, Z. Study on the mineralization characteristics and genesis of MVT lead-zinc deposits in the Changdu a of Tibet. Acta Petrol. Sinica. 2013, 29, 1407–1426. [Google Scholar]
- Chen, B.; Qu, J. New achievements of geological structure research in Sanjiang Yuan. Geol. China 1992, 1, 15–17. [Google Scholar]
- Huang, X.; Sillanp, M.; Bu, D.; Gjessing, E.T. Water quality in the Tibetan Plateau: Metal contents of four selected rivers. Environ. Pollut. 2008, 156, 270–277. [Google Scholar] [CrossRef]
- Chen, Z.; Shikui, D.; Shiliang, L.; Nannan, A.; Isange, S.; Haidi, Z.; Qi, L.; Xiaoyu, W. Preliminary study on the effect of cascade dams on organic matter sources of sediments in the middle Lancang–Mekong River. J. Soils. Sediment. 2018, 18, 297–308. [Google Scholar]
- Luo, X. Research on the Industry Analysis and Development Plan of the Cold Chain Logistics Market in Changdu, Tibet; University of Electronic Science and Technology of China: Chengdu, China, 2020. [Google Scholar]
- Zhao, L.; Gong, D.; Zhao, W.; Lin, L.; Yang, W.; Guo, W.; Tang, X.; Li, Q. Spatial-temporal distribution characteristics and health risk assessment of heavy metals in surface water of the Three Gorges Reservoir, China. Sci. Total Environ. 2020, 704, 134883. [Google Scholar] [CrossRef]
- Li, L.; Chao, L.; Wen, J.Y.; Liang, Y.Z.; Min, L.; Qing, Y.L.; John, C.C. Spatial variations and periodic changes in heavy metals in surface water and sediments of the Three Gorges Reservoir, China. Chemosphere 2020, 240, 124837. [Google Scholar]
- Yang, Z.; Xia, X.; Wen, Y.; Ji, J.; Wang, D.; Hou, Q.; Yu, T. Dissolved and particulate partitioning of trace elements and their spatial–temporal distribution in the Changjiang River. J. Geochem. Explor. 2014, 145, 114–123. [Google Scholar] [CrossRef]
- Gaillardet, J.; Viers, J.; Dupré, B. 7.7-Trace Elements in River Waters. Treatise Geochem. 2014, 181, 195–235. [Google Scholar]
- Jie, L.; Kunli, L. Elements in surface and well water from the central North China Plain: Enrichment patterns, origins, and health risk assessmen. Environ. Pollut. 2020, 258, 113725. [Google Scholar]
- USEPA. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final; Office of Superfund Remediation and Technology Innovation U.S. Environmental Protection Agency: Washington, DC, USA, 2004.
- Giri, S.; Singh, A.K. Risk assessment, statistical source identification and seasonal fluctuation of dissolved metals in the Subarnkha River, India. J. Hazard. Mater. 2014, 265, 305–314. [Google Scholar] [CrossRef]
- Gao, B.; Gao, L.; Gao, J.; Xu, D.; Wang, Q.; Sun, K. Simultaneous evaluations of occurrence and probabilistic human health risk associated with trace elements in typical drinking water sources from major river basins in China. Sci. Total Environ. 2019, 666, 139–146. [Google Scholar] [CrossRef]
- USEPA. National Recommended Water Quality Criteria-Aquatic Life Criteria Table; Office of Water Office of Science and Technology: Washington DC, USA, 2014.
