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Abstract: In this paper, we investigated the abilities of five sugar-based synthetic surfactants and bio-
surfactants from three different families (i.e., alkyl polyglycoside (APG), sophorolipid (SL), and rham-
nolipid (RL)) to dissolve and mobilize non-aqueous phase liquid (NAPL) components, i.e., toluene
and perchloroethylene (PCE), adsorbed on porous matrices. The objective of this study was to
establish a benchmark for the selection of suitable surfactants for the flushing aquifer remediation
technique. The study involved a physicochemical characterization of the surfactants to determine the
critical micelle concentration (CMCs) and interfacial properties. Subsequently, a batch study, through
the construction of adsorption isotherms, made it possible to evaluate the surfactants’ capacities in
contaminant mobilization via the reduction of their adsorptions onto a reference adsorbent material,
a pine wood biochar (PWB). The results indicate that a synthetic surfactant from the APG family
with a long fatty acid chain and a di-rhamnolipid biosurfactant with a shorter hydrophobic group
offered the highest efficiency values; they reduced water surface tension by up to 54.7% and 52%,
respectively. These two surfactants had very low critical micelle concentrations (CMCs), 0.0071 wt%
and 0.0173 wt%, respectively; this is critical from an economical point of view. The batch experiments
showed that these two surfactants, at concentrations just five times their CMCs, were able to reduce
the adsorption of toluene on PWB by up to 74% and 65%, and of PCE with APG and RL by up to
65% and 86%, respectively. In general, these results clearly suggest the possibility of using these two
surfactants in surfactant-enhanced aquifer remediation technology.

Keywords: surfactants; biosurfactant; critical micelle concentration; mobilization; non-aqueous
phase liquids

1. Introduction

Non-aqueous phase liquids (NAPLs), such as petroleum hydrocarbons and chlori-
nated solvents, are among the most widespread (and consequential) soil and groundwater
contaminants, and they are increasingly being recognized as serious environmental prob-
lems [1–3]. These water-immiscible organic liquids are classified into light NAPL (LNAPL)
and dense NAPL (DNAPL) based on their densities [4]. They are characterized by low
water solubility, high hydrophobicity, and a high tendency to accumulate in the soil organic
fraction [5,6]. After a spill, NAPLs migrate downward through the vadose zone and remain
trapped in the pore space at residual saturation by capillary forces, in the form of separate
phase droplets or ganglia [7]. Light NAPLs float at the water table, while DNAPLs can
penetrate the water table and migrate downward into the low permeability layer [8,9].
Over time, NAPLs trapped in the interstitial space may slowly dissolve in groundwater,
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resulting in long-term persistent sources of aquifer contamination [4]. Due to the unique
chemical–physical characteristics of NAPLs, it is particularly difficult to understand and
predict their distributions in soils and subsoils, which is an essential basis for determining
a proper remediation strategy. Furthermore, conventional remediation technologies, such
as pump-and-treat (P&T), have shown severe limitations in recovering these contami-
nants [10]. P&T is the oldest and the most widely used method for remediation of NAPL
contaminations, which often results in low removal efficiency (60%≥) due to a trapped
immobile separated phase, low solubility, and high interfacial tension of contaminants
with water [11,12]. In this regard, the addition of surfactants has been shown in many
studies to significantly increase the recovery of NAPL in less time and at a lower cost by
washing/flushing or other remediation technologies [13,14].

