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Abstract: Reducing energy consumption and maintenance costs of a pumping system is seen as
an important but difficult multi-objective optimization problem. Many evolutionary algorithms,
such as particle swarm optimization (PSO), multi-objective particle swarm optimization (MOPSO),
and non-dominated sorting genetic algorithm II (NSGA-II) have been used. However, a lack of
comparison between these approaches poses a challenge to the selection of optimization approach for
stormwater drainage pumping stations. In this paper, a new framework for comparing multi-objective
approaches is proposed. Two kinds of evolutionary approaches, single-objective optimization and
multi-objective optimization, are considered. Three approaches representing these two types are
selected for comparison, including PSO with linear weighted sum method (PSO-LWSM), MOPSO
with technique for order preference by similarity to an ideal solution (MOPSO-TOPSIS), and NSGA-
II with TOPSIS (NSGA-II-TOPSIS). Four optimization objectives based on the number of pump
startups/shutoffs, working hours, energy consumption, and drainage capacity are considered, of
which the first two are new ones quantified in terms of operational economy in this paper. Two
comparison methods—TOPSIS and operational economy and drainage capacity (E&C)—are used.
The framework is demonstrated and tested by a case in China. The average values of the TOPSIS
comprehensive evaluation index of the three approaches are 0.021, 0.154, and 0.375, respectively, and
for E&C are 0.785, 0.813, and 0.839, respectively. The results show that the PSO-LWSM has better
optimization results. The results validate the efficiency of the framework. The proposed framework
will help to find a better optimization approach for pumping systems to reduce energy consumption
and maintenance costs.

Keywords: multi-objective optimization; stormwater drainage pumping system; particle swarm
optimization; linear weighted sum method; analytic hierarchy process; SWMM

1. Introduction

Over the past two decades, urban flooding has been a great challenge to urban areas
due to urbanization and climate change [1], and the risk of flooding is expected to increase
further in the near future [2–4]. In urban areas, stormwater drainage pumping stations
play an important role in flood control [1,5]. During storm periods, pumping operations
can improve the discharge capacity of an urban drainage system and mitigate flooding [1].
However, the operation of pumps entails high energy consumption and maintenance costs.
Therefore, the efficient optimization of a pumping system is a very important problem.

In recent years, a lot of research on the optimization of pumping stations has been
done. For example, the particle swarm optimization (PSO) approach has been used to
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optimize pump startup depth based on storm water management model (SWMM) [5], and
the multi-objective particle swarm optimization (MOPSO) approach has been adopted to
optimize the startup strategy of pumped storage units and operations for complex water
distribution systems [6,7]. Non-dominated sorting genetic algorithm II (NSGA-II) has
been also been used to optimize to minimize variations and peaks of water level, and
the number of duty pumps [8]; a genetic algorithm (GA) optimization has been used to
optimize operation of pumping stations to achieve the minimum energy cost [9]; and
multi-objective harmony search (MOHS) has been adopted to optimize the pump operation
costs and total flooding volumes [10].

Machine learning algorithms may be a new tentative way to solve the problem of
pumping station optimization. Saliba et al. [11], for example, used deep reinforcement learn-
ing to inform the real-time control of valves and pumps in a drainage system to minimize
the flood volume; Lu and Ma [12] proposed hybrid decision tree-based machine learning
models to predict short-term water quality; Melesse et al. [13] selected enhanced machine
learning algorithms for river salinity prediction; and Kadkhodazadeh and Farzin [14]
used a novel least square support vector machine model integrated with a gradient-based
optimizer algorithm to assess water quality parameters.

However, a lack of comparison between these approaches poses a challenge to the
selection of optimization approach for stormwater drainage pumping stations. Further-
more, it is not enough to consider only energy consumption or the number of pump
startups/shutoffs for a pumping system in attempts to minimize cost, since other factors
such as working hours and drainage capacity also affect maintenance costs.

