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Abstract: Since the beginning of the 2000s, most of the West-African countries, particularly Benin,
have experienced an increased frequency of extreme flood events. In this study, we focus on the
case of the Ouémé river basin in Benin. To investigate flood events in this basin for early warning,
the coupled atmosphere–hydrology model system WRF-Hydro is used, and analyzed for the period
2008–2010. Such a coupled model allows exploration of the contribution of atmospheric components
into the flood event, and its ability to simulate and predict accurate streamflow. The potential of
WRF-Hydro to correctly simulate streamflow in the Ouémé river basin is assessed by forcing the
model with operational analysis datasets from the European Centre for Medium-Range Weather
Forecasts (ECMWF). Atmospheric and land surface processes are resolved at a spatial resolution
of 5 km. The additional surface and subsurface water flow routing are computed at a resolution of
500 m. Key parameters of the hydrological module of WRF-Hydro are calibrated offline and tested
online with the coupled WRF-Hydro. The uncertainty of atmospheric modeling on coupled results
is assessed with the stochastic kinetic energy backscatter scheme (SKEBS). WRF-Hydro is able to
simulate the discharge in the Ouémé river in offline and fully coupled modes with a Kling–Gupta
efficiency (KGE) around 0.70 and 0.76, respectively. In the fully coupled mode, the model captures
the flood event that occurred in 2010. A stochastic perturbation ensemble of ten members for three
rain seasons shows that the coupled model performance in terms of KGE ranges from 0.14 to 0.79.
Additionally, an assessment of the soil moisture has been developed. This ability to realistically
reproduce observed discharge in the Ouémé river basin demonstrates the potential of the coupled
WRF-Hydro modeling system for future flood forecasting applications.

Keywords: fully coupled WRF-Hydro modeling; flood forecasting; stochastic kinetic energy backscatter
scheme (SKEBS); Ouémé river basin

1. Introduction

In its fifth report, the Intergovernmental Panel on Climate Change (IPCC) stresses the
increment of the number of extreme weather events for the 21st century due to climate
change [1]. Tropical countries of West Africa are threatened by climatic hazards, such as
droughts, floods, high winds, the elevation of the sea level, etc. Droughts and floods are the
most important in terms of damages and impacts. Countries in West Africa such as Benin,
Burkina Faso, Cote d’Ivoire, Niger, Senegal, and Togo have suffered from catastrophic
floods [2] with severe consequences including loss of life, property, and damage of property.
Floods happen in geomorphologically low-lying areas, such as rivers, basins, lakes, etc.,
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and occur often with heavy rain associated with severe thunderstorms, hurricanes, tropical
storms, or meltwater from ice or snow flowing over ice sheets or snowfields [3]. Ouémé
river, the main watershed in the Benin Republic, is used for irrigation, hydroelectricity,
transport, and water resource management. Its utility led to the construction of hydrological
structures; however, this construction exposes the residents on the riverfronts to flooding
risks. In 2010, Ouémé river has recorded an overflow driving the country (Benin) to
experience dramatic flooding, which affected 680,000 people, leading to 43 deaths [4] over
the length of the Ouémé river (at Bétérou, Savè, and Bonou outlets).. To prevent these
damages during the rainy season, the ideal solution proposed by Benin is the improvement
of national and decentralized capacities to better manage and plan for extreme weather
events and climate-related risks through the development of an early warning system
(EWS) and better climate information (IC). Therefore, citizens are earlier informed about
the level of the risks based on color patterns, which depend on the water heights at the
level of the water gauges. The flooding water heights limit is defined based on historical
rainfall episode statistics. In addition, EWS warns when there is a risk that the rise of the
water level upward of the river could spread downstream.

Such destructive floods make it necessary to improve hydrological forecasts to reduce
the vulnerability of regional and local communities. Identifying the drivers of change in
flood regimes in West African watersheds is a complex task due to the heterogeneity of
the region and the changing hydrological functioning of watersheds as a result of human
activity. Ref. [5] found that there is a significant trend both in terms of flooding magnitude
and frequency in West Africa, with two main patterns: the Sahelian showed increasing
flood trends, whilst some Sudanian areas presented decreasing flood trends. Since IPCC [1]
announced and highlighted an increase in the frequency of extreme climate events, and also
the potentially significant increase of their magnitudes due to climate change, identification
of accurate flood forecasting methods is required. The introduction of flood forecasting
and early warning systems, the building of population awareness and preparedness, urban
planning, discouraging human settlements in flood-prone areas, and the development
of local institutional capacities, as well as forecasting methods development, should be
appropriate actions to plan.

To determine an accurate flood forecasting method, several studies applied hydrologi-
cal modeling based on conceptual, semi-distributed, physical-based, data-driven or ma-
chine leaning methods. The conceptual methods adopted in some previous studies [2,6–8]
have been proved to be useful for hydrological modeling options because most are success-
ful for rainfall-runoff simulation and flood modelling. The data-driven approach, based
on the empirical relationship amongst datasets, which is usually driven through statistical
constraints [9–11], has been investigated; despite their advantages (no need of physical
equations and parameters or catchment characteristics), they present some limitations such
as static models which cannot evaluate the change (e.g., land-use/land-cover change). With
the increasing development in the machine leaning field, numerous methodologies are
applied in operational flooding forecasting [12,13]. Thus, some studies [14–16] have proven
that the machine learning-based model, performs better when it is compared with the
physical-based, conceptual, and data-driven models. These methodologies do not take into
account the influence of both atmosphere and land surface complexity in the performance
of the forecasting.