Surfactants are amphiphilic organic molecules, typically with a hydrophobic tail group
and a hydrophilic head group [15]. They can concentrate at the interface between two
immiscible phases, orienting the hydrophobic group toward the organic phase and the
hydrophilic group toward the aqueous phase, resulting in a decrease in the interfacial
tension (IFT) between the phases [16]. In this way, surfactants can reduce the interfacial
tension between NAPL and water and the attractive force between NAPL and soil [17]; thus,
improving the displacement and mobility of entrapped NAPL by emulsification. When
the surfactant concentration is equal to or greater than the critical micelle concentration
(CMC), the monomers spontaneously aggregate into micelles, with the polar head groups
exposed to the aqueous phase and the hydrophobic tail groups confined into the core [18],
providing a favorable environment for the dispersion of organic compounds [19]. Therefore,
micellization can enhance the solubilization of NAPLs from residual trapped ganglia
and/or adsorbed phases [20,21]. The CMC is the total surfactant concentration at which the
physicochemical property of the system (i.e., surface or interfacial tension) varies the most,
and above which, it becomes independent of the surfactant concentration [22,23]. Under
the same conditions (e.g., temperature, pressure, pH, ionic strength), micellization strongly
depends on the structural molecular properties of the surfactant, such as the size of the
head group, length of the alkyl chain, presence of branches, unsaturation, and/or polar
groups. Several authors have shown that the CMC decreases with the increasing in alkyl
chain length, while it increases in the presence of branching, unsaturation, and/or polar
groups. Moreover, the CMC increases with the increasing size of the hydrophilic group,
which is mainly due to steric hindrance [18,24–27]. Generally, surfactants are divided
into ionic (cationic or anionic), nonionic, or zwitterionic surfactants based on the charge
of their polar head group [28]. Many studies have shown that nonionic surfactants are
preferable to ionic surfactants in soil remediation [29], due to the adsorption of cationic
surfactants [29] or precipitation of anionic surfactants [30] with some counterions. It
has been demonstrated that nonionic surfactants, since the hydrophilic group has no
charge, have negligible interactions with soil particles [31,32] and offer better solubilization
and economic advantages. Moreover, surfactants can be classified into synthetic and
natural surfactants according to their production methods, which are obtained by chemical
synthesis and microbial secondary metabolism, respectively [33,34]. However, the use of
synthetic surfactants as extractive agents in soils remains a problem because, on the one
hand, they are derived from fossil raw materials [19], and, on the other hand, they tend to
remain partially in the soil due to their toxicity and low biodegradability [35]. Recently,
researchers have focused on surfactants that are 100% bio-based [36], such as sugar-based
nonionic surfactants derived from renewable sources (e.g., biomass containing sugars and
fatty acid esters) [26].

Considering the use of surfactants in the context of environmental remediation, this
study focused on two subclasses of bio-based surfactants, alkyl polyglycosides (APGs),
which are the products of a catalyzed chemical reaction of glucose-derived raw materials
with fatty alcohol, and rhamnolipids and sophorolipids, which are biologically produced,
mainly by the bacterium Pseudomonas aeruginosa and the yeast of the genus Candida,
particularly C. bombicola and C. apicola, respectively. Literature studies show that APGs,
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rhamnolipids, and sophorolipids are good candidates as solubilizers and emulsifiers for soil
and aquifer remediation and enhanced oil recovery [37,38]. In addition, rhamnolipids and
sophorolipids have the positive aspect of promoting biodegradation of organic compounds
during remediation [39,40]. Overall, this research aimed to provide a benchmark for the
identification and characterization of potential surfactants for in-situ flushing of contami-
nated sites. In this regard, we investigated the abilities of five nonionic and biodegradable
surfactants to solubilize and mobilize NAPL components adsorbed to a porous medium.
The study initially involved the chemical–physical characterizations of surfactants to de-
termine their CMCs and surface behavior parameters by measuring the liquid–air surface
tension at different surfactant concentrations. In the second phase, a study on the mobiliza-
tion of the adsorbed pollutants was carried out. This involved adsorption isotherm batch
studies to determine the effectiveness of the surfactants in enhancing the mobilization of
NAPLs by reducing their adsorption on a porous reference material.

2. Materials and Methods

This study began with the characterization of critical micelle concentrations (CMCs)
of distinctive types of nonionic surfactants, both synthetic and biosurfactants; then an
experimental setup was used to study the efficiencies of the surfactants to mobilize organic
contaminants, in batch mode operation.

2.1. Materials
2.1.1. Synthetic and Biological Surfactants

Five different surfactants were used in this study, representing different families, in-
cluding two synthetic surfactants from the alkyl polyglycolide family (APG1 and APG2)
and three biosurfactants, one from the sophorolipid family (SL) and two from the rham-
nolipid family (RL1 and RL2). The general APG structure is shown in Figure 1a. Its
hydrophilic moiety consists of oligomeric glycosidic units (mono-, di-, tri-, or more) ob-
tained from starch, corn, wheat, or potato, and also from monomeric carbohydrates. For
the lipophilic part, fatty alcohol blends were used [41]. APG blends were provided, which
differed mainly in the lengths of the fatty acid chains (i.e., shorter for APG1 than for APG2).
A lower polymerization degree of the polysaccharide block is also shown by APG2.

The sophorolipid, whose solution is hereinafter referred to as SL, comprises a hy-
drophilic moiety consisting of sophorose, a 1,2 disaccharide of glucose, and a lipophilic
part consisting of a fatty acid chain. The fatty acid may have one or more unsaturations and
is usually 16 or 18 C atoms long. The fatty acid carboxylic group may be free or involved in
a lactonic bond, usually with the C4 hydroxy group of a glucose unit (Figure 1b,c). The
molecule can be non-, mono-, or di-acetylated at the glucose rings [42].

