Development of a Tool for Modeling the Fecal Contamination in Rivers with Turbulent Flows—Application to the Seine et Marne Rivers (Parisian Region, France)
Abstract
:1. Introduction
- 6 sites in Seine-Upstream
- 5 sites in Paris
- 7 sites in Seine-Downstream
- 5 sites in Marne
2. E. coli Model Selection
2.1. Hydrodynamic Modelling
2.2. Physical Representation of FIB Dynamics
- TELEMAC-2D calculates the difference in the level of the free-surface level, the velocity field;
- WAQTEL calculates the transport of suspended sediments, the bedload, and the transport of bacteria.
- Suspended sediment (SS)
- Bed sediment (SF)
- Free micro-pollutants (C)
- Micro-pollutants absorbed by SS (CS)
- Micro-pollutants absorbed by SF (Cf)
3. Model Application
3.1. Study Area
- The water quality along the Seine and the Marne for the period of 2011–2014 did not yet respect the EU Bathing Water Directive, especially during rainy periods (>900 CFU/100 mL).
- In the Seine River, between Choisy-le-Roi et Ivry-sur-Seine there is a clear increase in the 90th percentile of E. coli due to the impact of the wastewater treatment plant Seine-Valenton (SEV or SAM in the past) and the Fresnes-Choisy combined sewer discharge. Between Ivry and the Tolbiac Bridge, it is difficult to establish an evolutionary trend: the confluence with the Marne leads to variable concentrations which depend on hydrological conditions. The data tend to show that the 90th percentile values would decrease in dry weather but increase in rainy weather.
- In the Marne River, between Neuilly-sur-Marne and Joinville-le-Pont, there is an increase in the 90th percentile due to the arrival of a more urbanized area. Between Joinville-le-Pont and Saint-Maur-des-Fossés, the 90th percentiles tend to decrease. However, between Saint-Maur-des-Fossés and Champigny-sur-Marne, the concentrations tend to increase. Between Chennevières and Alfortville, we observe a slight improvement in bacteriological quality, in connection with the distance to the wastewater treatment plant Marne Aval (MAV) outlet.
3.2. Data Collection and Analysis in Dry Weather
3.3. Computational Domain
3.4. Physical and Numerical Parameters
3.4.1. Time Step
3.4.2. Turbulence Model
3.4.3. Bed Roughness
3.4.4. Advection & Diffusion Parameters for Tracers
3.4.5. Sediment Parameters
3.4.6. Bacteria Parameters
3.5. Validation of Hydrodynamic Model
3.6. Model Validation in Dry Weather
3.6.1. Initial and Boundary Conditions
3.6.2. Wastewater Sources
- The dry weather concentrations are around 6.5 × 104 CFU/100 mL based on the data from the summer 2016 measurement campaign.
- The rainy weather concentrations were calculated from the correlation between FIB and N-NH4 and are equal to 1.25 × 106 CFU/100 mL.
3.6.3. 2D Model Results
3.7. Model Validation in Rainy Weather
3.7.1. E. coli Modelling by ProSe Model in Rainy Weather
3.7.2. Simulation Period & Boundary Conditions
3.7.3. Wastewater Sources
3.7.4. 2D Model Results
3.7.5. 3D Model Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kistemann, T.; Schmidt, A.; Flemming, H.-C. Post-industrial river water quality—Fit for bathing again? Int. J. Hyg. Environ. Health 2016, 219, 629–642. [Google Scholar] [CrossRef] [PubMed]
- Meyerhoff, J.; Dehnhardt, A.; Hartje, V.; Juergen, M. Take your swimsuit along: The value of improving urban bathing sites in the metropolitan area of Berlin. J. Environ. Plan. Manag. 2010, 53, 107–124. [Google Scholar] [CrossRef]
- Sites de Baignade en Seine et en Marne—Héritage JO Paris 2024—Présentation des Sites Issus de la Manifestation D’intérêt. Available online: https://www.apur.org/fr/nos-travaux/sites-baignade-seine-marne-heritage-jo-paris-2024-presentation-sites-issus-manifestation-interet (accessed on 6 February 2022).
