Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Source of Data
2.4. Multimodel Ensembles (MMEs) for GCMs
2.5. Standardized Precipitation Index (SPI)
2.6. Characterization of Drought
2.7. The Mann–Kendall Trend Test
2.8. Spearman’s Rho Test
3. Results and Discussion
3.1. Spatiotemporal Variability of Rainfall
3.2. Temporal Analysis of SPI
3.3. Characteristics of Drought
3.4. Mann–Kendall and Spearman’s Rho Trend Test of SPI
3.5. Future Precipitation Projections for 21st Century
3.6. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Locke, H.; Mackey, B. The nature of climate change. Int. J. Wilderness 2009, 15, 7–14. [Google Scholar]
- Parry, M.L.; Canziani, O.; Palutikof, J.; Van der Linden, P.; Hanson, C. Climate Change 2007-Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Fourth Assessment Report of the IPCC; Cambridge University Press: London, UK, 2007; Volume 4. [Google Scholar]
- Pachauri, R.K.; Allen, M.R.; Barros, V.R.; Broome, J.; Cramer, W.; Christ, R.; Church, J.A.; Clarke, L.; Dahe, Q.; Dasgupta, P. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: London, UK, 2014. [Google Scholar]
- Panthi, J.; Dahal, P.; Shrestha, M.L.; Aryal, S.; Krakauer, N.Y.; Pradhanang, S.M.; Lakhankar, T.; Jha, A.K.; Sharma, M.; Karki, R. Spatial and temporal variability of rainfall in the Gandaki River Basin of Nepal Himalaya. Climate 2015, 3, 210–226. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Taylor, R.; Xu, Y. Quantifying uncertainty in the impacts of climate change on river discharge in sub-catchments of the Yangtze and Yellow River Basins, China. Hydrol. Earth Syst. Sci. 2011, 15, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Ceppi, P.; Scherrer, S.C.; Fischer, A.M.; Appenzeller, C. Revisiting Swiss temperature trends 1959–2008. Int. J. Climatol. 2012, 32, 203–213. [Google Scholar] [CrossRef] [Green Version]
- Arnell, N.W. Climate change and global water resources. Global Environ. Chang. 1999, 9, S31–S49. [Google Scholar] [CrossRef]
- Mondal, A.; Kundu, S.; Mukhopadhyay, A. Rainfall trend analysis by Mann-Kendall test: A case study of north-eastern part of Cuttack district, Orissa. Int. J. Earth Sci. 2012, 2, 70–78. [Google Scholar]
- Rahman, G.; Rahman, A.U.; Anwar, M.M.; Dawood, M.; Miandad, M. Spatio-temporal analysis of climatic variability, trend detection, and drought assessment in Khyber Pakhtunkhwa, Pakistan. Arab. J. Geosci. 2021, 15, 81. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Domínguez-Castro, F.; Camarero, J.J.; El Kenawy, A. Chapter 9—Droughts. In Water Resources in the Mediterranean Region; Zribi, M., Brocca, L., Tramblay, Y., Molle, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 219–255. [Google Scholar] [CrossRef]
- Rahman, G.; Rahman, A.-U.; Ullah, S.; Dawood, M.; Moazzam, M.F.U.; Lee, B.G. Spatio-temporal characteristics of meteorological drought in Khyber Pakhtunkhwa, Pakistan. PLoS ONE 2021, 16, e0249718. [Google Scholar] [CrossRef] [PubMed]
- Bonaccorso, B.; Bordi, I.; Cancelliere, A.; Rossi, G.; Sutera, A. Spatial variability of drought: An analysis of the SPI in Sicily. Water Resour. Manag. 2003, 17, 273–296. [Google Scholar] [CrossRef]
- Umran Komuscu, A. Using the SPI to analyze spatial and temporal patterns of drought in Turkey. Drought Netw. News (1994–2001) 1999, 11, 49. [Google Scholar]