The aim of this study is to develop a new framework for comparing optimization
approaches for stormwater pumping systems. The framework includes an optimization
module and a comparison module, considering four objectives relating to the number of
pump startups/shutoffs, working hours, energy consumption, and drainage capacity, of
which the first two are new ones quantified in terms of operational economy in this paper.
To enable the framework to compare more multi-objective evolutionary algorithms, two
kinds of evolutionary approaches are considered: (1) single-objective optimization (i.e., the
optimization approach in which multiple objectives are turned into a single-objective);
(2) multi-objective optimization (i.e., the optimization approach of selecting multi-objective
optimization schemes from optimal solution set). Three approaches, providing represen-
tation of both of these types, are used in this paper: PSO-LWSM, MOPSO-TOPSIS, and
NSGA-II-TOPSIS. A case study in Ma’anshan city, China is presented to demonstrate and
test the proposed framework.

2. Methodology

A new framework (Figure 1) is proposed for comparing optimization approaches for
stormwater pumping systems, which consists of two modules (optimization module and
comparison module). A detailed description is presented in the following sections.

2.1. Optimization Module
2.1.1. Optimization Objectives

In this study, four objectives were selected based on a review of pumping station
optimization literature, and the rationale for their selection is given below.

Number of Pump Startups/Shutoffs

Too many startups and shutoffs (n) will affect the service life of pumps and motors,
thereby increasing the pump depreciation rate and maintenance costs. Therefore, it is
necessary to optimize to reduce the number of times that pumps are started up or shut off.

Energy Consumption of a Pumping Station

As the startup and shutoff depths of pumps are altered, the pump working conditions
(flow, head, and efficiency) will change, thus affecting the energy consumption [15,16]. The
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energy consumption of pumps (E) will increase if the selected startup and shutoff depths
are inappropriate or suboptimal.
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Working Hours of Pumps

A high operational time will lead to serious wear of pumps [17], thereby increasing the
frequency of maintenance/replacement of pumps, reducing the service life, and increasing
the maintenance costs. Therefore, the working hour of pumps (Th) is one of the important
factors that need to be considered.

Drainage Capacity of a Pumping Station

Alteration of pump operating conditions caused by a change of depth will inevitably
affect the drainage capacity of a pumping station [18]. In this study, the drainage capacity
of the pumping station is assessed using the maximum depth of the river (Hvmax) rather
than the water level after drainage [1]. The highest water levels in the river correspond to
the most severe flooding in the drainage area, and the lower the maximum depth of the
river is, the lower the severity is. Therefore, the maximum depth of the river is selected as
an indicator of the drainage capacity of the pumping station. Minimizing the maximum
depth of the river is a key objective; the smaller the value, the better the drainage capacity
of the drainage pumping station.

2.1.2. Multi-Objective Optimization Methods
Determination of the Objective Function

Changes to pump startup and shutoff depths have impacts on the number of star-
tups/shutoffs, energy consumption, working hours, and pumping station drainage capacity.
In order to explore the impact of startup and shutoff depths on the optimization objectives,
other parameters should be kept unchanged while adjusting the startup and shutoff depths
(the decision variables). In this way, only the pump startup and shutoff depths affect the
optimization objectives. Once pumps in a drainage pumping station start to operate, the
water level of the river will generally reduce to the lowest allowable depth. Therefore, this
study will optimize only the pump startup depths, and consider the shutoff depths as fixed.
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With changes in the pump startup depths, working conditions of the pumps change
accordingly and the water level of the river also changes, thus further affecting the working
conditions of the pumps. Therefore, it is difficult to directly explore the relationship
between the startup depths of pumps and the optimization objectives. As such, the range of
startup depths allowed in the optimization is restricted to values between Hmin and Hmax.
The objective function (Equation (1)) is shown below to find the minimum optimization
multi-objective value.

Nmin = minF(H min < h1 . . . hj . . . hD ≤ Hmax
)
, (1)

where N is the total value of multi-objectives, which can be decomposed into multi-objective
values, to achieve the goal of multi-objective optimization; j = (0, 1, 2, . . . , D), D is the
number of pumps in a drainage pumping station; Hmax is the maximum allowable pump
startup depth; Hmin is the minimum allowable pump startup depth.

Particle Swarm Optimization (PSO)

Particle swarm optimization (PSO) is one of the common evolutionary algorithms,
which simulates the social dynamics of a flock of birds or fish based on a stochastic
population [19]. It is often used to solve optimization problems in various fields, and it also
has some application in the optimization of drainage pumping stations [5].