- Wang, J.; Liu, G.; Liu, H.; Lam, P. Multivariate statistical evaluation of dissolved trace elements and a water quality assessment in the middle reaches of Huaihe River, Anhui, China. Sci. Total Environ. 2017, 583, 421–431. [Google Scholar] [CrossRef]
- Xiao, J.; Wang, L.; Deng, L.; Jin, Z.D. Characteristics, sources, water quality and health risk assessment of trace elements in river water and well water in the Chinese Loess Plateau. Sci. Total Environ. 2019, 650, 2004–2012. [Google Scholar] [CrossRef]
- China Environmental Science Press. Chinese Soil Element Background Value; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- La, B.; Bu, D.; Tan, X.; Chen, J.; Zhang, Q. Concentration and risk assessment of metal elements in Niyang river. Environ. Monit. Manag. Technol. 2017, 29, 33–36. [Google Scholar]
- Qin, H.; Gao, B.; Huang, B.; Zhang, S.; Dong, L.; Sun, Z. Distribution Characteristics and Pollution Risk Assessment of Trace Elements in River Water of Lhasa River Basin. Nonferrous Met. 2020, 10, 79–86. [Google Scholar]
- Wang, M. Study on the Supergene Enrichment and Sources of Arsenic in the Senge Zangbo Drainages and Yarlung Zangbo in Tibet; The State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences: Beijing, China, 2010. [Google Scholar]
- Kumar, S.; Islam, A.R.M.T.; Hasanuzzaman, M.; Roquia, S.; Khan, R.; Islam, M.S.; Rahman, M.S.; Pal, S.C.; Ali, M.M.; Gustave, W.; et al. Potentially toxic elemental contamination in Wainivesi River, Fiji impacted by gold-mining activities using chemometric tools and SOM analysis. Environ. Sci. Pollut. 2022. Available online: https://www.researchgate.net/publication/358198853_Potentially_toxic_elemental_contamination_in_Wainivesi_River_Fiji_impacted_by_gold-mining_activities_using_chemometric_tools_and_SOM_analysis (accessed on 4 March 2022). [CrossRef]
- Kumar, S.; Islam, A.R.M.T.; Hasanuzzaman, M.; Roquia, S.; Khan, R.; Islam, M.S. Preliminary assessment of heavy metals in surface water and sediment in Nakuvadra-Rakiraki River, Fiji using indexical and chemometric approaches. J. Environ. Manag. 2021, 298, 113517. [Google Scholar] [CrossRef]
- Hua, Z.; Wang, Y. Advance on pollutant release from river and lake sediments under hydrodynamic actions. J. Hohai Univ. 2018, 46, 95–105. [Google Scholar]
- Zhu, H.W.; Wang, D.Z.; Fan, J.Y.; Zhong, B.C. Physical processes and influencing factors of contaminants release due to resuspended sediments in water environment. Sci. Sin. Chim. 2015, 45, 18–28. [Google Scholar]
- Hahn, J.; Opp, C.; Evgrafova, A.; Groll, M.; Zitzer, N.; Laufen, B.R. Impacts of dam draining on the mobility of heavy metals and arsenic in water and basin bottom sediments of three studied dams in Germany. Sci. Total Environ. 2018, 640–641, 1072–1081. [Google Scholar] [CrossRef] [PubMed]
- Palanques, A.; Grimalt, J.; Belzunces, M.; Estrada, F.; Puig, P.; Guillen, J. Massive accumulation of highly polluted sedimentary deposits by river damming. Sci. Total Environ. 2014, 497–498, 369–381. [Google Scholar] [CrossRef]
- Varol, M. Dissolved heavy metal concentrations of the Kralkz, Dicle and Batman dam reservoirs in the Tigris River basin, Turkey. Chemosphere 2013, 93, 954–962. [Google Scholar] [CrossRef]