- Khan, A.A.; Zhao, Y.; Rahman, G.; Rafiq, M.; Moazzam, M.F.U. Spatial and Temporal Analysis of Rainfall and Drought Condition in Southwest Xinjiang in Northwest China, Using Various Climate Indices. Earth Syst. Environ. 2021, 5, 201–216. [Google Scholar] [CrossRef]
- Sivakumar, M.V.K. Impacts of natural disasters in agriculture, rangeland and forestry: An overview. In Natural Disasters and Extreme Events in Agriculture: Impacts and Mitigation; Sivakumar, M.V.K., Motha, R.P., Das, H.P., Eds.; Springer: Berlin, Germany, 2005; pp. 1–22. [Google Scholar]
- Rahman, G.; Rahman, A.U.; SamiUllah; Dawood, M. Spatial and temporal variation of rainfall and drought in Khyber Pakhtunkhwa Province of Pakistan during 1971–2015. Arab. J. Geosci. 2018, 11, 1–13. [Google Scholar] [CrossRef]
- Sönmez, F.K.; Koemuescue, A.U.; Erkan, A.; Turgu, E. An analysis of spatial and temporal dimension of drought vulnerability in Turkey using the standardized precipitation index. Nat. Hazards 2005, 35, 243–264. [Google Scholar] [CrossRef]
- Wilhite, D.A. Chapter 1 Drought as a Natural Hazard: Concepts and Definitions. In Drought: A Global Assessment; Wilhite, D.A., Ed.; Routledge Publishers: London, UK, 2000; Volume 1, pp. 3–18. [Google Scholar]
- Ullah, I.; Yuanjie, Z.; Ali, S.; Rahman, G. Rainfall and drought variability in spatial and temporal context in Lop Nor region, South Xinjiang, China, during 1981–2018. Arab. J. Geosci. 2020, 13, 1–13. [Google Scholar] [CrossRef]
- Ashraf, M.; Routray, J.K. Spatio-temporal characteristics of precipitation and drought in Balochistan Province, Pakistan. Nat. Hazards 2015, 77, 229–254. [Google Scholar] [CrossRef]
- Khadr, M. Temporal and spatial analysis of meteorological drought characteristics in the upper Blue Nile river region. Hydrol. Res. 2016, 48, 265–276. [Google Scholar] [CrossRef]
- Gopalakrishnan, C. Water and disasters: A review and analysis of policy aspects. Int. J. Water Resour. Dev. 2013, 29, 250–271. [Google Scholar] [CrossRef]
- Kostopoulou, E.; Giannakopoulos, C.; Krapsiti, D.; Karali, A. Temporal and spatial trends of the standardized precipitation index (SPI) in Greece using observations and output from regional climate models. In Perspectives on Atmospheric Sciences; Springer: Berlin/Heidelberg, Germany, 2017; pp. 475–481. [Google Scholar]
- Maity, R.; Suman, M.; Verma, N.K. Drought prediction using a wavelet based approach to model the temporal consequences of different types of droughts. J. Hydrol. 2016, 539, 417–428. [Google Scholar] [CrossRef]
- Zarei, A.R.; Moghimi, M.M.; Koohi, E. Sensitivity Assessment to the Occurrence of Different Types of Droughts Using GIS and AHP Techniques. Water Resour. Manag. 2021, 35, 3593–3615. [Google Scholar] [CrossRef]
- Vicente-Serrano, S.M.; Beguería, S.; Lorenzo-Lacruz, J.; Camarero, J.J.; López-Moreno, J.I.; Azorin-Molina, C.; Revuelto, J.; Morán-Tejeda, E.; Sanchez-Lorenzo, A. Performance of drought indices for ecological, agricultural, and hydrological applications. Earth Interact. 2012, 16, 1–27. [Google Scholar] [CrossRef] [Green Version]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scales. In Proceedings of the 8th Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January 1993; pp. 179–183. [Google Scholar]
- Palmer, W.C. Meteorological Drought; US Department of Commerce, Weather Bureau: Washington, DC, USA, 1965; Volume 30.