The rhamnolipids, whose molecular structures are reported in Figure 1d,e, are clas-
sified according to the number of rhamnoses (one/mono or two/di), fatty acid residues
(one or two), and fatty acid compositions. The length of the constituent fatty acids and
their combinations are largely variable, although mono-rhamnolipid (Figure 1e) and di-
rhamnolipid (Figure 1d) are typically the dominant components in a naturally produced
mixture [42]. Two types of rhamnolipids were tested, differing in their physical states, a
water solution rhamnolipid (RL1) and a powder one dissolved in water (RL2).

It should be mentioned that the biosurfactants used in this work were raw mixtures
obtained via secondary metabolism without any separation processes.



Water 2022, 14, 1182 4 of 16Water 2022, 14, x FOR PEER REVIEW 4 of 16 
 

 

 
(a) 

 

  

(b) 
 

(c) 
 

 
 

(d) 
 

(e) 
 

Figure 1. The general structures of surfactants used in this study. (a) Alkyl polyglycoside; (b) 
sophorolipid open structure; (c) sophorolipid lactonic structure; R1 and R2 groups can be a hydroxyl 
or acetate group (OH or OAc); (d) di-rhamnolipid; (e) mono-rhamnolipid. 

2.1.2. Pine Wood Biochar 
Pine wood biochar (PWB) was used as sorbent reference material for batch tests. PWB 

was obtained from the gasification of wood at approximately 850 °C in V 3.90 Burkhardt 
and ECO 180 HG wood gas generator (Burkhardt GmbH, Plößberg bei Tirschenreuth, 
Germany). This microporous material, with a total pore volume of 0.383 cm3 g−1, has a high 
specific surface area (343 ± 2 m2 g−1) and a high carbon content (95.84 wt%) [43]. The large 
adsorption capacity of this material for organic contaminants was demonstrated in previ-
ous studies [43,44]. 

O

O
OH

OH
OH

OH

O

OOH
OH

OH

x
y

O
O

O

OH
OH

R1

OH

O

O

OH
OH

OH

OH

O
O

O

OH
OH

R1

O

OH
O

OH

R2

O

OH

OO

O
O

OOH
OH

O

OOH
OH

OH

OH

OO

O
O

OOH
OH

OH

Figure 1. The general structures of surfactants used in this study. (a) Alkyl polyglycoside;
(b) sophorolipid open structure; (c) sophorolipid lactonic structure; R1 and R2 groups can be a
hydroxyl or acetate group (OH or OAc); (d) di-rhamnolipid; (e) mono-rhamnolipid.

2.1.2. Pine Wood Biochar

Pine wood biochar (PWB) was used as sorbent reference material for batch tests. PWB
was obtained from the gasification of wood at approximately 850 ◦C in V 3.90 Burkhardt
and ECO 180 HG wood gas generator (Burkhardt GmbH, Plößberg bei Tirschenreuth,
Germany). This microporous material, with a total pore volume of 0.383 cm3 g−1, has a
high specific surface area (343 ± 2 m2 g−1) and a high carbon content (95.84 wt%) [43]. The
large adsorption capacity of this material for organic contaminants was demonstrated in
previous studies [43,44].
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2.2. Critical Micelle Concentration (CMC) Measurement

This study was initiated with the characterization of the selected surfactants by de-
termining their critical micelle concentrations (CMCs). A series of surface tension mea-
surements of the surfactants were performed, as functions of the concentrations, according
to the ring detachment method, by a MWG LAUDA tensiometer (Lauda-Königshofen,
Germany), using a platinum-iridium alloy ring with a diameter of 0.95 cm [45,46]. During
the experiment, each surfactant solution was diluted with high purity milli-Q water, and
the concentration gradually decreased, starting from 1 wt% in steps of 0.2 wt%. Since
the surface tension measurement is sensitive to impurities [47], the ring was carefully
heated with a flame before each measurement and the sample holder was cleaned first with
distilled water, then with nitric acid, and finally with ultrapure milli-Q water. To calculate
the CMC value, the surface tension vs. the logarithm of the surfactant concentration was
reported. The data were fitted with two linear regressions, one below the CMC where
surface tension decreases with increasing concentrations and the other above the CMC
where the surface tension remains constant, and the CMC values were calculated from the
breakpoints of the two regions.