The operational global weather forecast centers routinely provide relatively coarse
precipitation forecasts with resolutions of 16–27 km (e.g., ref. [17]). Because these kinds of
forecasts could not provide necessary details of complex, intense precipitation structures
led by the mesoscale orography, land-surface heterogeneities, and land-water contrasts,
ref. [18,19] used the Weather Research and Forecast (WRF) model to provide high-resolution
precipitation forecasts at a 1.3–4 km horizontal resolution. They found that the WRF
model was able to provide precipitation forecast both in terms of amount and spatial
distribution. Additionally, ref. [17] used the output from the WRF model (over the upper-
Jordan River basin) as forcing to run the Hydrological Model for Karst Environment
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(HYMKE). Similar experiments were set in different areas [20–23], and the authors showed
that the precipitation estimates with WRF are able to reproduce the spatial distribution
of precipitation, but may underestimate the magnitude of the heavy precipitation events
when compared to rain gauges or global observation datasets.

Refs. [24–30] have shown the benefits of choosing coupled atmospheric-land-surface
models for estimating temperature and precipitation in different areas. Ref. [31] investigated
and evaluated simulations with a fully coupled atmospheric–hydrological model (WRF-
HMS) and an uncoupled model for various meteorological variables, and demonstrated the
better performance of the fully coupled model against the uncoupled. Another study led
by [32] compared a one-way forced implementation of the WRF-Hydro system to a fully
two-way coupled instance of WRF/WRF-Hydro in order to assess the impact of two-way
coupling on simulated precipitation and streamflow. They found that the two setups
performed well for the precipitation, but the matching to observed data was higher for the
two-way coupled WRF/WRF-Hydro simulation in terms of statistical performance criteria.

Assessing the advantages and limitations of one-way vs. two-way coupled modeling
systems for flood prediction over the Ayalon basin (Israel), ref. [17] used both a hydrological
model (Hydrological Engineering Center-Hydrological Modeling System, HEC-HMS) and
the WRF-Hydro modeling system. The models were forced by observed, interpolated
precipitation from rain-gauges within the Ayalon basin, and with modeled precipitation
from the WRF atmospheric model. Comparing simulations with the one-way coupled
WRF model and the two-way coupled WRF/WRF-Hydro modeling system, they found
that the use of two-way atmospheric-hydrological coupling has the potential to enhance
precipitation simulation and, therefore, hydrological forecasts for early flood warning
applications. It is important to acknowledge here that the model uncertainty in simulating
precipitation, as well as streamflow, can be relatively high. Model uncertainty can, for
example, be evaluated with a model ensemble (e.g., [33,34]). Ref. [35] developed the
stochastic kinetic energy backscatter scheme (SKEBS) within the WRF model in order to
generate such an ensemble.

The present study attempts to develop a model system that is able to simulate flood
events in the Ouémé river basin (Benin, West Africa). According to successful examples
in the literature, we use the fully coupled atmospheric-hydrological modeling system
WRF/WRF-Hydro for this purpose. Section 2 gives the characteristics of the study area,
different sources of the dataset used, and the modeling approaches. Results and discussion
are provided in Section 3, whilst Section 4 is dedicated to a summary and conclusion.

2. Materials and Methods
2.1. Study Area and Observation Datasets

The study area is in West Africa, located between latitudes 0◦ N and 18◦ N and
longitude 7◦ W and 12◦ E, as displayed in Figure 1. This also constitutes the setup of
the WRF domain. The region is bordered in the south by the Gulf of Guinea, and in the
north by Mali and Niger. Nigeria’s highlands form the eastern boundary, while Mauritania,
Mali, and Ghana form the western limit. The annual mean temperature is about 18 ◦C,
but the monthly mean can be more than 30 ◦C over the southern part of the Sahara. The
rainfall pattern over this region is mostly affected by ocean currents and local features such
as topography. In terms of climatic zones, West Africa is characterized by mainly three
different regions: the first region covers the Sahel and is characterized as a semi-arid zone
located from western Senegal to eastern Sudan between 12◦ N and 20◦ N. The second zone
is the Sudano-Sahelian region, and the third zone comprises the Guinea coast, which is
characterized by a bimodal mode driven by the inter-tropical divergence (ITD). The basin
is located in the Benin Republic.
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catchments (Savè and Bétérou).

The Republic of Benin is in the inter-tropical zone (between 06◦10′ N and 12◦25′ N),
which has a wet and dry tropical climate [2]. It contains the rivers (Savè and Bétérou)
on which we focus in this study (see Figure 1). The Ouémé catchment at the Savè (resp.
Bétérou: inner-catchment to Savè) outlet covers an area of 24.800 km2 (resp. 10.475 km2).
It is located between 7◦58′–10◦12′ N and 1◦35′–3◦05′ E, and represents 47% of the whole
Ouémé river (ref. [36]). The seasons correspond to the periods of dominance of the wet
tropical continental air masses. The seasonal distribution of rainfall follows the direction of
the ITD and varies almost proportionally with distance from the coast. Therefore, Bétérou
has a unimodal precipitation regime (May to October), whilst the southern part of the Savè
catchment has a transitional regime (April and October, with a short dry period in August).
The average annual rainfall between 1960–2007 is 1200 mm at the Bétérou rainfall station,
and 1100 mm at Savè. The flow dynamic is characterized by a high discharge during the
rainy season. The maximum flow between May and September over the period 1960–2007
is in the order of 270 m3/s at Bétérou and 480 m3/s at the Savè outlet. From November to
May, almost all the rivers dry up with averages of low flows of 5 m3/s at Savè and 2 m3/s
at Bétérou. The annual mean temperature range is between 24 ◦C and 33 ◦C.