- Vicente-Serrano, S.M.; Beguería, S.; López-Moreno, J.I. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. J. Clim. 2010, 23, 1696–1718. [Google Scholar] [CrossRef] [Green Version]
- Kogan, F.; Gitelson, A.; Zakarin, E.; Spivak, L.; Lebed, L. AVHRR-based spectral vegetation index for quantitative assessment of vegetation state and productivity. Photogramm. Eng. Remote Sens. 2003, 69, 899–906. [Google Scholar] [CrossRef]
- Singh, R.P.; Roy, S.; Kogan, F. Vegetation and temperature condition indices from NOAA AVHRR data for drought monitoring over India. Int. J. Remote Sens. 2003, 24, 4393–4402. [Google Scholar] [CrossRef]
- Kogan, F. A typical pattern of vegetation conditions in southern Africa during El Nino years detected from AVHRR data using three-channel numerical index. Int. J. Remote Sens. 1998, 19, 3688–3694. [Google Scholar] [CrossRef]
- Ali, S.; Ajmal, M.; Khan, M.S.; Shah, S.U. Assessment of precipitation trends in Gilgit Baltistan (Pakistan) for the period 1980–2015: An indicator of climate change. J. Himal. Earth Sci. 2017, 50, 66–75. [Google Scholar]
- Rao, P.G. Climatic changes and trends over a major river basin in India. Clim. Res. 1993, 2, 215–223. [Google Scholar] [CrossRef]
- Salma, S.; Rehman, S.; Shah, M. Rainfall trends in different climate zones of Pakistan. Pak. J. Meteorol. 2012, 9, 37–47. [Google Scholar]
- Raza, M.; Hussain, D.; Rasul, G.; Akbar, M.; Raza, G. Variations of surface temperature and precipitation in Gilgit-Baltistan (GB), Pakistan from 1955 to 2010. J. Biodivers Environ. Sci. 2015, 6, 67–73. [Google Scholar]
- Khattak, M.S.; Ali, S. Assessment of temperature and rainfall trends in Punjab province of Pakistan for the period 1961–2014. J. Himal. Earth Sci. 2015, 48, 42. [Google Scholar]
- Khan, I.; Waqas, T.; Ullah, S. Precipitation variability and its trend detection for monitoring of drought hazard in northern mountainous region of Pakistan. Arab. J. Geosci. 2020, 13, 1–18. [Google Scholar] [CrossRef]
- Munawar, S.; Tahir, M.N.; Baig, M.H.A. Twenty-first century hydrologic and climatic changes over the scarcely gauged Jhelum river basin of Himalayan region using SDSM and RCPs. Environ. Sci. Pollut. Res. 2022, 29, 11196–11208. [Google Scholar] [CrossRef]
- Ahmed, K.; Sachindra, D.A.; Shahid, S.; Demirel, M.C.; Chung, E.-S. Selection of multi-model ensemble of general circulation models for the simulation of precipitation and maximum and minimum temperature based on spatial assessment metrics. Hydrol. Earth Syst. Sci. 2019, 23, 4803–4824. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, K.; Sachindra, D.; Shahid, S.; Iqbal, Z.; Nawaz, N.; Khan, N. Multi-model ensemble predictions of precipitation and temperature using machine learning algorithms. Atmos. Res. 2020, 236, 104806. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K. Development of drought hazard index for vulnerability assessment in Pakistan. Nat. Hazards 2020, 103, 2989–3010. [Google Scholar] [CrossRef]
