Estimating Evapotranspiration of Screenhouse Banana Plantations Using Artificial Neural Network and Multiple Linear Regression Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Field Experiments and Data Sets
2.2. The Models
2.3. Data Analysis
2.4. Performance Measures
3. Results
3.1. Energy Balance Closure and Footprint Analysis
3.2. Diurnal Courses of the Input Variables
3.3. Overall Performance of the Models
3.4. Models Based on Distinct Training Periods
3.5. The Most Influencing Input Variables
3.6. The Leaf Area Index (LAI)
3.6.1. Periods of Variable Duration
3.6.2. Isolating the Effect of LAI on LE
3.6.3. Models Based on Average Daily Values
3.7. Training and Validating on Different Seasons
3.8. Comparison with a Penman-Monteith Model for Banana Plants
4. Summary and Discussion
5. Main Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration—Guidelines for Computing Crop Water Requirements; FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Available online: https://www.fao.org/3/x0490e/x0490e00.htm (accessed on 8 March 2022).
- Katerji, N.; Rana, G. Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. Agric. For. Meteorol. 2006, 138, 142–155. [Google Scholar] [CrossRef]
- Laaboudi, A.; Mouhouche, B.; Draoui, B. Neural network approach to reference evapotranspiration modeling from limited climatic data in arid regions. Int. J. Biometeorol. 2012, 56, 831–841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zanetti, S.S.; Sousa, E.F.; Oliveira, V.P.; Almeida, F.T.; Bernardo, S. Estimating Evapotranspiration Using Artificial Neural Network and Minimum Climatological Data. J. Irrig. Drain. Eng. 2007, 133, 83–89. [Google Scholar] [CrossRef]
- Odhiambo, L.O.; Yoder, R.E.; Yoder, D.C.; Hines, J.W. Optimization of fuzzy evapotranspiration model through neural training with input-output examples. Trans. ASAE 2001, 44, 1625–1633. [Google Scholar] [CrossRef]
- Manikumari, N.; Vinodhini, G.; Murugappan, A. Modelling of Reference Evapotranspiration using Climatic Parameters for Irrigation Scheduling using Machine learning. ISH J. Hydraul. Eng. 2020, 28, 272–281. [Google Scholar] [CrossRef]
- Chen, Z.; Zhu, Z.; Jiang, H.; Sun, S. Estimating daily reference evapotranspiration based on limited meteorological data using deep learning and classical machine learning methods. J. Hydrol. 2020, 591, 125286. [Google Scholar] [CrossRef]
- Tikhamarine, Y.; Malik, A.; Kumar, A.; Souag-Gamane, D.; Kisi, O. Estimation of monthly reference evapotranspiration using novel hybrid machine learning approaches. Hydrol. Sci. J. 2019, 64, 1824–1842. [Google Scholar] [CrossRef]
- Kelley, J.; Higgins, C.; Vagher, T.; Walker, W. Neural networks and low cost sensors to estimate site-specific evapotranspiration. In Proceedings of the ASABE Annual International Meeting, Washington, DC, USA, 16–19 July 2017. [Google Scholar] [CrossRef]
- Kelley, J.; Pardyjak, E.R. Using Neural Networks to Estimate Site-Specific Crop Evapotranspiration with Low-Cost Sensors. Agronomy 2019, 9, 108. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Sun, S.; Wang, Y.; Wang, Q.; Zhang, X. Temporal convolution-network-based models for modeling maize evapotranspiration under mulched drip irrigation. Comput. Electron. Agric. 2020, 169, 105206. [Google Scholar] [CrossRef]
- Granata, F. Evapotranspiration evaluation models based on machine learning algorithms—A comparative study. Agric. Water Manag. 2019, 217, 303–315. [Google Scholar] [CrossRef]
- Adamala, S. Nonlinear Evapotranspiration Modeling Using Artificial Neural Networks. In Advanced Evapotranspiration Methods and Applications; Bucur, D., Ed.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Deswal, S.; Pal, M. Artificial Neural Network based Modeling of Evaporation Losses in Reservoirs. World Acad. Sci. Eng. Technol. 2008, 2, 18–22. Available online: https://publications.waset.org/2045/artificial-neural-network-based-modeling-of-evaporation-losses-in-reservoirs (accessed on 8 March 2022).