Our assessment is focused on the year 2010, known as the year when the Ouémé river
experienced dramatic flooding as a case study. Ref. [2] showed that the maximum values
of discharge recorded during the period 1989–2009 is less than 1400 m3/s at Savè, and
650 m3/s at Bétérou. Analysis of station data for the period 1960–2007 showed that the
peaks of discharge at Savè (resp. Bétérou) are about 910 (resp. 470), 1067 (resp. 560), and
1200 (resp. 640) m3/s, respectively, for a 5-, 10-, and 20-year return period. The discharge
and precipitation station data used in this study were collected over Savè and Bétérou
outlets of the Ouémé river basin. The three-hourly satellite estimates of the Tropical Rainfall
Measuring Mission (TRMM, 3B42 v7 derived daily at 0.25◦ horizontal resolution, 1998–near-
present; ref. [37]) dataset, and the daily Climate Hazards Group Infrared Precipitation with
Stations (CHIRPS; chirps v2.0 at 0.05◦ horizontal resolution; 1981–near-present; ref. [38]) is
used for model evaluation.
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2.2. Experimental Design of the Weather Research and Forecasting (WRF) and Coupled
WRF/WRF-Hydro Model

The advanced Weather Research and Forecasting (WRF, [39,40]), developed by the
U.S. National Center for Atmospheric Research (NCAR) version 3.7.1, is used for both
the WRF-only and fully coupled WRF/WRF-Hydro modeling in the study. The fully
coupled WRF/WRF-Hydro, hereafter referred to as WRF-H, is a non-hydrostatic, mesoscale
numerical weather prediction and atmospheric simulation system. Table 1 summaries the
different physics schemes and experimental details. The model setup uses one domain
at 5 km spatial resolution, covering the area 7◦ W–12◦ E, 0◦–18◦ N, and 400 × 400 grid
points, with 30 s as numerical simulation time step. The vertical structure of the domain
consists of 50 levels, up to a 10 hPa pressure top. The WRF-Hydro model is an extension
package of a hydrological component to WRF. This supplementary model allows the lateral
representation of the hydrological condition at the land surface [41]. The option of land use
categories “Moderate Resolution Imaging Spectroradiometer (MODIS, 20 classes; ref. [42])”
is selected. The Noah LSM model ref. [25] is used as the column land surface physics model.

Table 1. Experimental details of the atmosphere model, WRF-only and WRF-H.

Subject Option Reference

Driving data European Centre for Medium-Range Weather
Forecasts (ECMWF) operational analysis ECMWF

Horizontal resolution 5 km

Horizontal grid 400 × 400

Integration time step 30 s

Projection resolution Mercator

Vertical discretization 50 layers

Output interval 24 h for WRF, 30 days for WRF/WRF-Hydro

Simulation period 1st January 2008–31st December 2010

Pression top 10 hPa

Microphysics scheme Single Moment Microphysics class 5 (WSM5) [43]

Longwave radiation Rapid Radiative Transfer Model (RRTM) [44]

Shortwave radiation Dudhia [45]

Planetary boundary lager Asymmetric Convection Model (ACM2) [46,47]

Land use Moderate Resolution Imaging Spectroradiometer
(MODIS) [42]

Land surface scheme Noah Land Surface Model (LSM) [25]

For purposes of hydrometeorological simulations with WRF-H, the WRF domain
is additionally coupled with routing processes at 500 m resolution for 4000 × 4000 grid
points in the east-west and north-south directions. The fully coupled mode simulations are
performed for three years, from January 2008 to December 2010, with January–February
2008 as the spin-up period. The driving data is the operational analysis dataset from the
European Centre for Medium-Range Weather Forecasts (ECMWF), which provides the
initial and lateral boundary conditions at 0.125◦ horizontal resolution and 6 h time intervals.
Both WRF-H and WRF-only components of the coupled modeling system share the same
physics parameterizations in Table 1.

The WRF is the atmospheric model which solves the equations of atmospheric motions.
The atmospheric state variables are the wind components, pressure, temperature, humidity
and hydrometeor mixing ratios, etc. The lower boundary of the atmospheric variables is
forced with a land surface model. In the case of WRF-Hydro, a complex land surface model,
with an explicit description of river streamflow, is employed. The uncoupled WRF-Hydro
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model consists of a variety of parameters (e.g., ref. [48]), which usually require calibration.
Since the aim of the research is to evaluate the performance of WRF-H to simulate discharge,
and therefore analyze its predicting skills about floods, the calibration is performed based
on discharge at the Savè catchment outlet (Figure 1).

2.3. Calibration of WRF-Hydro in Offline Mode

For calibrating the model WRF-Hydro 4.0, we focus on selected sensitive parameters
highlighted in previous studies, such as REFKDT, SLOPE, RETDEPRTFAC, OVROUGHRT-
FAC, and MannN. Applying a stepwise approach, following previous WRF-Hydro stud-
ies [17,32,49,50], we first focus on the parameters controlling the total water volume, namely
infiltration factor (REFKDT) and surface retention depth (RETDEPRT, see Table 2). It is
noted that REFKDT is a tunable parameter that significantly impacts surface infiltration,
and hence the partitioning of total runoff into the surface and subsurface runoff; increasing
REFKDT decreases surface runoff. Since there is not a historical range to estimate these
parameters over the interested domain, the study calculates them from 0.1 to 10, with
0.1 increments. The second step of the calibration is to evaluate the coefficient governing
deep drainage (SLOPE); the same method used in the case of REFKDT and RETDEPRTFAC
for selecting the optimum value is applied, by testing values from 0.1 to 1.0, with 0.1 as the
increment. The adjustment of the roughness parameter, which controls the overland flow,
is performed from the default value to the optimum one.

Table 2. Validation of the performance of simulated WRF-Hydro and observed discharge at Savè, with
parameters such as the infiltration-runoff parameter REFKDT, the retention factor RETDEPRTFAC, the
SLOPE, the overland flow roughness scaling factor OVROUGHTFAC, and the Manning’s roughness
coefficients, MannN. Experiments in bold show the optimum parameters based on the objective
criteria (Corr, NSE, and KGE).