- Adnan, S.; Ullah, K.; Shuanglin, L.; Gao, S.; Khan, A.H.; Mahmood, R. Comparison of various drought indices to monitor drought status in Pakistan. Clim. Dyn. 2018, 51, 1885–1899. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Chung, E.-S.; Ismail, T.; Wang, X.-J. Spatial distribution of secular trends in annual and seasonal precipitation over Pakistan. Clim. Res. 2017, 74, 95–107. [Google Scholar] [CrossRef]
- Baig, M.H.A.; Abid, M.; Khan, M.R.; Jiao, W.; Amin, M.; Adnan, S. Assessing meteorological and agricultural drought in Chitral Kabul river basin using multiple drought indices. Remote Sens. 2020, 12, 1417. [Google Scholar] [CrossRef]
- Krishnan, R.; Shrestha, A.B.; Ren, G.; Rajbhandari, R.; Saeed, S.; Sanjay, J.; Syed, M.; Vellore, R.; Xu, Y.; You, Q. Unravelling climate change in the Hindu Kush Himalaya: Rapid warming in the mountains and increasing extremes. In The Hindu Kush Himalaya Assessment; Springer: Berlin/Heidelberg, Germany, 2019; pp. 57–97. [Google Scholar]
- Zamir, U.B.; Masood, H. GIS and RS Based Approach for Monitoring the Snow Cover Change in Gilgit Baltistan. J. Sci. Ind. Res. 2018, 61, 91–95. [Google Scholar] [CrossRef]
- Ali, K.; Bajracharya, R.M.; Sitaula, B.K.; Raut, N.; Koirala, H.L. Morphometric analysis of Gilgit river basin in mountainous region of Gilgit-Baltistan Province, Northern Pakistan. J. Geosci. Prot. 2017, 5, 70. [Google Scholar] [CrossRef] [Green Version]
- CHIRPS. Climate Hazard Group Infrared Precipitation with Stations; University of California: Santa Barbara, CA, USA; Available online: https://www.chc.ucsb.edu/data/chirps (accessed on 20 December 2021).
- QGIS. QGIS Geographic Information System. QGIS Association. 2022. Available online: https://qgis.org/en/site/ (accessed on 31 December 2021).
- Moazzam, M.F.U.; Rahman, G.; Munawar, S.; Farid, N.; Lee, B.G. Spatiotemporal Rainfall Variability and Drought Assessment during Past Five Decades in South Korea Using SPI and SPEI. Atmosphere 2022, 13, 292. [Google Scholar] [CrossRef]
- Katsanos, D.; Retalis, A.; Tymvios, F.; Michaelides, S. Analysis of precipitation extremes based on satellite (CHIRPS) and in situ dataset over Cyprus. Nat. Hazards 2016, 83, 53–63. [Google Scholar] [CrossRef]
- Banerjee, A.; Chen, R.; Meadows, M.E.; Singh, R.; Mal, S.; Sengupta, D. An analysis of long-term rainfall trends and variability in the uttarakhand himalaya using google earth engine. Remote Sens. 2020, 12, 709. [Google Scholar] [CrossRef] [Green Version]
- NCAR. National Center for Atmospheric Research. Available online: https://ncar.ucar.edu/ (accessed on 20 December 2021).