2.3. Batch Configuration

A thermodynamic study (adsorption isotherm) was performed to assess the mo-
bilization capacity of surfactants by evaluating the reduction in adsorption capacity of
contaminants on a reference sorbent material in the presence of surfactants. Two organic
compounds were selected as target contaminants, toluene and tetrachloroethylene (PCE),
representative of LNAPL and DNAPL constituents, respectively. To achieve a maximum ad-
sorption condition, far superior to any soil, the carbonaceous reference sorbent material pine
wood biochar (PWB, Plößberg bei Tirschenreuth, Germany) was selected. Previous studies
have shown that this material has a high adsorption capacity due to its high organic carbon
content and remarkable surface development, making it an alternative to activated car-
bon [48,49]. A series of isothermal batch experiments with PWB/contaminant/surfactant
were conducted at room temperature (23 ± 2 ◦C) and pressure in 20 mL batch reactors
(VWR International glass vials, Milan, Italy), using different amounts of sorbent material
(10, 20, 50, 80, 100, and 200 mg), and 50 mg L–1 of contaminant solution. The contaminated
solutions were prepared in distilled water and stored in gas-tight collapsible Tedral bags®

(Supelco, Bellefonte, PA, USA), which prevent the formation of headspace and ensure con-
stant maintenance of the concentration of the solution containing volatile compounds [50].

Different concentrations of each surfactant were investigated, below the critical micelle
concentration (0.5 × CMC), at five times the CMC (5 × CMC), and far above the CMC
(5% (v/v)). For the experiments at the highest surfactant concentrations (5% (v/v)), the
ratios between the weight percent concentrations of the used surfactant solution and the
solutions at CMC are reported in Table 1.

Table 1. Ratios among the effective concentrations of the five surfactants at 5% (v/v) and CMC.

Material APG1 APG2 SL RL1 RL2

C 5%(v/v)/CMC 13 90 19 169 15

Reference tests were performed under the same operating conditions but without
surfactant solutions. Samples of PWB and the contaminants in the presence and in the
absence of surfactants were prepared in glass vials. The glass vials were filled without
creating headspace, to avoid dispersion of contaminants in the gas phase of each glass
reactor, hermetically sealed with a Teflon face gray butyl stopper (Wheaton, Millville, NJ,
USA), crimped by an aluminum cap, and stirred on rotating plates for 24 h. Each test
was performed in duplicate to evaluate reproducibility. The initial concentration of the
contaminant was analyzed at time zero (C0) and after 24 h (Ce). This is the time required to
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reach the thermodynamic equilibrium condition [43] between the sorbed and the dissolved
contaminant in the liquid phase.

2.4. Analytical Methods

The contaminants toluene and PCE were determined using a Dani master gas chro-
matograph (GC) equipped with a flame ionization detector (FID) and a TRB624 capillary
column (30 m × 0.53 mm ID × 3 um), with an HSS Dani 86.50 headspace auto-sampler
(Dani Instrument, Contone, Switzerland). The samples were placed in the auto-sampler
carousel, first passed in a thermostatic oven at 80 ◦C for 1 min. Then the gas phase was
injected into the chromatographic column for analysis. Helium (He) was used as the carrier
gas at a flow rate of 10 mL min−1, the injection temperature was set at 180 ◦C, and the
FID temperature at 300 ◦C. The analysis was performed with a temperature ramp, at first
at 60 ◦C for 3 min with a gradient of 30 ◦C min–1 and the second ramp was at 120 ◦C for
1 min [43].

2.5. Calculations

To compare the performance of the different surfactants, the efficiency and effective-
ness parameters were evaluated both for the adsorption to the liquid–air surface and for
the reduction of surface tension. In this regard, the following parameters were calculated:

The Gibbs adsorption isotherm equation (Equation (1)) was used to calculate the
maximum (saturated) surface excess concentration.

Γmax = − 1
2.303nRT

(
∂γ

∂ log C

)
(1)

where Γmax is the maximum excess surface concentration (mol cm−2), n is the number of
the solute species, which, for the nonionic surfactant, is equal to 1, R is the gas constant
value (8.314 J/mol K), T is the ambient temperature (K), and

(
∂γ

∂ log C

)
is the slope of the

linear fit of the data below the CMC.
The surface efficiency at the CMC was calculated according to Equation (2),

πCMC = γ0 − γCMC (2)

where γ0 and γCMC are the surface tensions of the pure solvent (water) and surfactant
solution at CMC, respectively.