REFKDT

Range 0.1 0.5 0.8 1.0 1.5 2.0 3.0 3.5 4.5
NSE 0.29 0.33 0.38 0.46 0.52 0.34 0.20 0.17 0.11
Corr 0.64 0.67 0.63 0.63 0.58 0.60 0.61 0.64 0.60
KGE 0.38 0.39 0.41 0.47 0.49 0.32 0.09 0.07 0.07

RETDEPRTFAC

Range 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0
NSE 0.50 0.52 0.49 0.49 0.49 0.49 0.49 0.49 0.49
Corr 0.58 0.58 0.59 0.59 0.59 0.59 0.59 0.58 0.58
KGE 0.48 0.49 0.49 0.49 0.48 0.46 0.47 0.46 0.46

SLOPE

Range 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
NSE 0.52 0.61 0.60 0.50 0.37 0.20 0.12 −0.03 −0.23
Corr 0.58 0.62 0.65 0.65 0.66 0.61 0.63 0.55 0.61
KGE 0.49 0.56 0.52 0.39 0.33 0.24 0.19 0.11 0.04

OVROUGHRTFAC

Range 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
NSE 0.60 0.60 0.60 0.61 0.63 0.62 0.62 0.61 0.61
Corr 0.67 0.65 0.61 0.60 0.66 0.66 0.64 0.64 0.62
KGE 0.56 0.56 0.57 0.60 0.60 0.60 0.59 0.56 0.56

MannN

Range 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8 2.0
NSE 0.42 0.44 0.50 0.56 0.61 0.62 0.66 0.62 0.60
Corr 0.66 0.63 0.73 0.68 0.70 0.72 0.67 0.69 0.67
KGE 0.36 0.37 0.41 0.48 0.50 0.57 0.63 0.60 0.61
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In addition, sensitivity tests are done on the surface (OVROUGHRTFAC) and chan-
nel roughness parameter (MannN), which controls the shape of the hydrograph. The
efficiency criteria—Kling–Gupta efficiency (KGE), Correlation coefficient (Corr), Nash-
Sutcliffe Efficiency (NSE) and BIAS are used to evaluate the model performance within the
calibration process.

Corr =
n(∑ xy)− (∑ x)(∑ y)√[

n ∑ x2 − (∑ x)2
][

n ∑ y2 − (∑ y)2
] (1)

NSE = 1−

 ∑n
i=1

(
Yi

obs −Yi
sim
)2

∑n
i=1
(
Yi

obs −Yi
mean

)2

 (2)

KGE = 1−

√
(r− 1)2 +

(
σsim
σobs
− 1
)2

+

(
µsim
µobs
− 1
)2

(3)

BIAS =
∑n

i=1

(
Yi

sim −Yi
obs
)

∑n
i=1 Yi

obs × 100 (4)

where x is the observations and y is the simulations; Yi
obs is the ith observation for the

constituent being evaluated, Yi
sim is the ith simulated value for the constituent being evalu-

ated, Yi
mean is the mean of observed data for the constituent being evaluated, and n is the

total number of observations [51]. For the KGE, r is the linear correlation between observa-
tions and simulations, σobs is the standard deviation in observations, σsim is the standard
deviation in simulations, µsim is the simulation mean, and µobs is the observation mean.

In order to harmonize the uncoupled and coupled setups, the uncoupled simulations
use the same time step as the WRF-only and WRF-H simulations (30 s). The calibration of
the model is performed using hourly dataset input, and the focus is on the performance skill
in reproducing daily discharge in the sub-catchments. One-year calibration is considered
sufficient to evaluate the basic parameter sensitivities [32]. WRF-Hydro is calibrated on
period P1 (2008) and validated on period P2 (2009–2010), where P1 and P2 are the shared
periods containing the whole study period, named P (2008–2010).

2.4. Evaluation of Model Uncertainty with the Stochastic Kinetic Energy Backscatter Scheme

The stochastic kinetic energy backscatter scheme (SKEBS; [35,52,53]), which primarily
acts on the dynamical tendencies at the lateral boundaries, is activated into WRF-H for
the fully coupled simulation (WRF-H-SKEBS). The SKEBS technique provides several
advantages over perturbation techniques that only perturb the initial state. The method
aims to represent model uncertainties associated with scale interactions that take place in
the real atmosphere but are absent in a truncated numerical model [54]. SKEBS perturbs
the model fields by adding random and amplitude perturbations (noise) to the horizontal
wind and potential temperature tendency equations at the lateral boundaries for each time
step [55]. An ensemble of 10 members using the WRF-H-SKEBS model is generated for
each rain season of the period P (2008–2010).

3. Results and Discussion
3.1. Evaluation of WRF-Only Precipitation

The WRF model (no coupled, referee as WRF-only) is run over the domain displayed
in Figure 1 in order to generate atmospheric input data for the calibration of the supplement
model WRF-Hydro. Figure 2 shows the comparison between the simulated WRF-only and
observed dataset. The weekly WRF precipitation for the Savè catchment is relatively close
to that derived from CHIRPS (Figure 2a) and TRMM (Figure 2b), with the mean coefficient
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of determination (R2) equal to 0.64, and 0.59, respectively. The agreement between the two
observed datasets (CHIRPS and TRMM) is about 0.87 for R2.
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Since the investigation is on the potential of WRF-H (model WRF-Hydro coupled with
WRF) for flood prediction, the available WRF-only precipitation at the highest spatiotempo-
ral resolution is used to force the uncoupled WRF-Hydro model. In particular, the hourly
output of WRF at 5 km spatial resolution is used as meteorological forcing data, containing
necessary variables such as incoming shortwave radiation (W/m2), incoming longwave
radiation (W/m2), specific humidity (kg/kg), air temperature (K), surface pressure (Pa), u
and v components of near-surface wind (m/s), and liquid water precipitation rate (mm/s).
The meteorological forcing data needed by the Noah LSM (land surface hydrological mod-
eling system) are prepared as hourly gridded data. The Noah LSM static data (topography,
land cover, soil type) are too coarse for a WRF-Hydro application. Therefore, datasets
from the Shuttle Elevation Derivatives at Multiple Scales (HydroSHEDS) database [56],
high-resolution topography and channel network) are considered to accurately route water
across the landscape through overland, subsurface, or channel flow.