- Collins, M.; Tett, S.; Cooper, C. The internal climate variability of HadCM3, a version of the Hadley Centre coupled model without flux adjustments. Clim. Dyn. 2001, 17, 61–81. [Google Scholar] [CrossRef]
- Griffies, S.M.; Winton, M.; Donner, L.J.; Horowitz, L.W.; Downes, S.M.; Farneti, R.; Gnanadesikan, A.; Hurlin, W.J.; Lee, H.-C.; Liang, Z.; et al. The GFDL CM3 Coupled Climate Model: Characteristics of the Ocean and Sea Ice Simulations. J. Clim. 2011, 24, 3520–3544. [Google Scholar] [CrossRef]
- Yukimoto, S.; Adachi, Y.; Hosaka, M.; Sakami, T.; Yoshimura, H.; Hirabara, M.; Tanaka, T.Y.; Shindo, E.; Tsujino, H.; Deushi, M. A new global climate model of the Meteorological Research Institute: MRI-CGCM3—Model description and basic performance. J. Meteorol. Soc. Japan. Ser. II 2012, 90, 23–64. [Google Scholar] [CrossRef] [Green Version]
- Chylek, P.; Li, J.; Dubey, M.; Wang, M.; Lesins, G. Observed and model simulated 20th century Arctic temperature variability: Canadian earth system model CanESM2. Atmos. Chem. Phys. 2011, 11, 22893–22907. [Google Scholar]
- Wu, T.; Song, L.; Li, W.; Wang, Z.; Zhang, H.; Xin, X.; Zhang, Y.; Zhang, L.; Li, J.; Wu, F. An overview of BCC climate system model development and application for climate change studies. J. Meteorol. Res. 2014, 28, 34–56. [Google Scholar] [CrossRef]
- Wang, B.; Zheng, L.; Liu, D.L.; Ji, F.; Clark, A.; Yu, Q. Using multi-model ensembles of CMIP5 global climate models to reproduce observed monthly rainfall and temperature with machine learning methods in Australia. Int. J. Climatol. 2018, 38, 4891–4902. [Google Scholar] [CrossRef]
- Dong, T.-Y.; Dong, W.-J.; Guo, Y.; Chou, J.-M.; Yang, S.-L.; Tian, D.; Yan, D.-D. Future temperature changes over the critical Belt and Road region based on CMIP5 models. Adv. Clim. 2018, 9, 57–65. [Google Scholar] [CrossRef]
- Fuchs, B.A.; Svoboda, M.D.; Wilhite, D.A.; Hayes, H. Drought indices for drought risk assessment in a changing climate. In Handbook of Engineering Hydrology: Modeling, Climate Change and Variability; Tylor & Francis Group: Oxfordshire, UK, 2014; pp. 217–231. [Google Scholar]
- Tigkas, D.; Vangelis, H.; Tsakiris, G. DrinC: A software for drought analysis based on drought indices. Earth Sci. Inform. 2015, 8, 697–709. [Google Scholar] [CrossRef]
- Wang, H.; Chen, Y.; Pan, Y.; Li, W. Spatial and temporal variability of drought in the arid region of China and its relationships to teleconnection indices. J. Hydrol. 2015, 523, 283–296. [Google Scholar] [CrossRef]
- Yevjevich, V.M. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts; Colorado State University, Libraries: Fort Collins, CO, USA, 1967. [Google Scholar]
- Burn, D.H.; Cunderlik, J.M.; Pietroniro, A. Hydrological trends and variability in the Liard River basin/Tendances hydrologiques et variabilité dans le basin de la rivière Liard. Hydrol. Sci. J. 2004, 49, 53–67. [Google Scholar] [CrossRef] [Green Version]
- Yue, S.; Pilon, P. A comparison of the power of the t test, Mann-Kendall and bootstrap tests for trend detection/Une comparaison de la puissance des tests t de Student, de Mann-Kendall et du bootstrap pour la détection de tendance. Hydrol. Sci. J. 2004, 49, 21–37. [Google Scholar] [CrossRef]