- Ohana-Levi, N.; Munitz, S.; Ben-Gal, A.; Schwartz, A.; Peeters, A.; Netzer, Y. Multiseasonal grapevine water consumption—Drivers and forecasting. Agric. For. Meteorol. 2020, 280, 107796. [Google Scholar] [CrossRef]
- Möller, M.; Tanny, J.; Li, Y.; Cohen, S. Measuring and predicting evapotranspiration in an insect-proof screenhouse. Agric. For. Meteorol. 2004, 127, 35–51. [Google Scholar] [CrossRef]
- Haijun, L.; Cohen, S.; Lemcoff, J.H.; Israeli, Y.; Tanny, J. Sap flow, canopy conductance and microclimate in a banana screenhouse. Agric. For. Meteorol. 2015, 201, 165–175. [Google Scholar] [CrossRef]
- Aubinet, M.; Vesala, T.; Papale, D. Eddy Covariance: A Practical Guide to Measurement and Data Analysis; Springer: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
- Rosa, R.; Tanny, J. Surface renewal and eddy covariance measurements of sensible and latent heat fluxes of cotton during two growing seasons. Biosyst. Eng. 2015, 136, 149–161. [Google Scholar] [CrossRef]
- Hanan, J.J. Greenhouses—Advanced Technology for Protected Horticulture, 1st ed.; CRC Press: Boca Raton, FL, USA, 1998. [Google Scholar]
- Von Zabeltitz, C. Integrated Greenhouse Systems for Mild Climates: Climate Conditions, Design, Construction, Maintenance, Climate control; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Tanny, J. Microclimate and evapotranspiration of crops covered by agricultural screens: A review. Biosyst. Eng. 2013, 114, 26–43. [Google Scholar] [CrossRef]
- Tanny, J. Advances in screenhouse design and practice for protected cultivation. In Achieving Sustainable Greenhouse Cultivation; Marcelis, L.F.M., Heuvelink, E., Eds.; Burleigh Dodds Science Publishing: Cambridge, UK, 2019. [Google Scholar] [CrossRef]
- Hadad, D.; Lukyanov, V.; Cohen, S.; Zipilevitz, E.; Gilad, Z.; Silverman, D.; Tanny, J. Measuring and modelling crop water use of sweet pepper crops grown in screenhouses and greenhouses in an arid region. Biosyst. Eng. 2020, 200, 246–258. [Google Scholar] [CrossRef]
- Pirkner, M.; Tanny, J.; Shapira, O.; Teitel, M.; Cohen, S.; Shajak, Y.; Israeli, Y. The effect of screen type on crop microclimate, reference evapotranspiration and yield of a screenhouse banana plantation. Sci. Hortic. 2014, 180, 32–39. [Google Scholar] [CrossRef]
- Mahmood, A.; Hu, Y.; Tanny, J.; Asante, E.A. Effects of shading and insect-proof screens on crop microclimate and production: A review of recent advances. Sci. Hortic. 2018, 241, 241–251. [Google Scholar] [CrossRef]
- Dicken, U.; Cohen, S.; Tanny, J. Effect of plant development on turbulent fluxes of a screenhouse banana plantation. Irrig. Sci. 2013, 31, 701–713. [Google Scholar] [CrossRef]
- Tanny, J.; Cohen, S.; Israeli, Y. Increasing water consumption efficiency. Isr. Agric. 2014. Available online: https://www.israelagri.com/?CategoryID=402&ArticleID=974 (accessed on 7 March 2022).