3.2. Calibration and Evaluation of WRF-Hydro Offline

The Noah LSM coupled with WRF-Hydro evaluates surface water depth change h(m)
as a rate over time of infiltration excess [25]:

∂h
∂t

=
∂Pd
∂t

1−

[
∑4

i=1 ∆Zi(θs − θi)
][

1− exp
(
−k Ks

Kre f

δt
86400

)]
Pd +

[
∑4

i=1 ∆Zi(θs − θi)
][

1− exp
(
−k Ks

Kre f

δt
86400

)]
 (5)

where Pd(m) is the precipitation that is not intercepted by the canopy; ∆Zi(m) is the soil
layer i in Noah LSM, θi is the volumetric water content (soil moisture) of the soil layer i, θs
is the saturated soil moisture, and the saturated hydraulic conductivity is Ks (m/s); both θs
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and Ks varied in terms of the soil texture. The reference saturated hydraulic conductivity
Kre f is equal to 2× 10−6(m/s).

The calibration of the model (WRF-Hydro) is performed in offline mode for the Savè
catchment with parameters REFKDT, SLOPE, RETDEPRTFAC, OVROUGHRTFAC, and
MannN, using both KGE and Corr as efficiency criteria. Efficiency criteria results of the
optimization of those parameters are listed in Table 2. The first parameter evaluated is one
of the parameters controlling the total water volume (the REFKDT), whose values range
from 0.1 to 10.0, with 0.1 increments. The default simulation (REFKDT = 3.0) realized had
shown an underestimation of the observed streamflow because the REFKDT controls the
infiltration of the surface water, and its value shall be reduced to disable many infiltrations.
As illustrated with [49] for the case of the Sissili in West Africa, and [48] in Kenya (East
Africa), we found that the model discharge performance is highly sensitive to parameter
REFKDT. For the case in study, the REFKDT = 1.5 performs better than using the default
value (3.0) with statistics (NSE = 0.52, KGE = 0.49, and Corr = 0.58). The second parameter
assessed is the RETDEPRTFAC, which adjusts the initial retention depth in the model.
Scaling factors (RETDEPRTFAC) between 0 and 10 with 1.0 increments show that the
modeled discharge remains the same regardless of the change in RETDEPRTFAC, as the
scores are very close to each other.

As mentioned by [41], increases in the RETDEPRTFAC on channel pixels can encourage
more local infiltration near the river channel leading to wetter soils. Therefore, the default
RETDEPRTFAC = 1.0 seems to provide better results and will be considered such for the
next calibration steps. In the case of the present study, the uncoupled model WRF-Hydro is
also very sensitive to the parameter SLOPE. The optimized value of the parameter SLOPE is
0.2. The parameters controlling the hydrograph shape are also investigated. As illustrated
by [50], the surface roughness (OVROUGHRT) plays an important role in transmitting
infiltration excess water to channel networks and is calibrated in WRF-Hydro using a
scaling factor (OVROUGHRTFAC) between 0.2 and 1.0, with 0.1 increments. Considering
the correlation coefficient (Corr), the NSE and the KGE statistics, and the hydrograph shape
match between simulated and observed hydrographs at Savè, the scaling factor value
of OVROUGHRTFAC = 0.6 is judged as the best to fit the simulated hydrograph to the
observed hydrograph. Furthermore, the calibrated Manning’s coefficient (MannN) for the
river channel routing used are set as 1.75 for stream order 1, 1.70 for stream order 2, 1.65 for
stream order 3, 1.60 for stream order 4, and 1.55 for stream order 5. It can be seen that the
observed discharge hydrograph at Savè is reasonably well reproduced, with KGE = 0.63,
and Corr = 0.67, for the calibration period March-December 2008 (Figure 3a).
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The calibrated model is evaluated offline for the period P2: 2009–2010 (Figure 3b). The
above-mentioned efficiency criteria allow us to evaluate the performance of the model. It
can be noticed that it simulates the trend and peaks of the observed discharge relatively
well, even slightly better in comparison to the calibration period, with model efficiencies
KGE of 0.86 and Corr of 0.87. This enhanced performance for the validation period is
related to the much higher discharge peak in 2010, i.e., the flooding year, which is relatively
well reproduced by the model evaluated offline. Globally, for the simulation period P
(2008–2010), WRH-Hydro in offline mode is able to simulate discharge, with KGE and Corr
equal to 0.70 and 0.74.

The robustness of the calibrated model in the uncoupled module is also evaluated
over the Bétérou catchment (an inner-domain of the Savè basin). Figure 4 shows the best-fit
performance of the model in simulating the shape of the observed hydrograph at Bétérou.
It reproduces the peaks of discharge relatively well, and the trend of the shape of the
observed hydrograph is also well reproduced. The performances of the model are revealed
by the statistics KGE = 0.74, Corr = 0.85, and NSE = 0.68 for the calibration period over the
Bétérou catchment for the uncoupled module simulation.
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3.3. Evaluation of the Coupled Model WRF-H

The calibrated (optimized) model parameters are used for the online WRF-Hydro
model (referred to as WRF-H), to assess the performance of the calibrated WRF-H to
simulate discharge and precipitation in the study area.