- Spearman, C. The proof and measurement of association between two things. Am. J. Psych. 1904, 15, 72–101. [Google Scholar] [CrossRef]
- Khan, F.K. Pakistan Geography Economy and People, 4th ed.; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Malik, K.M.; Taylor, P.A.; Szeto, K.; Khan, A.H. Characteristics of central southwest Asian water budgets and their impacts on regional climate. Atmos. Clim. Sci. 2013, 3, 30799. [Google Scholar] [CrossRef] [Green Version]
- Jamro, S.; Dars, G.H.; Ansari, K.; Krakauer, N.Y. Spatio-temporal variability of drought in Pakistan using standardized precipitation evapotranspiration index. Appl. Sci. 2019, 9, 4588. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.; Iqbal, M.F.; Mahmood, I. Validation of CHIRPS satellite-based precipitation dataset over Pakistan. Atmos. Res. 2021, 248, 105289. [Google Scholar] [CrossRef]
- Ullah, W.; Wang, G.; Ali, G.; Tawia Hagan, D.F.; Bhatti, A.S.; Lou, D. Comparing multiple precipitation products against in-situ observations over different climate regions of Pakistan. Remote Sens 2019, 11, 628. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.E.; Azam, M.; Rehman, S.U.; Waseem, M.; Anjum, M.N.; Afzal, A.; Cheema, M.; Mehtab, M.; Latif, M.; Ahmed, R. Spatio-temporal variability of drought characteristics across Pakistan. Paddy Water Environ. 2022, 20, 117–135. [Google Scholar] [CrossRef]
- Niaz, R.; Zhang, X.; Iqbal, N.; Almazah, M.; Hussain, T.; Hussain, I. Logistic Regression Analysis for Spatial Patterns of Drought Persistence. Complexity 2021, 2021, 3724919. [Google Scholar] [CrossRef]
- Abbas, S.; Kousar, S. Spatial analysis of drought severity and magnitude using the standardized precipitation index and streamflow drought index over the Upper Indus Basin, Pakistan. Environ. Dev. Sustain. 2021, 23, 15314–15340. [Google Scholar] [CrossRef]
- Muslehuddin, M.; Mir, H.; Faisal, N. Sindh summer (June–September) monsoon rainfall prediction. Pak. J. Meteorol. 2005, 2. [Google Scholar]
- Ahmed, K.; Shahid, S.; Nawaz, N. Impacts of climate variability and change on seasonal drought characteristics of Pakistan. Atmos. Res. 2018, 214, 364–374. [Google Scholar] [CrossRef]
- Hanif, M.; Khan, A.H.; Adnan, S. Latitudinal precipitation characteristics and trends in Pakistan. J. Hydrol. 2013, 492, 266–272. [Google Scholar] [CrossRef]
- Hina, S.; Saleem, F. Historical analysis (1981–2017) of drought severity and magnitude over a predominantly arid region of Pakistan. Clim. Res. 2019, 78, 189–204. [Google Scholar] [CrossRef]
- Stocker, T. Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: London, UK, 2014. [Google Scholar]
- Barlow, M.; Cullen, H.; Lyon, B. Drought in central and southwest Asia: La Niña, the warm pool, and Indian Ocean precipitation. J. Clim. 2002, 15, 697–700. [Google Scholar] [CrossRef] [Green Version]
- Barlow, M.; Zaitchik, B.; Paz, S.; Black, E.; Evans, J.; Hoell, A. A review of drought in the Middle East and southwest Asia. J. Clim. 2016, 29, 8547–8574. [Google Scholar] [CrossRef]
- Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Fiifi Tawia Hagan, D.; Kwesi Nooni, I.; Lou, D.; Ullah, I. Trend in extreme precipitation indices based on long term in situ precipitation records over Pakistan. Water 2020, 12, 797. [Google Scholar] [CrossRef] [Green Version]
- Pritchard, H.D. Asia’s shrinking glaciers protect large populations from drought stress. Nature 2019, 569, 649–654. [Google Scholar] [CrossRef]
- Ahmed, K.; Shahid, S.; Wang, X.; Nawaz, N.; Khan, N. Spatiotemporal changes in aridity of Pakistan during 1901–2016. Hydrol. Earth Syst. Sci. 2019, 23, 3081–3096. [Google Scholar] [CrossRef] [Green Version]
- Ullah, I.; Ma, X.; Yin, J.; Saleem, F.; Syed, S.; Omer, A.; Habtemicheal, B.A.; Liu, M.; Arshad, M. Observed changes in seasonal drought characteristics and their possible potential drivers over Pakistan. Int. J. Climatol. 2022, 42, 1576–1596. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A. Observed changes in precipitation in China-Pakistan economic corridor during 1980–2016. Atmos. Res. 2018, 210, 1–14. [Google Scholar] [CrossRef]
- Ullah, S.; You, Q.; Ullah, W.; Ali, A.; Xie, W.; Xie, X. Observed changes in temperature extremes over China–Pakistan Economic Corridor during 1980–2016. Int. J. Climatol. 2019, 39, 1457–1475. [Google Scholar] [CrossRef]
- Ali, S.; Khattak, M.S.; Khan, D.; Sharif, M.; Khan, H. Predicting future temperature and precipitation over Pakistan in the 21st century. J. Eng. Appl. Sci. 2017, 35. [Google Scholar] [CrossRef]
Modelling Center | GCM | Resolution |
---|---|---|
National Center for Atmospheric Research, USA [54] | CCSM4 | 0.9° × 1.25° |
Meteorological Office, UK [55] | HadCM3 | 2.5° × 3.75° |
Geophysical Fluid Dynamics Laboratory, USA [56] | GFDL-CM3 | 2° × 2.5° |
National Institute for Environmental Studies, Japan [57] | MRI-CGCM3 | 1.12° × 1.12° |
Canadian Centre for Climate Modelling and Analysis, Canada [58] | CanESM2 | 2.79° × 2.8° |
Beijing Climate Center, China [59] | BCC-CSM1–1 | 2.81° × 2.81° |
SPI Value | Category | Abbreviation |
---|---|---|
≥2 | Extreme wet condition | EXW |
1.5 to 1.99 | Severe wet condition | VEW |
1.0 to 1.49 | Moderate wet condition | MOW |
−0.99 to 0.99 | Near normal condition | N |
−1.0 to −1.49 | Moderate drought condition | MOD |
−1.5 to −1.99 | Severe drought condition | SED |
≤−2.0 | Extreme drought condition | EXD |
Station | Min Rainfall (mm) | Max Rainfall (mm) | Mean Rainfall (mm) | SD | Skewness | Kurtosis |
---|---|---|---|---|---|---|
Astore | 329.47 | 674.92 | 497.36 | 86.66 | 0.28 | −0.47 |
Diamir | 376.78 | 730.41 | 551.54 | 85.26 | 0.08 | −0.52 |
Ghanche | 157.25 | 326.67 | 227.19 | 42.40 | 0.33 | −0.55 |
Ghizer | 182.63 | 395.46 | 279.43 | 51.42 | 0.27 | −0.55 |
Gilgit | 190.43 | 391.20 | 299.49 | 46.50 | −0.19 | −0.32 |
Hunza-Nagar | 172.48 | 343.13 | 244.37 | 44.02 | 0.48 | −0.49 |
Skardu | 214 | 477.35 | 332.55 | 61.67 | 0.34 | −0.26 |
District | Extreme Dryness (<−2.0) | Severe Dryness (−1.5 to −1.99) | Moderate Dryness (−1 to −1.49) |
---|---|---|---|
Astore | 5 | 9 | 39 |
Diamir | 3 | 17 | 46 |
Ghanche | 3 | 7 | 37 |