In PSO, the particles in a random swarm seek the optimal solution according to certain
criteria. Each particle in the swarm has two groups of parameters, namely location, and
velocity, and the particle location is the value of optimization parameters. In this study, the
particle locations are the startup depths of the pumps. In the solution space, each particle
will change its location depending on its velocity. At each time step in the optimization
process, the best location achieved so far is recorded for each particle individually (the
individual best positions), along with the best position so far across the whole population
(the global best position). The velocity of each particle and its position in each subsequent
time step are then determined based on an attraction to both its individual best position
and the global best position.

Assuming that each particle searches for the best solution (i.e., the best location) in a
D-dimensional solution space, the parameters of the particle are changed according to the
following equation [20]:

vj
it+1

= wt × vj
it+c1 × r1

j
it × (Pbest j

it − hj
it) + c2 × r2

j
it × (Gbest j

it − hj
it)

hj
it+1= hj

it+vj
it+1

Ft
i= 1/Nt

i

, (2)

where h is the location of particles (in this study representing the pump startup depths);
v is the velocity of particles; Pbest is the individual best position of particles; Gbest is the
global best position of particles; F is the fitness of particles. Pbest and Gbest are selected
based on F; c1, c2 are acceleration constants; r1, r2 are random numbers in the range (0, 1);
i = (1, 2, . . . , R), R is the number of particles in the swarm; j = (1, 2, . . . , D), D is the
dimension of the solution space where the particles are located (in this study equal to the
number of pumps in the drainage pumping station); t = (0, 1, 2, . . . , T), T is the upper limit
of the number of iterations; w is inertia weight, the smaller the w value is, the smaller the
change rate of v is. In the early stages of iteration, particles should search for all potential
global optimal solutions in a large range, and in the later stages of iteration, particles should
search for global optimal solutions in a small range. Therefore, w will become smaller
and smaller as the number of iterations progresses. In this study, the nonlinear decreasing
method (Equation (3)) is adopted to reduce the value of w [21–23].

wt= we × (w s/we)
1/(1+cN × t/T), (3)
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where ws is the initial inertia weight (usually set to 0.95); we is the final inertia weight
(usually set to 0.4); cN is the exponential factor (usually set to 10).

The startup of pumps in the drainage pumping station depends on the depth of the
River Yongfeng upstream of the pumping station. When the river depth reaches the pump
startup depth, pumps begin to operate; when the river depth reduces to the minimum
allowable pump shutoffs depth, pumps stop. When the water level of the river rises due to
rainfall, the process will then repeat.

In the process of optimizing the drainage pumping station, pump startup depths
should be limited so that the water depth of the River Yongfeng is not too deep when the
pumps start. However, since the drainage pumping station pumps are immersed in the
River Yongfeng, the pump inflow curves will change with the startup depths. Therefore, it
is difficult to obtain the new inflow curves before the startup depths have been altered. It is
also difficult to determine the maximum allowable pump startup depth from the inflow
and outflow curves. Therefore, this study selects Hmax according to the actual operation of
a drainage pumping station.

When PSO is used for multi-objective optimization, before optimization the optimal
pump startup depth is unknown. In order to satisfy the optimization objectives, it is
possible that the startup depth of the pump with the lowest startup depth in the optimal
drainage pumping station design will be deeper than the maximum allowable river depth
by the end of drainage, thus failing to achieve the best drainage effect. Therefore, the
startup depth of the pump with the lowest startup depth in the optimal drainage pumping
station is constrained so that it can only be less than or equal to Helimit (i.e., the maximum
allowable depth of drainage pumping station by the end of drainage). If the startup depth
of the pump with the lowest startup depth in the optimal drainage pumping station in the
process of optimization is deeper than the maximum allowable depth of drainage pumping
station by the end of drainage, it is set to equal the maximum allowable depth [24]:{

Hmin < h1. . . hj. . . hD ≤ Hmax

min(h j
i)t ≤ Helimit

, (4)

wherein, Helimit is the maximum allowable depth of drainage pumping station by the end
of drainage. In this way, the limited condition of the pump startup depth is obtained, thus
providing the constraint condition of the change rate of river water depth (particle velocity
in PSO):