3.3.1. Precipitation Simulations

The agreement skills of WRF-H are evaluated for precipitation both temporally and
spatially for the rainy season of the period 2008–2010. Figure 5 exposes a comparison
between the weekly precipitations from WRF-only, WRF-H, and observed datasets. The
coefficient of determination between the WRF-H and WRF-only, is equal to 0.88 (Figure 5a).
This shows clearly that WRF-only and WRF-H simulate precipitation differently, which
has been already illustrated by [17,32,57,58]. Figure 5b,c compare WRF-H with CHIRPS
and TRMM, and it illustrates a good agreement between these datasets. The slightly
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better agreement of CHIRPS (compared to TRMM) with WRF-only (Figure 2b) and WRF-
H (Figure 5b) could be explained by the high resolution of both CHIRPS and WRF-H
precipitation. As seen previously (Figure 2d), CHIRPS and TRMM precipitations’ have the
same trend, only differ in their magnitudes; the WRF-only depicts well the observations
for the whole season. Indeed, the comparison of Figures 2 and 5 illustrates that WRF-H
performs slightly better than WRF-only in terms of weekly precipitations. Overall, Figure 5d
shows that WRF-H follows well in terms of the trend, the WRF-only. Additionally, Figure 5d
enhances these results with Corr = 0.68 between WRF-H and CHIRPS, against Corr = 0.59
between WRF-H and TRMM. Despite the good performance of models, they present
some incertitude wherever they are applied. Ref. [59] showed that the high variability
of precipitation in West Africa results from a large uncertainty in WRF simulations. This
uncertainty is investigated in detail in the case of WRF-H in Section 3.4 by modifying
boundary conditions with a stochastic perturbation.
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Figure 5. Evaluation of weekly simulated precipitations with observed datasets at the Savè catchment:
(a) WRF-H vs. WRF-only, (b) WRF-H vs. CHIRPS, (c) WRF-H vs. TRMM, and (d) analysis of seven-
day filtered daily precipitation for WRF-H, WRF-only, CHIRPS, and TRMM.

The monthly trend of precipitation during the West African Monsoon (WAM) period
(June–September: JJAS) has been investigated at the Ouémé–Savè outlet (Savè). It shows
that the monthly cumulative trend follows observations shape but varies in magnitude, as
illustrated in Figures 2 and 5. Figure 6 shows the maximum monthly cumulative rainfall
at Savè in August, and while comparing the three patterns, it shows that the monthly
cumulative precipitation records during the two last months (August and September) in
2010 are higher than both 2008 and 2009, expressing the heavy rainfall recorded in this
particular year. To observe more detail of the distribution of precipitation over the focusing
domain for either WRF-only and WRF-H, as well as CHIRPS, Figure 7 presents the spatial
distribution of precipitation during the WAM (JJAS) of the flooding year (2010).
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Figure 7. JJAS precipitations for the flooding year 2010 in the Savè catchment (red contour), and the
Bétérou catchment (purple contour): (a) WRF-only simulations; (b) coupled WRF-Hydro (WRF-H)
simulations; (c) difference between WRF-H and WRF (WRF-H minus WRF); and (d) CHIRPS precipi-
tation. The color bar of Figure 5d is used as a common color bar for Figure 5a,b,d.
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Figure 7a,b depict the WRF-only simulations and WRF-H precipitations, respectively,
while the difference between the two models in Figure 7c shows that WRF-H either un-
derestimated or overestimated simulation in comparison to WRF-only, depending on the
location (as illustrated [31]). Figure 7d depicts the spatial distribution of CHIRPS over
the focusing domain; its color bar is as in Figure 7a,b. The mean precipitation for the
domain is about 864 mm for WRF-only (Figure 7a), and 947 mm for WRF-H (Figure 7b).
This means that WRF-H increases the simulated precipitation from WRF-only by about
1%. The observed precipitation in this domain is about 817 mm (i.e., less than simulated
precipitation from both WRF-only and WRF-H). Similar results are obtained for the Savè
catchment, with seasonal spatial-averaged precipitation of about 1049 mm for WRF-H,
998 mm for WRF-only, and 977 mm for CHIRPS.

As the model performed globally well precipitations both for Savè and Bétérou at
temporal scale and spatial distribution, the following analysis focused on those two basins
of the Oueme river by investigating the temporal cumulative variability of precipitation.
Therefore, Figure 8 and Figure S1 present, respectively, the cumulative precipitations
derived from WRF-H, and the satellite datasets CHIRPS and TRMM at Beterou and Savè.
They attempt to assess WRF-H behavior about the cumulative precipitation over the study
period (2008–2010). A very good reproductivity of the observed dataset by WRF-H is
noticed, and also the clear rainy season period is well captured by the model. It can also be
noticed that the total seasonal precipitation is based on the rainfall from April to October
over the basins. The cumulative seasonal amount (between April and October) is indicative
of the average of annual precipitation for a given year in the region.
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WRF-H over Bétérou during the period 2008–2010.

According to Figure 8 and Figure S1, we can make the assumption that there is
no or negligible rainfall recorded in the dry season. At Bétérou (Figure 8), the model
underestimates the cumulative precipitation compared to TRMM and CHIRPS, albeit
showing a good capture of seasonal variability over the years. The respective total three-
yearly amounts are WRF-H = 3921 mm, TRMM = 4077 mm, and CHIRPS = 4000 mm, which
confirms the consistency with the results discussed above that the WRF-H precipitation
simulations are closer to the observed CHIRPS than TRMM. The bias of the cumulative
precipitation is between −8.82% and 0.00% in regard to CHIRPS, and between −8.16% and
2.13% for TRMM. At Savè (with WRF-H = 3883 mm), conversely to analysis at Bétérou, the
cumulative precipitation of the model fits well with TRMM (that value is about 3985 mm)
rather than CHIRPS (value equal to 4020 mm). The error related to the evaluation of the
cumulative precipitation is between −5.82% and 2.18% for TRMM, and about −7.00% and
0.00% for CHIRPS.
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3.3.2. Discharge Simulations