- Pirkner, M. Examining the Efficiency of Evapotranspiration Models of Screenhouse Orchards: Improving the Models and Their Use. Master’s Thesis, Hebrew University of Jerusalem, Jerusalem, Israel, 2012. [Google Scholar]
- Bassette, C.; Bussiere, F. 3-D modelling of the banana architecture for simulation of rainfall interception parameters. Agric. For. Meteorol. 2005, 129, 95–100. [Google Scholar] [CrossRef]
- Tanny, J.; Haijun, L.; Cohen, S. Airflow characteristics, energy balance and eddy covariance measurements in a banana screenhouse. Agric. For. Meteorol. 2006, 139, 105–118. [Google Scholar] [CrossRef]
- Tanny, J.; Lukyanov, V.; Neiman, M.; Cohen, S.; Teitel, M.; Seginer, I. Energy balance and partitioning and vertical profiles of turbulence characteristics during initial growth of a banana plantation in a screenhouse. Agric. For. Meteorol. 2018, 256, 53–60. [Google Scholar] [CrossRef]
- Wilson, K.; Goldstein, A.; Falge, E.; Aubinet, M.; Baldocchi, D.; Berbigier, P.; Bernhofer, C.; Ceulemans, R.; Dolman, H.; Field, C.; et al. Energy balance closure at FLUXNET sites. Agric. For. Meteorol. 2002, 113, 223–243. [Google Scholar] [CrossRef] [Green Version]
- Pirkner, M.; Dicken, U.; Tanny, J. Penman-Monteith approaches for estimating crop evapotranspiration in screenhouses—A case study with table-grape. Int. J. Biometeorol. 2014, 58, 725–737. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics, 3rd ed.; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Twine, T.E.; Kustas, W.P.; Norman, J.M.; Cook, D.R.; Houser, P.R.; Meyers, T.P.; Prueger, J.H.; Starks, P.J.; Wesely, M.L. Correcting eddy-covariance flux underestimates over a grassland. Agric. For. Meteorol. 2000, 103, 279–300. Available online: http://www.sciencedirect.com/science/article/pii/S0168192300001234 (accessed on 8 March 2022). [CrossRef] [Green Version]
- Burba, G. Eddy Covariance Method for Scientific, Industrial, Agricultural and Regulatory Applications; LiCor Biosciences: Lincoln, NE, USA, 2013. [Google Scholar]
Item | S1—2016 | S2—2017 |
---|---|---|
Planting date | March 2016 | April 2017 |
Data collection period | 52 days From 17 June (DOY 169) to 7 August (DOY 220) | 141 days From 27 June (DOY 178) to 14 November (DOY 318) |
Plant height change during data collection (m) | 1.7–4.1 | 1.9–5.1 |
LAI change during data collection | 0.3–1.6 | 0.7–2.3 |
Sensor height above the ground (m); dates | 2.8; 17 June–9 July 2016 4.3; 10 July–7 August 2016 | 2.8; 27 June–19 July 2017 5.6; 19 July–3 August 2017 7.1; 3 August–14 November 2017 |
Model | ANN | MLR |
---|---|---|
Slope | 0.92 | 0.89 |
Y-intercept (W m−2) | 7.7 | 11.1 |
R2 | 0.92 | 0.89 |
RMSE (W m−2) | 37.5 | 45.1 |
MAE (W m−2) | 21.0 | 27.2 |
Training & Validation Seasons | ANN | MLR | |
---|---|---|---|
R2 | Trained ’17; validated ’16 | R2 = 0.94 = 0.939 | R2 = 0.913 = 0.913 |
Trained ’16; validated ’17 | R2 = 0.89 = 0.889 | R2 = 0.838 = 0.838 | |
RMSE [W m−2] | Trained ’17; validated ’16 | 25.7 | 55.2 |
Trained ’16; validated ’17 | 62.5 | 70.0 | |
MAE [W m−2] | Trained ’17; validated ’16 | 16.8 | 39.5 |
Trained ’16; validated ’17 | 41.2 | 52.7 | |
slope (Intercept) [W m−2] | Trained ’17; validated ’16 | 0.78 (1.7) | 1.5 (−13.7) |
Trained ’16; validated ’17 | 1.09 (23.8) | 0.54 (46.1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yohanani, E.; Frisch, A.; Lukyanov, V.; Cohen, S.; Teitel, M.; Tanny, J. Estimating Evapotranspiration of Screenhouse Banana Plantations Using Artificial Neural Network and Multiple Linear Regression Models. Water 2022, 14, 1130. https://doi.org/10.3390/w14071130
Yohanani E, Frisch A, Lukyanov V, Cohen S, Teitel M, Tanny J. Estimating Evapotranspiration of Screenhouse Banana Plantations Using Artificial Neural Network and Multiple Linear Regression Models. Water. 2022; 14(7):1130. https://doi.org/10.3390/w14071130
Chicago/Turabian StyleYohanani, Efi, Amit Frisch, Victor Lukyanov, Shabtai Cohen, Meir Teitel, and Josef Tanny. 2022. "Estimating Evapotranspiration of Screenhouse Banana Plantations Using Artificial Neural Network and Multiple Linear Regression Models" Water 14, no. 7: 1130. https://doi.org/10.3390/w14071130
APA StyleYohanani, E., Frisch, A., Lukyanov, V., Cohen, S., Teitel, M., & Tanny, J. (2022). Estimating Evapotranspiration of Screenhouse Banana Plantations Using Artificial Neural Network and Multiple Linear Regression Models. Water, 14(7), 1130. https://doi.org/10.3390/w14071130