- European Union (EU). Directive 2006/7/EC of the European Parliament and of the Council of 15 February 2006 Concerning the Management of Bathing Water Quality and Repealing Directive 76/160/EEC; THE EUROPEAN UNION: Brussels, Belgium, 2006. [Google Scholar]
- Edberg, S.C.; Rice, E.W.; Karlin, R.J.; Allen, M.J. Escherichia coli: The best biological drinking water indicator for public health protection. J. Appl. Microbiol. 2000, 88, 106S–116S. [Google Scholar] [CrossRef] [PubMed]
- Servais, P.; Garcia-Armisen, T.; George, I.; Billen, G. Fecal bacteria in the rivers of the Seine drainage network (France): Sources, fate and modelling. Sci. Total Environ. 2007, 375, 152–167. [Google Scholar] [CrossRef] [PubMed]
- Garcia-Armisen, T.; Thouvenin, B.; Servais, P. Modelling Faecal Coliforms Dynamics in the Seine Estuary, France. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2006, 54, 177–184. [Google Scholar] [CrossRef] [PubMed]
- Poulin, M.; Pierre, S.; Mouchel, J.-M.; Therial, C.; Lesage, L.; Rocher, V.; Goncalves, A.; Masnada, S.; Lucas, F.; Flipo, N. Modélisation de La Contamination Fécale En Seine: Impact Des Rejets de Temps de Pluie. Programme PIREN-Seine Rapport Modélisation de La Contamination Fécale Par Temps de Pluie; PIREN-Seine: Paris, France, 2013. [Google Scholar]
- Mouchel, J.-M.; Colina-Moreno, I.; Kasmi, N. Evaluation des Teneurs en Bactéries Indicatrices Fécales en Seine dans L’agglomération Parisienne par Temps Sec; PIREN-Seine: Paris, France, 2018. [Google Scholar]
- Taylor, G.I. The dispersion of matter in turbulent flow through a pipe. Proc. R. Soc. Lond. 1954, 223, 446–468. [Google Scholar]
- Gibson, A. On the Depression of the Filament of Maximum Velocity in a Stream Flowing through an Open Channel. Proc. R. Soc. Lond. 1909, 82, 149–159. [Google Scholar]
- Chauvet, H.; Devauchelle, O.; Metivier, F.; Lajeunesse, E.; Limare, A. Recirculation cells in a wide channel. Phys. Fluids 2014, 26, 016604. [Google Scholar] [CrossRef] [Green Version]
- El-Sharkawi, F.; El-Attar, L.; Gawad, A.A.; Molazem, S. Some Environmental Factors Affecting Survival of Fecal Pathogens and Indicator Organisms in Seawater. Water Sci. Technol. 1989, 21, 115–120. [Google Scholar] [CrossRef]
- Georges, I.; Servais, P. Sources et Dynamique Des Coliformes Dans Le Bassin de La Seine; PIREN-Seine: Paris, France, 2002. [Google Scholar]
- Hipsey, M.R.; Antenucci, J.P.; Brookes, J. A generic, process-based model of microbial pollution in aquatic systems. Water Resour. Res. 2008, 44, 7. [Google Scholar] [CrossRef]
- Evison, L.M. Comparative Studies on the Survival of Indicator Organisms and Pathogens in Fresh and Sea Water. Water Sci. Technol. 1988, 20, 309–315. [Google Scholar] [CrossRef]
- Ouattara, N.K.; de Brauwere, A.; Billen, G.; Servais, P. Modelling faecal contamination in the Scheldt drainage network. J. Mar. Syst. 2013, 128, 77–88. [Google Scholar] [CrossRef]
- Sokolova, E.; Pettersson, T.; Bergstedt, O. Hydrodynamic modelling and forecasting of microbial water quality in a drinking water source. J. Water Supply Res. Technol. 2014, 63, 189–199. [Google Scholar] [CrossRef] [Green Version]
- Viegas, C.; Neves, R.; Fernandes, R.; Mateus, M. Modelling tools to support an early alert system for bathing water quality. Environ. Eng. Manag. J. 2012, 11, 907–918. [Google Scholar] [CrossRef]