- Zhong, H.P.; Liu, H.; Geng, L.H. Cumulative effects of Lancang River Basin cascade hydropower development on ecology and environment. J. Hydraul. Eng. 2007, S1, 577–581. [Google Scholar]
Number | Sampling Sites | Longitude | Latitude | Main Stream or Tributary |
---|---|---|---|---|
L01 | The tail of reservoir | 97°05′20.30″ | 31°38′54.17″ | Main stream |
L02 | 11 km in front of the dam | 97°06′49.13″ | 31°35′25.11″ | Main stream |
L03 | 9 km in front of the dam | 97°07′4.33″ | 31°35′19.17″ | Main stream |
L04 | 5 km in front of the dam | 97°09′07.68″ | 31°33′14.07″ | Main stream |
L05 | 3 km in front of the dam | 97°09′41.55″ | 31°33′01.76″ | Main stream |
L06 | 0.3 km in front of the dam | 97°11′18.84″ | 31°32′03.85″ | Main stream |
L07 | 1 km under the dam | 97°07′40.69″ | 31°34′56.02″ | Main stream |
L08 | 50 km under the dam | 97°10′58.00″ | 31°10′3.00″ | Main stream |
Z01 | The estuary of Angqu | 97°09′09.38″ | 31°09′00.33″ | Tributary |
L09 | 1 km downstream of Lancang river | 97°10′37.7″ | 31°07′58.4″ | Main stream |
L10 | 40 km downstream of Lancang river | 97°21′34.8″ | 31°55′50.0″ | Main stream |
Subject | Cw | IR | ABSGI | EF | ED | SA | Kp | ET | BW | AT |
---|---|---|---|---|---|---|---|---|---|---|
Adults | – | 2 a | See Table 3 | 350 b | 70 b | 18,000 b | See Table 3 | 0.58 a | 65 a | 25,550 b |
Children | – | 0.64 a | See Table 3 | 350 b | 6 b | 6600 b | See Table 3 | 1 a | 20 a | 219 b |
Element | As | Cu | Zn | Pb | Cr | Mn |
---|---|---|---|---|---|---|
RfDingestion | 0.3 a | 40 c | 300 a | 1.4 c | 3 c | 24 c |
RfDdermal | 0.285 a | 8 c | 60 a | 0.42 c | 0.075 c | 0.96 c |
ABSGI | 95% b | 57% b | 20% d | 11.7% d | 3.8% b | 6% b |
Kp | 0.001 b | 0.001 b | 0.0006 b | 0.0001 b | 0.003 b | 0.001 b |
River | As (μg/L) | Pb (μg/L) | Fe (μg/L) | Mn (μg/L) | Cr (μg/L) | Cu (μg/L) | Zn (μg/L) | Literature | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | Mean | Range | ||
This study | 7.28 | 1.00–14.1 | 2.65 | ND-10.0 | 153.1 | 26.90–836.3 | 10.84 | 0.94–39.37 | 2.27 | ND-5.99 | 6.25 | ND-17.18 | 9.87 | ND-39.81 | / |
Niyang River, Tibet | 0.10 | / | 1.16 | 0.012–5.18 | 360.0 | 160.0–600.0 | 27.65 | 0.02–400 | 1.75 | 0.34–3.28 | 7.11 | 0.06–34.2 | 36.34 | 0.15–187 | [41] |
Lhasa River, Tibet | 2.28 | 0.65–4.27 | / | / | 11.83 | ND-111.0 | 4.05 | ND-21.7 | / | / | 3.95 | 0.12–14.00 | 4.32 | 0.51–15.80 | [42] |
Sengzangbo River, Tibet | 58.40 | 2.4–252.0 | 0.09 | 0.05–0.22 | 14.00 | 0.16–98.1 | 3.63 | 2.18–14.7 | / | / | 2.58 | 0.36–4.98 | 1.25 | 0.75–4.01 | [43] |
Yarlung Tsangpo, Tibet | 10.80 | 1.97–83.2 | 0.06 | 0.03–0.31 | 8.30 | 0.46–82.28 | 2.37 | 0.65–19.2 | / | / | 1.69 | 0.77–3.30 | 0.97 | 0.41–2.10 | [43] |
Shiquan River, Tibet | 68.00 | 3.10–150 | / | / | / | / | / | / | / | / | / | / | / | / | [43] |
Xiangquan River, Tibet | 5.99 | 4.91–7.06 | / | / | / | / | / | / | / | / | / | / | / | / | [43] |
Naqu, Tibet | 5.89 | 5.87–5.91 | / | / | / | / | / | / | / | / | / | / | / | / | [43] |
The downstream of Lancang river, Tibet | / | / | 11.82 | 8.43–15.2 | 100 | 70–130 | 13.3 | 12.5–14.1 | 0.39 | 0.28–0.50 | 1.53 | 0.86–2.2 | 1.88 | 0.83–2.93 | [26] |