The efficiency of adsorption of the surfactant or the surface tension reduction efficiency
(pC20) was defined as the negative logarithm of the surfactant concentration needed for
reduction of the surface tension of water by 20 mN m−1 (C20).

pC20 = − log C20 (3)

Furthermore, a thermodynamic study (adsorption isotherm) was conducted to in-
vestigate the capacity of different types of surfactants to reduce the adsorption of the
contaminant on the sorbent material. The Langmuir isotherm model was used for equilib-
rium data fitting purposes. The equation is reported in Equation (4).

qe = qmax
KLCe

1 + KLCe
(4)

where qmax (mg g–1) is the maximum quantity of the adsorbed species, KL is the Lang-
muir thermodynamic constant (L mg–1), and Ce is equilibrium concentration (mg L–1).
Parameter optimizations were obtained by the nonlinear regression method available in
Sigma Plot 12.
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3. Results and Discussion
3.1. Critical Micelle Concentration (CMC) Determination

The plots of the surface tension vs. log of concentration are reported in Figure 2a,b for
the aqueous solutions of the surfactants (i.e., APG1, APG2, SL, RL1, and RL2), showing
the typical pattern with two slopes, whose intersection provides the CMC values. These
values are listed in Table 2, along with the surface tension value at CMC (γCMC), maximum
surface excess concentration (Γm), surfactant effectiveness (πCMC), adsorption efficiency
(pC20), and the derived CMC/C20 parameter.
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Table 2. Micellar and surface properties of surfactants aqueous solutions at 298.15 K and atmo-
spheric pressure.

Surfactant γCMC
(mN/m)

CMC
(wt%)

Γmax × 1010

(mol/cm2)
πCMC

(mN/m) pC20 CMC/C20

APG1 39.925 0.0601 3.711 38.875 2.113 7.799
APG2 32.954 0.0071 4.212 39.846 2.978 6.704

SL 39.451 0.0125 3.983 33.348 2.489 3.870
RL1 36.450 0.0013 6.446 36.349 3.317 2.785
RL2 34.945 0.0173 2.606 37.855 2.963 15.907

An inspection of the table shows ranges for the values of CMC (10–3 ÷ 6 × 10−2 wt%),
γCMC (32.9 ÷ 39.9 mN m−1), πCMC (32.8 ÷ 39.8 mN m−1), Γm (2.6 × 1010 ÷ 4.2 × 1010 mol
cm−2), pC20 (2.1 ÷ 3.3), and CMC/C20 ratio (2.7 ÷ 15.9) in agreement with those expected
for nonionic sugar-based surfactants (CMC = 11 × 10−4 ÷ 6 wt%, γCMC = 29 ÷ 45 mN m−1,
πCMC = 27 ÷ 44 mN m−1, Γm = 1.2 × 1010–13 × 1011 mol cm−1, pC20 = 1.5 ÷ 6 and CMC/C20
= 3.9 ÷ 27) [18,23,26,51–56].

In detail, one should notice that the synthetic APG1 has the highest CMC (6 × 10−2 wt%),
whereas a much smaller value is measured for APG2 (7 × 10−3 wt%). The comparisons
between the APG surfactants show that APG2 has higher values for pC20 (2.978), Γm
(4.212 mol cm−3), and surfactant efficiency (39.846 mN m–1) than APG1 (pC20 = 2.113,
Γm = 3.711 mol cm−3, and surfactant efficiency of 39.846 mN m–1). Interestingly, the effi-
ciency of APG2 is the largest compared to the whole set of the investigated surfactants. The
observed behavior can be ascribed to the longer alkyl chain and the shorter polysaccharide
block of APG2 compared to those of APG1.
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For SL, an intermediate CMC value (0.0125 wt%) was detected; it is noteworthy
that both γCMC and CMC were consistent with the ranges reported in the literature for
sophorolipids (11 × 10–4–25 × 10−3 wt%) [51]. In addition, this material showed the lowest
surface tension reduction efficiency (33.348 mN m−1) among all five materials. Indeed,
for this material, it was hypothesized that its mixture contained a greater proportion of
acidic forms than lactonic ones since lactonic sophorolipids are always characterized by a
better surface activity and a lower CMC [57]. The surface properties of SL can be attributed
to molecular features. A general high hydrophobicity is provided by the presence of a
large number of carbon atoms (C ≥ 20). In addition, specific effects are imparted by a
carbon–carbon double bond, a hydrophilic group in a non-terminal position (i.e., with a
CH3 group acting as a branch), and a carboxylic group sufficiently distant for cyclization,
which determine low values of the pC20 factor and Γ [26,27].