Hmin − hj
i < vj

i ≤ Hmax − hj
i, (5)

The particle swarm is initialized according to the above limited conditions (the initial
particle location and velocity):{

hj
i0= Hmin+r3

j
it × (Hmax − Hmin)

vj
i0= vmax

j
i0 − 2 × r4

j
it × vmax

j
i0

, (6)

wherein, r3, r4 are random numbers in the range (0, 1); vmax is the absolute value of
Hmin − hj

i or Hmax − hj
i in Equation (5). The initial location and velocity of the particle

swarm can be obtained by Equation (6). After initializing the particle swarm, the initial
data is substituted into the particle swarm optimization to obtain the optimal solution
based on fitness.

Linear Weighted Sum Method (LWSM)

To simultaneously deal with four optimization objectives in this study, the linear
weighted sum method (LWSM) is adopted to transform multi-objective optimization to
single-objective optimization by weighting four objectives. The introduction of weight
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allows control of which objectives are the most influential in the optimization, so as to
obtain different startup water level schemes, using the following formula (Equation (7)).{

x1+x2+x3+x4= 1
Nt

i= x1 × N1
t
i+x2 × N2

t
i+x3 × N3

t
i+x4 × N4

t
i

, (7)

where x1, x2, x3 and x4 are the weights corresponding to each optimization objective,
the corresponding values will be obtained by the analytic hierarchy process (AHP). N is
the total multi-objective value; N1 is the value of the number of pump startup/shutoff
objective; N2 is the value of the energy consumption of pumps objective; N3 is the value of
working hours of pumps objective; N4 is the value of the capacity of a drainage pumping
station objective.

Due to the large numerical differences and different units of the optimization objectives,
it is difficult to give weights, so N1, N2, N3, and N4 need to be normalized. The formula
(Equation (8)) of normalization is shown below.

N1
t
i =

D
∑

j=1
nt

j
i/ns

N2
t
i =

D
∑

j=1
Et

j
i/Es

N3
t
i =

D
∑

j=1
Tht

j
i/Ths

N4
t
i= Hvmaxti/Hvmaxs

, (8)

where nt
j
i is the number of startups/shutoffs of a single pump; ns is the number of star-

tups/shutoffs before optimization; Et
j
i is the energy consumption of a single pump; Es is

the modelled energy consumption of the pumping station before optimization; Tht
j
i is the

working hours of a single pump; Ths is the working hours of pumps before optimization;
Hvmaxti is the maximum depth of the river at the time of drainage; Hvmaxs is the maximum
depth of the river before optimization.

Analytic Hierarchy Process (AHP)

In LWSM introduced above, x1, x2, x3, and x4 are unknown and need to be determined.
In this study, the analytic hierarchy process (AHP) [25] is adopted to determine the weights,
allowing pumping station staff to provide scores based on their perspectives of operational
economy and drainage capacity. The weights (x1, x2, x3, and x4) of N1, N2, N3, and N4 are
obtained by using the comparison matrix of AHP.

Multi-Objective Particle Swarm Optimization (MOPSO)

Compared to PSO, multi-objective particle swarm optimization (MOPSO) uses the
concept of Pareto dominance to determine the flight direction of a particle, and it maintains
non-dominated solutions found previously in a global repository that is later used by other
particles to guide their flight [26].

Therefore, the difference between MOPSO and PSO is the selection of the personal and
global best positions, as well as a global repository for storing generations of non-dominated
solutions. The particle information contained in the global repository of each generation
is the optimization result of each generation. The search for the personal best position in
MOPSO is to judge each particle and randomly select a non-dominated solution from the
swarm composed of successive iterations of each particle as the personal best position. For
the global optimal location, it is to judge the global repository of each generation and select
the one with the larger crowding distance as the global best position [27,28].

MOPSO builds a global repository based on non-dominated solutions of each genera-
tion, copies non-dominated solutions of each generation to the global repository, and then
carries out non-dominated screening within the global repository. If the size of the global
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repository after screening exceeds the predetermined size, it will be screened according to
the crowding distance, and the particles with a high crowding distance will be retained.
Finally, the optimization results can be obtained through multiple iterations to output the
global repository. The number of MOPSO runs (generations) is consistent with that of
PSO-LWSM.