Six major river basins, Bangladesh | 6.53 | 1.3–32 | 12.41 | 2.9–31 | 2476 | 215–21,800 | 233.8 | 15.3–1170 | 27.7 | 2.1–86 | / | / | 53.24 | 10–190 | [11] |
Wainivesi River, Bangladesh, | / | / | 190 | 153–204 | 1623 | 570–4260 | 45 | 5–96 | 104 | 55–122 | 46.8 | 10–107 | 183 | 21–753 | [44] |
Nakuvadra-Rakiraki River, Ra Province | / | / | 12.4 | 5.11–21.3 | 198 | 57.1–444 | 358 | 168–531 | 133 | 63–181 | 22.4 | 5.2–43.7 | 46.1 | 9.02–99.7 | [45] |
Average of the world’s rivers | 0.62 | 0.079 | 66 | 34 | 0.70 | 1.44 | 5.34 | [32] | |||||||
Class I of surface water | 50 | 10 | 300 | 100 | / | 10 | 50 | Water-quality standards for surface water in China |
Sampling Time | Category | T (°C) | pH | DO (mg/L) | EC (µS/cm) | As (µg/L) | Fe (µg/L) | Mn (µg/L) | Pb (µg/L) | Cr (µg/L) | Cu (µg/L) | Zn (µg/L) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Wet season (October 2018) | mean | 5.71 | 8.21 | 9.32 | 357 | 5.49 | 207.7 | 10.29 | 3.11 | 0.58 | 0.86 | 8.80 |
min | 4.45 | 8.16 | 8.86 | 226 | 1.00 | 26.90 | 0.94 | ND | ND | ND | ND | |
max | 6.83 | 8.36 | 10.24 | 385 | 14.06 | 836.3 | 39.37 | 10.00 | 5.29 | 2.38 | 39.81 | |
Dry season (December 2018) | mean | 0.37 | 8.22 | 6.90 | 604 | 9.06 | 98.49 | 11.39 | 2.18 | 3.96 | 11.64 | 10.93 |
min | 0.10 | 8.13 | 6.52 | 488 | 7.65 | 64.62 | 2.60 | 1.95 | ND | 9.98 | 8.20 | |
max | 1.00 | 8.31 | 7.25 | 743 | 12.70 | 179.3 | 19.09 | 2.60 | 5.99 | 17.18 | 13.03 |
Elements | Reservoir Tail | Reservoir Area | Under the Dam | Urban Area | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HQingestion | HQdermal | HI | HQingestion | HQdermal | HI | HQingestion | HQdermal | HI | HQingestion | HQdermal | HI | |||||||||||||
Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | |
As | 1.0527 | 1.0948 | 0.0058 | 0.0119 | 1.0585 | 1.1067 | 0.2917 | 0.3034 | 0.0016 | 0.0033 | 0.2933 | 0.3067 | 0.2201 | 0.2290 | 0.0012 | 0.0025 | 0.2214 | 0.2314 | 1.2255 | 1.2745 | 0.0067 | 0.0138 | 1.2323 | 1.2884 |
Mn | 0.0484 | 0.0503 | 0.0063 | 0.0130 | 0.0547 | 0.0633 | 0.0083 | 0.0086 | 0.0011 | 0.0022 | 0.0094 | 0.0109 | 0.0047 | 0.0049 | 0.0006 | 0.0013 | 0.0053 | 0.0062 | 0.0135 | 0.0141 | 0.0018 | 0.0036 | 0.0153 | 0.0177 |
Pb | 0.0561 | 0.0584 | 0.0001 | 0.0002 | 0.0562 | 0.0586 | 0.0773 | 0.0804 | 0.0001 | 0.0003 | 0.0774 | 0.0807 | 0.0901 | 0.0937 | 0.0002 | 0.0003 | 0.0902 | 0.0940 | 0.0163 | 0.0170 | 0.0000 | 0.0001 | 0.0164 | 0.0171 |
Cr | 0.0520 | 0.0541 | 0.0326 | 0.0669 | 0.0846 | 0.1210 | 0.0005 | 0.0006 | 0.0003 | 0.0007 | 0.0009 | 0.0013 | 0.0005 | 0.0006 | 0.0003 | 0.0007 | 0.0009 | 0.0013 | 0.0005 | 0.0006 | 0.0003 | 0.0007 | 0.0009 | 0.0013 |
Cd | 0.0033 | 0.0034 | 0.0003 | 0.0007 | 0.0036 | 0.0041 | 0.0072 | 0.0075 | 0.0008 | 0.0015 | 0.0079 | 0.0090 | 0.0065 | 0.0067 | 0.0007 | 0.0014 | 0.0071 | 0.0081 | 0.0015 | 0.0015 | 0.0002 | 0.0003 | 0.0016 | 0.0019 |
Cu | 0.0011 | 0.0011 | 0.0000 | 0.0001 | 0.0011 | 0.0012 | 0.0007 | 0.0007 | 0.0000 | 0.0000 | 0.0007 | 0.0008 | 0.0008 | 0.0008 | 0.0000 | 0.0000 | 0.0008 | 0.0009 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 | 0.0000 |
Zn | 0.0005 | 0.0005 | 0.0000 | 0.0000 | 0.0005 | 0.0006 | 0.0016 | 0.0016 | 0.0000 | 0.0001 | 0.0016 | 0.0017 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0001 | 0.0001 | 0.0001 | 0.0000 | 0.0000 | 0.0001 | 0.0001 |