Furthermore, the results show that RL1 has the lowest CMC (1.34 × 10−3 wt%), which
is remarkably lower than the one estimated for RL2 (1.73 × 10−2). In any case, both CMC
values are within the range reported in the literature for rhamnolipids (0.001–0.2 wt%) [23,55].
It was also found that RL2 is more effective at lowering the surface tension of the solution
than RL1, which has a lower πCMC (36.349 mN m−1) [24,58,59]. In general, based on physic-
ochemical parameters, it can be assumed that RL1 consists mainly of mono-rhamnolipids
with long alky chains. These properties guarantee the low CMC and high values of pC20
and Γ. Additionally, the very low value of the CMC/C20 ratio (2.785) signifies an exces-
sive tendency of RL1 to micellization rather than surface adsorption [27], justifying the
lower surfactant effectiveness value for this material compared to RL2. In contrast, RL2
might be predominantly a di-rhamnolipid with a shorter hydrophobic group, based on the
higher CMC, lower value of pC20, and significantly lower value of Γm [24]. Further, the
very high CMC/C20 ratio (15.907) of RL2 indicates a greater tendency for this material to
adsorb and orient on the surface, as it was found to be more effective than RL1 in reducing
surface tension.

3.2. Batch Tests
3.2.1. Adsorption Isotherm Study in the Presence of Toluene as a Contaminant

The adsorption isotherm tests were carried out to evaluate the mobilization capacity of
the five surfactants (APG1, APG2, SL, RL1, and RL2) in the presence of different families of
organic pollutants, i.e., toluene from the BTEX group and PCE representing the chlorinated
solvent family, by evaluating the surfactant induced reduction of adsorption capacity
on PWB. Figure 3 reports the adsorption isotherms of toluene on PWB in the absence
(Reference) and the presence of surfactant solutions below (i.e., 0.5 × CMC) and above their
CMC (i.e., 5 × CMC and 5% (v/v)). We should mention that a lower CMC is important
from an economical point of view, where less surfactant is required to effectively solubilize
contaminants. The experimental data were always well-represented by the Langmuir
adsorption isotherm (Figure 3). The Langmuir isotherm was used with the sole purpose of
comparing the results obtained in the various experimental conditions; the adsorption data
showed a plateau trend that could be well-fitted by this model. This is also confirmed by
the high regression coefficient R2 for each surfactant at different concentrations, as reported
in Table 3. As it can be seen in Figure 3 and Table 3, the adsorption capacity of toluene
on PWB decreased remarkably in the presence of the surfactants, except for RL2 at low
concentrations. In general, the results indicate that the presence of the surfactant leads to a
decrease in adsorption on PWB as a function of the concentration. This can be explained
by the effect of the surfactant, which enhances the apparent solubility of the hydrophobic
compound; that is, the “driving forces” for the desorption of the sorbed compounds in the
liquid phase. At the same time, it was also observed that in the presence of the surfactant,
the KL value decreased with the increasing surfactant concentration, indicating a decrease
in the affinity of toluene for PWB. Indeed, for synthetic surfactants (i.e., APG1 and APG2)
the maximum adsorption (qmax), with respect to the maximum adsorption of toluene
on PWB (reference test, 77.71 ± 2.5 mg g−1), dropped off with surfactant concentration,
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providing adsorption reductions at 0.5 × CMC, 5 × CMC and 5% (v/v) of 53%, 73%, and
78% for APG1 and 62%, 74%, and 82% for APG2, respectively. In parallel, a smoother
increasing trend in the adsorption reduction was measured in the case of the biomaterials
SL (57%, 60%, and 61%) and RL2 (64%, 65%, and 69%). A less continuous variation was
shown by RL1, for which an adsorption reduction much lower than for the other surfactants
was measured at the low concentrations of 0.5 × CMC and 5 × CMC (about 34% for both
concentrations); a jump to 71% was revealed at 5% (v/v), equal to 169 times of CMC.
Interestingly, these results confirm those obtained from the characterization of CMC, where
RL1 was less efficient compared to the other materials.
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Figure 3. Isotherm curve of the adsorption of toluene on PWB in surfactant solutions at different
concentrations for (a) APG1, (b) APG2, (c) SL, (d) RL1, and (e) RL2.

Table 3. Optimized parameters of the Langmuir model of toluene on PWB in the presence and in the
absence of surfactants.