Discharge results at Savè are displayed in Figure 9a, showing the daily time series of
simulated (green) and observed (red) stream discharges, and related WRF-H precipitation
(blue) for the period 2008–2010.
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A good agreement can be seen between the observed and the simulated hydrographs,
and an approximate good representation of the peaks of discharge, as well as hydrograph
shapes, as quantified by the performance measures KGE and Corr, equal to 0.76 and 0.84,
respectively. This better performance, in comparison to the offline simulation, could be
explained by the time step of the meteorological data in the fully coupled mode, which is
30 s and not hourly as in offline mode. Since one objective of the study is to evaluate the
performance of WRF-H to simulate the discharge, and therefore to predict potential floods,
here we focus on the ability of the model in reproducing only the rainy seasons. We obtain
for Savè, from Figure 9, a KGE equal to 0.22, 0.64, and 0.80 for the rainy seasons of 2008,
2009, and 2010, respectively, which gives solid information about the model’s simulation
skills. It is noted that the model has a better performance in 2010. The robustness of the
calibrated WRF-H over Savè is evaluated in a second catchment, i.e., in Bétérou (Savè’s
inner-catchment).

Figure 9b shows that WRF-H here reproduces well the discharge trend, as well as
the peaks, so that WRF-H can also be used successfully for this inner-catchment. Table S1
illustrates the discharges peaks obtain for the two basins during the three years. An
evaluation from a recent work of ref. [2] over the same study domain revealed that the
averages of annual rainfall between 1960–2007 are 1205 mm at the Bétérou rainfall station
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and 1098 mm at Savè. The dynamics of the flow are characterized by a high discharge
during the rainy season. The maximum flow between May and September over the period
1960–2007 is in the order of 240 m3/s to 740 m3/s at Bétérou, and 1000 m3/s to 1750 m3/s
at the Savè outlet. From November to May, almost all the rivers dry up, and the averages
of low flows are about 5 m3/s at Savè and 2 m3/s at Bétérou.

WRF-H is able to capture the flood event which occurred in September–October 2010
over Savè, as well as over Bétérou. In particular, although the predicted highest discharge
peak occurs earlier than in the observation at Savè and Bétérou. The second “weak” peak
in 2010, which could amplify damage intensities of the flood in the study area, is also well
reproduced. According to results from Figure 9, this second peak noticed for the discharge,
should result from the highest precipitation simulated and observed in September 2010. The
first important peak at Savè in 2010 is also reflected from the highest simulated precipitation
of August 2010.

Figures 10 and 11, respectively, over Bétérou and Savè show, on the one hand, the
simulated and observed discharge at daily time step for the whole WRF-H evaluation
period (2008–2010: Figure 10a,b; Figure 11a,b), and the flooding period (2010: Figure 10c;
Figure 11c) based on linear regression with values of line 1:1 and coefficient of determination
(R2); and on the other hand, the cumulative discharge of simulated and observed datasets.
Figure 11a indicates that, at Bétérou, the WRF-H underestimates the low flows, whilst in
contrast, at Savè (Figure 11a), it extracts the low flow relatively well. This underestimation
of the low flow at Bétérou and Savè is related to the fact that in early August at the beginning
of the rainy season over the sub-basins, the model started producing streamflow (2008 and
2009 on Figure 10a,b). Figure 9a justifies that the underestimation of the low flow at Savè
(Figure 11) is due to the lags noticed between the simulated and observed “peaks”.
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Figure 11. Scatter plot showing comparison of simulated and observed discharges (a) for the period
2008–2010, and (b) for the flooding year 2010, and (c) the cumulative of simulated and observed
discharge at Savè.

In general, WRF-H captures well the variability of the seasonal discharge for Savè
and Bétérou, but overestimates the cumulative total discharge (Figures 10c and 11c). These
figures also indicate that the discharge is recorded from July to November, with a high
increase in August–September. The total volume of discharge observed at Bétérou during
the period 2008–2010 is 86,045 m3 against 100,182 m3 for the WRF-H simulation, with a
rise of 16% as a difference. At Savè, the recorded total volume of water is about 186,475 m3,
while the corresponding simulated discharge is approximately 220,367 m3, overestimating
the observed discharge up to 18%.

3.4. Evaluation of the Soil Water Content

Figures 12 and S2 show the daily averaged soil moisture extracted for soil depth
between 0.5–2 cm [60,61] from the Climate Change Initiative (CCI) of the European Space
Agency (ESA: https://www.esa.int/ESA (12 May 2018).; thereafter referred to as θCCI),
respectively, for Bétérou and Savè, and the corresponding volumetric soil water content
in the first Noah soil layer between 0 and 10 cm (referred to as θWRF−H). The θWRF−H
is relatively high at the beginning of the simulation (January 2008: about 0.3 m3·m−3),
but experiences a decreasing trend from the first months of the simulation, and reached
approximatively the same value in February as those of other years (February 2009 and
February 2010). This suggests that there is an excess of θWRF−H both at Bétérou and Savè
at the initial time of the simulation, and that a two-month spin-up period appears to be
sufficient for soil moisture in the first Noah LSM soil layer [33]. The θCCI values are globally
lower than WRF-H simulations either for Bétérou or Savè during the rainy season and
simulate reasonably well at the onset end the end of the season. However, despite the
important bias, WRF-H correlated well with the observed.

https://www.esa.int/ESA
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Figure 12. Evaluation of the soil moisture between the simulated with WRF-H of the first Noah
LSM soil layer (from 0 to 10 cm) and the daily average from CCI (from 0.5 to 2 cm) over the
Bétérou catchment.