- Hervouet, J.-M. Hydrodynamics of Free Surface Flows: Modelling with the Finite Element Method; John Wiley & Sons, Ltd: Hoboken, NJ, USA, 2007; pp. 1–4. [Google Scholar] [CrossRef]
- Electricite de France. TELEMAC-2D User Manual—Version V8p2; EDF R&D; Electricite de France: Paris, France, 2020. [Google Scholar]
- Electricite de France. TELEMAC-3D User Manual—Version V8p2; EDF R&D; Electricite de France: Paris, France, 2020. [Google Scholar]
- Electricite de France. WAQTEL Technical Manual—Version V8p2; EDF R&D; Electricite de France: Paris, France, 2020. [Google Scholar]
- Even, S.; Poulin, M.; Garnier, J.; Billen, G.; Servais, P.; Chesterikoff, A.; Coste, M. River ecosystem modelling: Application of the PROSE model to the Seine river (France). Hydrobiologia 1998, 373/374, 27–45. [Google Scholar] [CrossRef]
- Mouchel, J.-M.; Lucas, F.S.; Moulin, L.; Wurtzer, S.; Euzen, A.; Haghe, J.-P.; Rocher, V.; Azimi, S.; Servais, P. Bathing activities and microbiological river water quality in the Paris area: A long-term perspective. In The Seine River Basin; Flipo, N., Labadie, P., Lestel, L., Eds.; Springer International Publishing: Berlin/Heidelberg, Germany, 2021; pp. 323–353. [Google Scholar] [CrossRef]
- Prolog Ingenierie; Hydratec. Mise à Jour du SDA du SIAAP Pour L’atteinte de L’objectif Baignabilité en Seine et en Marne; SIAAP: Versaille, France, 2017. [Google Scholar]
- Blue Kenue™: Software Tool for Hydraulic Modellers. Available online: https://nrc.canada.ca/fr/recherche-developpement/produits-services/logiciels-applications/blue-kenuetm-logiciel-modelisateurs-hydrauliques (accessed on 23 February 2022).
Parameter | Symbol | E. coli | Enterococci |
---|---|---|---|
Mortality rate in freshwater | 0.48 | 0.45 | |
Mortality temperature multiplier in freshwater | 1.11 | 1.04 |
Date | River | Treatment Plant | Discharge (m3 s−1) | NH4 (mg L−1) |
---|---|---|---|---|
3 August 2017 | Seine | SEV (SAM) | 3.80 | 0.15 |
21 August 2017 | Marne | MAV | 0.29 | 0.27 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Van, L.-A.; Nguyen, K.-D.; Le Marrec, F.; Jairy, A. Development of a Tool for Modeling the Fecal Contamination in Rivers with Turbulent Flows—Application to the Seine et Marne Rivers (Parisian Region, France). Water 2022, 14, 1191. https://doi.org/10.3390/w14081191
Van L-A, Nguyen K-D, Le Marrec F, Jairy A. Development of a Tool for Modeling the Fecal Contamination in Rivers with Turbulent Flows—Application to the Seine et Marne Rivers (Parisian Region, France). Water. 2022; 14(8):1191. https://doi.org/10.3390/w14081191
Chicago/Turabian StyleVan, Lan-Anh, Kim-Dan Nguyen, François Le Marrec, and Aïcha Jairy. 2022. "Development of a Tool for Modeling the Fecal Contamination in Rivers with Turbulent Flows—Application to the Seine et Marne Rivers (Parisian Region, France)" Water 14, no. 8: 1191. https://doi.org/10.3390/w14081191
APA StyleVan, L. -A., Nguyen, K. -D., Le Marrec, F., & Jairy, A. (2022). Development of a Tool for Modeling the Fecal Contamination in Rivers with Turbulent Flows—Application to the Seine et Marne Rivers (Parisian Region, France). Water, 14(8), 1191. https://doi.org/10.3390/w14081191