Surfactant Solution Concentration

Material Langmuir Parameters 0.5 × CMC 5 × CMC 5% (v/v)

APG1
qmax (mg g−1) 36.42 ± 3.9 20.28 ± 4.1 17.36 ± 5.3
KL (L mg−1) 81 × 10−3 ± 21 × 10−3 53 × 10−2 ± 21 × 10−3 40 × 10−3 ± 23 × 10−3

R2 0.94 0.89 0.78

APG2
qmax (mg g−1) 29.58 ± 1.3 20.14 ± 1.4 14.36 ± 4.8
KL (L mg−1) 55 × 10−2 ± 91 × 10−3 15 × 10−2 ± 36 × 10−3 55 × 10−3 ± 39 × 10−3

R2 0.95 0.91 0.98

SL
qmax (mg g−1) 33.75 ± 1.5 30.77 ± 2.8 30.38 ± 2.6
KL (L mg−1) 55 × 10−2 ± 88 × 10−3 14 × 10−2 ± 30 × 10−3 19 × 10−2 ± 70 × 10−3

R2 0.96 0.94 0.95

RL1
qmax (mg g−1) 51.31 ± 1.3 51.16 ± 2.5 22.53 ± 3.3
KL (L mg−1) 46 × 10−2 ± 39 × 10−3 36 × 10−2 ± 56 × 10−3 14 × 10−2 ± 56 × 10−3

R2 0.99 0.97 0.84

RL2
qmax (mg g−1) 27.95 ± 1.5 27.44 ± 4.1 24.05 ± 3.4
KL (L mg−1) 48 × 10−2 ± 98 × 10−3 75 × 10−3 ± 24 × 10−3 61 × 10−3 ± 18 × 10−3

R2 0.93 0.91 0.93

Reference test in the absence of surfactant

Isotherm
Toluene-PWB

qmax (mg g−1) 77.71 ± 2.5
KL (L mg−1) 15 × 10−2 ± 55 × 10−3

R2 0.97

3.2.2. Adsorption Isotherm Study in the Presence of Tetrachloroethylene as a Contaminant

This section presents the results of the isothermal study of PCE on PWB in the absence—
and in the presence—of the five surfactants, as reported in Figure 4 and Table 4. In this
regard, the same isothermal tests were performed, and the curves were fitted by Langmuir’s
isothermal model. It is noticeable that, for the reference test, in the absence of the surfactant,
the adsorption on PWB is much larger for PCE than for toluene, confirming a higher affinity
of PWB for PCE compared to toluene. In fact, higher values of qmax and KL were calculated
for the isotherm of PCE, namely 114 ± 7.8 mg g−1 and 29 × 10−2 ± 48 × 10−3 L mg−1,
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respectively. The lower solubility in water and the higher octanol–water partition coef-
ficient (KOW) of PCE (0.15 g L−1 and 3.40, respectively) compared to toluene (0.52 g L−1

and 2.73, respectively) confirm the higher hydrophobicity of PCE than toluene, thus ex-
plaining the observed adsorption results [60]. The greater adsorption of PCE compared
to toluene could also be due to the steric effect limiting the accessibility of toluene in
the pores of the sorbent material [61]. Moreover, the same trends were observed in the
presence of surfactants and PCE as a contaminant, in which adsorption capacities decrease
with the rising concentrations of surfactants. This confirms the affinity of surfactants in
mobilization of PCE.
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Figure 4. Isotherm curve of PCE on PWB, and surfactant solutions in different concentrations:
(a) APG1, (b) APG2, (c) SL, (d) RL1, (e) RL2.

Table 4. Optimized parameters of the Langmuir model of PCE on PWB in the presence and in the
absence of surfactants.

Surfactant Solution Concentration

Material Langmuir Parameters 0.5 × CMC 5 × CMC 5% (v/v)