Furthermore, Figure 13 and Figure S3 present the daily soil moisture in the four Noah
LSM soil layers of the WRF-H simulation, respectively, for the basins Bétérou and Savè.
As observed for the θ1WRH−H (with soil layer between 0–10 cm) where only a two-month
spin-up is enough to simulate the soil moisture, the difference between the two years is
large for the soil layer 10–200 cm. For instance, for the soil moisture value of the second
(10–40 cm) and the third (40–100 cm) soil layer, the stability is reached after the simulation
of more than one year. Therefore, for this study case, we need more time for spin-up (more
than a year) to adequately simulate the soil moisture between 10–200 cm.
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3.5. Evaluation of Uncertainty of WRF-H

In order to evaluate the forecasting uncertainties of WRF-H (analyzed in Section 3.3),
a stochastic kinetic energy backscatter scheme (SKEBS: [21,34,36]) is used and activated
in WRF-H; it is referred to as WRF-Hydro-SKEBS. The purpose here is that the SKEBS
approach adds random perturbations with prescribed spatial and temporal decorrelations.
In particular, SKEBS produces perturbation into the lateral boundary conditions. The
amplitude of the stochastic perturbations is chosen as the default in the WRF model.
Therefore, we generated an ensemble of ten members for the evaluation of the uncertainties.
Both stochastic physics and initial condition perturbations into WRF-Hydro-SKEBS result
in an ensemble spread for the three rainy seasons over both Savè and Bétérou. Figure 14
shows that WRF-Hydro-SKEBS has a relatively large impact on precipitation and discharge
results in the study region. The WRF-Hydro-SKEBS ensembles depicted well the discharge
shape, but showed either an overprediction or underestimation of the discharge intensity.
The assessment of the forecast uncertainty showed that the high variation of discharge
amounts is associated with a speedy variation of the forecasted precipitation ensemble
as demonstrated [62]. The ensemble also results in a large range of simulated discharge
performance, as can be seen in Table S2. As in the case of the current study where the
forecasting is performed under the convective-scale (5 km horizontal resolution), [63,64]
concluded that SKEBS (at convective-scale) provides a balance between increased ensemble
spread and forecast bias change. This demonstrates the sensitivity of WRF-H to lateral
boundary perturbations and confirms the uncertainty of the model regarding discharge
and precipitation simulations, which is of the uttermost importance for flood forecasting.
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4. Summary and Conclusions

The present study explored the abilities of the fully coupled WRF-Hydro modeling
system to simulate discharge and precipitation in the Ouémé river in West Africa. The
main objective of the study was to determine an accurate flood forecasting tool that ex-
hibits the interaction between atmosphere and land surface models, since the feedback of
these interactions impact the precipitation dynamic [62,65]. Therefore, the supplementary
hydrological extension of WRF model has been calibrated in offline mode for one year, and
tested for two years using hourly outputs from WRF simulations. Optimized parameters
from the calibration were used to perform the fully coupled WRF-Hydro model, which was
used to investigate the forecasting performance skills of WRF over the Ouémé. We have
found that the coupled modeling system WRF-H performed slightly better regarding the
precipitation episodes than the WRF-only model (as already illustrated by [66] over the
interested period (2008–2010)).

The evaluation of simulated precipitation showed its good performance skills, and
provides confirmation about the uncertainty of WRF-H to simulate precipitation [43,46].
WRF-H also showed a good performance to simulate discharge, with a KGE equal to 0.76
for the period 2008–2010. The robustness of WRF-H has been assessed at Bétérou, an
inner-catchment of the Ouémé river at Savè, where it provided a good agreement with
respect to observed discharge, with a KGE equal to 0.66. Additionally, WRF-H was able
to capture the flood event which occurred in 2010 over both Savè and Bétérou. Indeed, in
the WRF-Hydro simulation in the fully coupled mode, the atmospheric and hydrological
processes are simulated in a consistent way, which enhances the confidence in the results.

The uncertainty of predictability skills of WRF-H with respect to discharge in the
Ouémé river at Savè was performed with an ensemble of ten members using a random
perturbation scheme. Results demonstrated the large sensitivity of simulated discharge
to perturbations introduced into the atmosphere. In summary, WRF-H is considered as a
suitable model for evaluating discharge prediction uncertainties in the Ouémé river, and
we encourage the implementation of the model for further basins in West Africa. Further
studies are needed to assess how such WRF-H predicted discharges uncertainties could be
used to improve an EWS in West-African regions.



Water 2022, 14, 1192 20 of 23

Fully coupled WRF-H allows simulation of streamflow from global meteorological
data. As such, coupled WRF-H can easily be applied to any region of the world, which
is an advantage of the method used. Nevertheless, the application of WRF-H to another
region may require a different calibration to optimize the quality of the modeled streamflow
results over the concerned area. Additionally, the global forcing dataset to drive the model
must be available and provided. Moreover, the model has some shortcomings; the human
impacts (factors) on streamflow, such as irrigation and dam managements, are not yet
considered in WRF-Hydro, which we see as a future and necessary model improvement
for flood risk management purposes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14081192/s1, Table S1: Recapitulation of yearly highest discharge
values both for simulated WRF-H and station dataset, followed by KGE during the rainy season.
Table S2: Comparison of KGE between the deterministic model WRF-H, and WRF-Hydro-SKEBS for
Savè (resp. Bétérou). Figure S1: cumulative total precipitation derived from TRMM and CHIRPS,
and simulated in WRF-H over Savè during the period 2008–2010. Figure S2: Evaluation of the soil
moisture between the simulated with WRF-H of the first Noah LSM soil layer (from 0 to 10 cm) and
the daily average from CCI (from 0.5 to 2 cm) over the Savè catchment. Figure S3: Daily average time
series of soil water content (SWC) of the four Noah LSM soil layers of the WRF-H simulation at Savè.
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