Non-Dominated Sorting Genetic Algorithm II (NSGA-II)

The non-dominated sorting genetic algorithm II (NSGA-II) is first used to optimize
control strategy [29], since it is computationally fast and has been shown to provide better
coverage and maintain a better spread of solutions than other multi-objective evolutionary
algorithms (MOEAs) [29,30].

In NSGA-II, parent organisms and child organisms are merged (the child organisms
are formed by the hybridization and variation of the parent organisms) prior to fast non-
dominated sorting. Then, the crowding distance of each individual in the non-dominated
layer is sorted. Finally, the first few layers which retain the non-dominated solution form
the final child organisms with the individuals with larger crowding distance, and will
become the parent organisms of the next iteration. The optimization results are achieved
through continuous iteration. The number of NSGA-II runs (generations) is consistent with
that of PSO-LWSM.

Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS)

Multi-criteria decision analysis (MCDA) allows decision-makers to include a full range
of indicators. There are many MCDA methods, such as AHP, TOPSIS, etc. [31].

To help the staff of a pumping station to select a better solution that can be imple-
mented from a non-dominated solution set obtained in each iteration, and to avoid the
subjectivity as far as possible in the selection, this paper uses TOPSIS [32] to sort the
non-dominated solution set, and the top one is considered the optimization result.

Since each iteration of NSGA-II or MOPSO will generate a set of Pareto frontier solu-
tions, this paper uses TOPSIS to get the best solution from these frontier solutions obtained
by NSGA-II or MOPSO as the optimization result of each iteration, and compares this with
PSO-LWSM later using the comparison module. The approaches that combine NSGA-II
and MOPSO with TOPSIS are called NSGA-II-TOPSIS and MOPSO-TOPSIS respectively.

The Initial Conditions of the Pumping System Model

The initial energy consumption of pumps for the pumping system model is evalu-
ated based on the actual annual drainage volume of the drainage pumping station (Qy),
modelled drainage volume and the electricity use of the drainage pumping station due
to pumps lifting water (En). A fixed (i.e., independent of time of use) electricity price is
adopted in the study to reduce uncertainty and computational workload, since the time
of day at which a rainfall event occurs is unknown. In addition, the number of pump
startups/shutoffs, working hours, and the maximum depth of the river can be reduced as
far as possible by manually adjusting the startup depths of the pumps, under the condition
that the energy consumption of the model is as close as possible to the actual energy con-
sumption. Then the startup/shutoff scheme of pumps obtained is regarded as the initial
one before optimization. Thus, the operating conditions before optimization are obtained.

2.2. Comparison Module

The comparison module includes two comparisons: TOPSIS comparison (representing
objectivity), and operational economy and drainage capacity (E&C) comparison using AHP
(representing subjectivity), to ensure the reliability of the optimal results.

2.2.1. TOPSIS Comparison

This comparison uses TOPSIS to sort the optimization results of MOPSO-TOPSIS
and NSGA-II-TOPSIS with the optimization results of PSO-LWSM to get a comprehen-



Water 2022, 14, 1248 8 of 16

sive evaluation index for the corresponding algorithms, to complete the comparison of
each algorithm.

2.2.2. Operational Economy and Drainage Capacity (E&C) Comparison

This module aims to calculate the economic loss caused by a single startup/shutoff of
the pump and the pump unit operating time. Then, combined with the local electricity price
to calculate the corresponding economic loss resulting from pump energy consumption,
this provides the economic loss of the corresponding optimization results. Then, the
drainage capacity is incorporated into the AHP comparison matrix to get the weight of the
corresponding objective. Finally, the comprehensive evaluation value of the corresponding
optimization result is calculated by combining the weight obtained with the objectives
index, and the quality of the system optimization result is determined by comparing the size
of the corresponding comprehensive evaluation index. The specific process is as follows.

Evaluation from the Operational Economy Perspective

The objective values considered for the operational economy are N1, N2 and N3. The
electricity consumption (loss) of N2 is easily obtained, while the economic impact of N1
and N3 on the pumping station is not easy to figure out. In this study, the economic losses
caused by N1, N2 and N3 are calculated as follows (Equation (9)).