Ghizer | 4 | 5 | 47 |
Gilgit | 5 | 14 | 45 |
Hunza-Nagar | 2 | 20 | 45 |
Skardu | 5 | 9 | 50 |
Districts | Extreme Drought | Severe Drought | Moderate Drought |
---|---|---|---|
Astore | 2000 | 1982 | 1985, 1991, 1998. 2001 |
Diamir | 1982 | 2000 | 1983, 1985, 1990, 1991, 2001 |
Ghanche | 2000 | 1982, 1995, 1997, 1998, 2001, 2002, 2004 | |
Ghizer | 1982 | 1983, 1985 | 1988, 1989, 1990, 2001 |
Gilgit | 1982 | 1983, 1985, 1990, 1991 | 2000 |
Hunza-Nagar | 1982, 1983 | 1985, 1987, 1988, 1989, 1990, 1991, 1995 | |
Skardu | 2000 | 1982, 2001 | 1997, 1998, 2004 |
Astore | Diamir | Ghanche | Ghizer | Gilgit | Hunza-Nagar | Skardu | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ZMK | ZSR | ZMK | ZSR | ZMK | ZSR | ZMK | ZSR | ZMK | ZSR | ZMK | ZSR | ZMK | ZSR | |
January | 1.03 | 1.51 | 1.03 | 1.01 | 1.68 | 1.82 | 1.4 | 1.57 | 1.69 | 1.77 | 2.31 | 2.68 | 1.26 | 1.39 |
February | 1.36 | 1.46 | 1.01 | 1.04 | 1.06 | 1.2 | 2.03 | 2.09 | 2.2 | 2.22 | 2.71 | 2.85 | 1.73 | 1.77 |
March | −0.6 | −0.6 | −0.8 | −0.86 | 0.1 | 0.002 | 0.32 | 0.36 | −0.02 | 0.002 | 1.71 | 1.92 | −0.24 | −0.27 |
April | 2.15 | 2.25 | 1.75 | 1.84 | 1.59 | 1.64 | 2.08 | 2.21 | 2.08 | 2.23 | 2.29 | 2.94 | 1.89 | 2.02 |
May | 2.52 | 2.67 | 2.2 | 2.39 | 0.52 | 0.61 | 2.14 | 2.41 | 2.69 | 2.82 | 2.48 | 2.66 | 2.31 | 2.36 |
June | 1.43 | 1.33 | 1.92 | 2.01 | 2.1 | 1.95 | 1.95 | 2 | 1.96 | 1.87 | 1.09 | 1.17 | 1.26 | 1.12 |
July | −0.8 | −0.8 | 0.01 | 0.005 | −1.21 | −1.01 | 1.63 | 1.5 | 1.82 | 2.1 | 1.17 | 1.43 | −0.68 | −0.51 |
August | 0.8 | 0.88 | 0.89 | 0.94 | 0.4 | 0.49 | 0.09 | −0.01 | 2.38 | 2.25 | 1.8 | 1.89 | 1.06 | 1.1 |
September | 2.24 | 2.38 | 3.55 | 4.35 | 3.2 | 3.63 | 3.76 | 4.46 | 3.58 | 4.48 | 3.48 | 3.98 | 2.99 | 3.43 |
October | 0.96 | 0.87 | 1.45 | 1.32 | 0.94 | 0.77 | 2.66 | 2.75 | 1.42 | 1.27 | 1.96 | 1.89 | 1.1 | 0.88 |
November | 1.68 | 1.83 | 1.82 | 1.77 | 2.9 | 3.41 | 2.54 | 2.76 | 2.41 | 2.53 | 3.08 | 3.39 | 2.05 | 2.19 |
December | −0.7 | −0.6 | −0.99 | −1.05 | 0.4 | 0.3 | −0.9 | −0.94 | −0.22 | −0.22 | 0.57 | 0.61 | 0.08 | 0.06 |
Annual | 2.83 | 3.44 | 3.34 | 3.78 | 1.99 | 2.13 | 4.29 | 5.42 | 4.76 | 6.5 | 4.46 | 5.87 | 2.27 | 2.64 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moazzam, M.F.U.; Rahman, G.; Munawar, S.; Tariq, A.; Safdar, Q.; Lee, B.-G. Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan. Water 2022, 14, 1132. https://doi.org/10.3390/w14071132
Moazzam MFU, Rahman G, Munawar S, Tariq A, Safdar Q, Lee B-G. Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan. Water. 2022; 14(7):1132. https://doi.org/10.3390/w14071132
Chicago/Turabian StyleMoazzam, Muhammad Farhan Ul, Ghani Rahman, Saira Munawar, Aqil Tariq, Qurratulain Safdar, and Byung-Gul Lee. 2022. "Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan" Water 14, no. 7: 1132. https://doi.org/10.3390/w14071132
APA StyleMoazzam, M. F. U., Rahman, G., Munawar, S., Tariq, A., Safdar, Q., & Lee, B. -G. (2022). Trends of Rainfall Variability and Drought Monitoring Using Standardized Precipitation Index in a Scarcely Gauged Basin of Northern Pakistan. Water, 14(7), 1132. https://doi.org/10.3390/w14071132