APG1

qmax (mg g−1) 51.35 ± 4.1 28.68 ± 5.6 25.55 ± 5.4

KL (L mg−1) 76 × 10−2 ± 12 × 10−3 5 × 10−2 ± 21 × 10−3 51 × 10−2 ± 20 × 10−3

R2 0.98 0.83 0.9153

APG2

qmax (mg g−1) 44.02 ± 2.5 39.42 ± 4.7 13.90 ± 2.5

KL (L mg−1) 38 × 10−2 ± 68 × 10−3 85 × 10−3 ± 25 × 10−3 69 × 10−3 ± 28 × 10−3

R2 0.96 0.91 0.86

SL

qmax (mg g−1) 39.32 ± 2.7 31.85 ± 3.3 25.30 ± 2.8

KL (L mg−1) 58 × 10−2 ± 13 × 10−2 17 × 10−2 ± 28 × 10−3 90 × 10−3 ± 24 × 10−3

R2 0.90 0.80 0.92

RL1

qmax (mg g−1) 142.32 ± 30 90.75 ± 12.6 50.83 ± 4.6

KL (L mg−1) 12 × 10−2 ± 44 × 10−3 18 × 10−2 ± 62 × 10−3 11 × 10−2 ± 19 × 10−3

R2 0.92 0.91 0.98

RL2

qmax (mg g−1) 43.00 ± 1.66 15.86 ± 1.62 15.87 ± 3.4

KL (L mg−1) 35 × 10−2 ± 49 × 10−3 23 × 10−2 ± 83 × 10−3 27 × 10−2 ± 16 × 10−3

R2 0.98 0.81 0.96

Reference test in the absence of surfactant

Isotherm
PCE-PWB

qmax (mg g−1) 114.12 ± 7.8
KL (L mg−1) 29 × 10−2 ± 48 × 10−3

R2 0.98
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As shown in Figure 4, surfactants APG1, APG2, SL, and RL2 significantly reduced
the adsorption of PCE on PWB, even at concentrations below their CMCs. The percent
reductions in the presence of these surfactants at 0.5 × CMC were 55%, 61%, 65%, and
62%, respectively. Above the CMC, qmax for APG1, SL, and RL2 decreased further by 74%,
72%, and 86%, respectively. It is worth noting that the reductions were almost the same
for the 5 × CMC and 5% (v/v) for these three materials (Figure 4a,c,e). Meanwhile, for the
synthetic surfactant APG2, a more evident reduction in adsorption of PCE was observed
in the batch system with increasing concentrations (Figure 4b), with a reduction of about
65% calculated for the 5 × CMC, while a reduction of 88% was observed for the 5% (v/v)
mixture of the surfactant in water. In contrast, the biosurfactant RL1 showed a dissimilar
behavior (Figure 4d). Indeed, this material failed to increase the solubility of PCE below the
CMC, with the calculated qmax (142.32 ± 30 mg g−1) even higher than in the reference test.
This can be due to the formation of hemimicelles onto the surfaces of adsorbent material
(i.e., PWB). Hemimicelles are surfactant monomer aggregates with the hydrophilic and
hydrophobic moieties oriented toward the aqueous phase and solid surface, respectively.
In this way, due to the amphiphilic nature of surfactants, hemimicelles can solubilize and
retain hydrophobic compounds [52,62–64]. Although, when the concentration raised above
the CMC, the effect of the appearance of biosurfactant RL1 became apparent, reducing the
adsorption capacities by 20% and 55% for 5 × CMC and 5% (v/v), respectively. From the
data, the biosurfactant RL1 reduced the adsorption least efficiently.

4. Conclusions

We characterized the interfacial properties of five nonionic biodegradable surfactants,
in order to preliminary evaluate the capacity of different surfactants for remediation
purposes and mobilization of sorbed NAPLs onto soil and aquifer. Then, by an adsorption
study, we deeply investigated the effect of the surfactant on the adsorption behavior of
PCE and toluene onto a reference adsorbent material (PWB). Overall, the investigated
surfactants, i.e., two synthetic surfactants (APG1 and APG2) and three biosurfactants
(SL, RL1, and RL2), significantly improved the potential mobilization of both organic
target compounds. The results from the CMC characterization indicated that the lowest
CMCs among the synthetic surfactants and biosurfactants belonged to APG2 and RL1,
0.0071 wt% and 0.0013 wt%, respectively. Nevertheless, the surfactants APG2 and RL2
offered the highest efficiency values, respectively. Moreover, results from the batch study
confirmed the results of the characterization study, as APG2 and RL2 showed the highest
abilities to reduce the adsorption of contaminants on the PWB. In general, the results
demonstrated the significant capacities of synthetic surfactant APG2 and biosurfactant RL2
in the mobilization of hydrophobic contaminants. Interestingly, these two surfactants at
just five times their CMCs reduced maximum adsorption capacities of toluene on PWB to
74% and 65%, and PCE on PWB by up to 65% and 86%, respectively, for APG2 and RL2.
In conclusion, the biosurfactant RL2 could be the best candidate for surfactant-enhanced
aquifer remediation technology (SEAR) due to the high effectiveness of this material and
its low environmental impact, with respect to its natural base. Future research will focus on
a column study to simulate the applicability of different surfactants in the in-situ flushing
remediation technology.
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