S1t =
D
∑

j=1
nj

t × s1

S2t =
D
∑

j=1
Ej

t × e

S3t =
D
∑

j=1
Thj

t × s3

, (9)

where S1 is the economic loss caused by pump startups/shutoffs; s1 is the economic loss
caused by one start of a pump; S2 is the electricity fee paid by the pumping station due to
the energy consumption of pumps; e is the electricity price; S3 is the economic loss caused
by wear caused by the operation of pumps; s3 is the hourly economic loss due to pump
wear. The values of s1 and s3 are determined as below (Equation (10)).{

s1= sy1/n0
s3= sy3/Th0

, (10)

where s1 is the economic loss caused by each start of the pump; sy1 is the economic loss
caused by the pump startups/shutoffs before optimization; n0 is the average number of
pump startups/shutoffs of the initial swarm; s3 is the economic loss per hour of pump
operation; sy3 is the economic loss of the drainage pumping station caused by the wear
of the pumps during operation; Th0 is the average working hours of pumps of the initial
swarm. sy1 and sy3 are generally not recorded in drainage pumping stations, so sy1 and
sy3 are computed through the following formula (Equation (11)):{

sy1= (x 1/(x 1+x3)) × Qn × (S y − Sb)/Qy
sy3= (x 3/(x 1+x3)) × Qn × (S y − Sb)/Qy

, (11)

where Sy is the total economic loss caused by pumps maintenance in a multi-year average
year in a drainage pumping station; Sb is the economic loss caused by the rust of pumps in
Sy; (S y − Sb) is the average annual economic loss caused by the pump start-ups/shutoffs
and operation wear; Qy is the average annual total drainage volume of the drainage
pumping station; Qn is the drainage volume in the scenario; Qn × (S y − Sb)/Qy is the
economic loss caused by the pump startups/shutoffs and operation wear in this scenario.
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By weighting them respectively, the values of sy1 and sy3 can be obtained. sy1 and sy3 of
different return periods can be obtained by Qn of different return periods.

Comprehensive Evaluation of the Operational Economy and Drainage Capacity

The following formula is used for comprehensive evaluation of the operational econ-
omy and drainage capacity (E&C) of the pumping station:

Sat= (x 1+x2+x3) × (S1t + S2t + S3t)/(S10
+ S20 + S30

) + x4 × Hvmaxt /Hvmax0 , (12)

where Sa is the comprehensive evaluation value of the pumping station from the two
aspects of operational economy and drainage capacity (E&C comprehensive evaluation
index). The smaller Sa is, the better the optimization solution is.

2.3. Sensitivity Analysis

To test the influence of the selection of weight values in PSO-LWSM on the final
optimization results, this paper adopts the perturbation method for sensitivity analysis of
weight values, and the perturbation interval is (xn × 0.8, xn × 1.2) (n = 1, 2, 3 and 4) [33].
To simplify the analysis, when a weight of x1 − x4 increases or decreases according to the
change of disturbance value, the rest weights increase or decrease equally.

3. Case Study
3.1. Study Area

The study area called the Xiaohekou case is located in Ma’anshan city, Anhui province,
China, and has a monsoon climate. The average annual temperature is 16.0 ◦C, and the
average annual rainfall is 1100 mm. July is the month with the heaviest rainfall of the year,
with a total rainfall of about 182.5 mm. The drainage pumping station service covers an
area of 13.2 km2. The water system in the drainage area is complex, river and lakes cross,
river depths are 2 to 3 m, and the ground elevation is about 10 m.

The whole flow route is surface runoff→ underground storm sewers→ the River
Yongfeng→ the pumping station→ the River Caishi. The drainage pumping station was
built on the River Yongfeng. The River flows from north to south, and the downstream is the
River Caishi which flows from east to west. During wet weather, when flood water levels
are higher, the pumping station pumps water from the River Yongfeng to the River Caishi.