Elements | Reservoir Tail | Reservoir Area | Under the Dam | Urban Area | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
HQingestion | HQdermal | HI | HQingestion | HQdermal | HI | HQingestion | HQdermal | HI | HQingestion | HQdermal | HI | |||||||||||||
Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | Adult | Child | |
As | 0.7962 | 0.8281 | 0.0044 | 0.0090 | 0.8006 | 0.8371 | 0.7773 | 0.8084 | 0.0043 | 0.0088 | 0.7815 | 0.8171 | 0.9280 | 0.9651 | 0.0051 | 0.0105 | 0.9331 | 0.9756 | 1.1883 | 1.2358 | 0.0065 | 0.0134 | 1.1948 | 1.2492 |
Mn | 0.0104 | 0.0108 | 0.0014 | 0.0028 | 0.0118 | 0.0136 | 0.0116 | 0.0121 | 0.0015 | 0.0031 | 0.0131 | 0.0152 | 0.0145 | 0.0151 | 0.0019 | 0.0039 | 0.0164 | 0.0189 | 0.0213 | 0.0222 | 0.0028 | 0.0057 | 0.0241 | 0.0279 |
Pb | 0.0443 | 0.0461 | 0.0001 | 0.0002 | 0.0444 | 0.0462 | 0.0436 | 0.0454 | 0.0001 | 0.0002 | 0.0437 | 0.0455 | 0.0490 | 0.0510 | 0.0001 | 0.0002 | 0.0491 | 0.0511 | 0.0497 | 0.0517 | 0.0001 | 0.0002 | 0.0498 | 0.0518 |
Cr | 0.0464 | 0.0482 | 0.0290 | 0.0597 | 0.0754 | 0.1079 | 0.0498 | 0.0518 | 0.0312 | 0.0641 | 0.0810 | 0.1160 | 0.0463 | 0.0481 | 0.0290 | 0.0596 | 0.0753 | 0.1077 | 0.0005 | 0.0006 | 0.0003 | 0.0007 | 0.0009 | 0.0013 |
Cd | 0.0015 | 0.0015 | 0.0002 | 0.0003 | 0.0016 | 0.0019 | 0.0015 | 0.0015 | 0.0002 | 0.0003 | 0.0016 | 0.0019 | 0.0015 | 0.0015 | 0.0002 | 0.0003 | 0.0016 | 0.0019 | 0.0015 | 0.0015 | 0.0002 | 0.0003 | 0.0016 | 0.0019 |
Cu | 0.0082 | 0.0085 | 0.0002 | 0.0004 | 0.0084 | 0.0090 | 0.0082 | 0.0085 | 0.0002 | 0.0004 | 0.0084 | 0.0090 | 0.0083 | 0.0087 | 0.0002 | 0.0004 | 0.0086 | 0.0091 | 0.0100 | 0.0104 | 0.0003 | 0.0005 | 0.0103 | 0.0110 |
Zn | 0.0012 | 0.0012 | 0.0000 | 0.0000 | 0.0012 | 0.0013 | 0.0011 | 0.0011 | 0.0000 | 0.0000 | 0.0011 | 0.0012 | 0.0013 | 0.0013 | 0.0000 | 0.0000 | 0.0013 | 0.0013 | 0.0008 | 0.0009 | 0.0000 | 0.0000 | 0.0009 | 0.0009 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, M.; Zhang, Z.; Lin, L.; Zhao, L.; Dong, L.; Jin, H.; Zou, J.; Li, R.; He, Y. The Content Level, Spatial and Temporal Distribution Characteristics, and Health-Risk Assessment of Trace Elements in Upper Lancang River (Changdu Section). Water 2022, 14, 1115. https://doi.org/10.3390/w14071115
Liu M, Zhang Z, Lin L, Zhao L, Dong L, Jin H, Zou J, Li R, He Y. The Content Level, Spatial and Temporal Distribution Characteristics, and Health-Risk Assessment of Trace Elements in Upper Lancang River (Changdu Section). Water. 2022; 14(7):1115. https://doi.org/10.3390/w14071115
Chicago/Turabian StyleLiu, Min, Zhongwei Zhang, Li Lin, Liangyuan Zhao, Lei Dong, Haiyang Jin, Jingyi Zou, Rui Li, and Yunjiao He. 2022. "The Content Level, Spatial and Temporal Distribution Characteristics, and Health-Risk Assessment of Trace Elements in Upper Lancang River (Changdu Section)" Water 14, no. 7: 1115. https://doi.org/10.3390/w14071115
APA StyleLiu, M., Zhang, Z., Lin, L., Zhao, L., Dong, L., Jin, H., Zou, J., Li, R., & He, Y. (2022). The Content Level, Spatial and Temporal Distribution Characteristics, and Health-Risk Assessment of Trace Elements in Upper Lancang River (Changdu Section). Water, 14(7), 1115. https://doi.org/10.3390/w14071115