The drainage area is divided into 623 sub-catchments (Figure 2). The drainage system
includes underground storm sewers, rivers, lakes, and a pumping station. Storm sewers are
designed to convey runoff from a one-year design storm to satisfy local design standards.
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3.2. System Modelling and the Parameters of the Drainage Pumping Station

In order to simulate the operation of the drainage pumping station, the open-source
software package, SWMM, which is widely used around the world, is used. The sys-
tem includes 623 subcatchments, 431 junctions, 434 conduits (including river channels),
3 storage units representing lakes, and 1 drainage pumping station (including 1 storage
unit, 11 pumps, and 11 outfalls). The type 3 pump curve (head-flow) is used for pumps.
The rainfall time series are produced by the Chicago hyetograph method according to the
Ma’anshan rainfall intensity formula, with a storm peak coefficient of 0.4, rainfall duration
of 2 h, and return period of 30 years (the maximum drainage standard for the pumping
station in this area). Return periods of 5, 10, 50, and 100 years are also modelled to find the
influence on the results of three optimization approaches.

The parameters of the drainage pumping station (Table 1) in the SWMM-model are
determined according to the actual parameters of the station. The water level variation of
the River Caishi at the location of the drainage pumping station is unknown since there are
so many water systems flowing into the upper reaches of the River Caishi that it is difficult
to determine its water level. However, the water does not generally flood the outfall to the
River Caishi. Therefore, this system does not consider the inundation of the outfall, and the
head of pumps in the pumping station is calculated as the difference between the elevation
at the bottom of the outfall and the water level of the River Yongfeng at the location of the
drainage pumping station.

Table 1. The parameters of the drainage pumping station.

The Parameters of the Drainage Pumping Station

Drainage pumping station

Area occupied by the pumping station (km2) 13.2
Bottom elevation of the River Yongfeng (m) 3.2
Normal elevation of the River Yongfeng (m) 5.2
Maximum depth of the River Yongfeng (m) 7.5

Bottom elevation of the River Caishi (m) 3.2
Normal elevation of the River Caishi (m) 7.2
Maximum depth of the River Caishi (m) 10

Elevation of the outlet (m) 10.5
Maximum allowable depth of the pumping
station by the end of drainage (m) (Helimit)

4.9

Pumps

Number of pumps 11
Total flow of pumps (m3/s) 58.12

Maximum startup depth of pumps (m) (Hmax) 6.6
Shutoff depth of pumps (m) (Hmin) 4.1

The initial values of optimization objectives and economic loss can be obtained from
the actual economic loss and operation of the pumping station (Table 2).

Table 2. Values of the evaluated parameters.

Parameter Value

Qy Average annual total drainage volume of the drainage pumping station (m3) 8 × 108

En Average electricity use by the pumping station due to the pumps lifting water (CNY) 7.6 × 107

e Electricity price (CNY/(Kw·h)) 0.6324

Sy
Total economic loss caused by pump maintenance in a multi-year average year in the

drainage pumping station (CNY) 6 × 107

Sb Economic loss caused by the rust of the pumps in Sy (CNY) 1.5 × 107

3.3. AHP Comparison Matrix and Weights

The AHP comparison matrix given by the pump station staff for the case study is
shown in Table 3. A consistency test of the comparison matrix is carried out and passed.
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The weight of each objective is determined by the comparison matrix. They will be used
for the PSO-LWSM approach and E&C Comparison module.

Table 3. Comparison matrix and weights of four objectives.

Comparison Matrix and Weight

x1 x2 x3 x4
x1 1 1/4 1/2 1
x2 4 1 5/2 3
x3 2 2/5 1 2
x4 1 1/3 1/2 1

weight 0.126 0.497 0.240 0.137

4. Results and Discussion
4.1. Optimization Results

Table 4 shows the final optimization results (100 generations) of three approaches
(PSO-LSWM, MOPSO-TOPSIS, and NSGA-II-TOPSIS) in the optimization module under
different return periods of design storm in the case study. It can be seen that no matter
which approach is used, most of the multi-objective optimizations of the drainage pumping
station will lead to better results (than with no optimization). Due to multiple objectives, it
is still difficult to judge which approach is the best. For this reason, the comparison module
in the proposed framework will be used next.

Table 4. Optimization results after 100 generations using three approaches.

Return Period
(Years) Optimization Objectives Before

Optimization PSO-LWSM MOPSO-
TOPSIS

NSGA-II-
TOPSIS

5

Number of pump startups/shutoffs 65 14 16 37
Energy consumption of the pumping station (Kw·h) 8854.83 6334.24 6351.71 6361.1

Working hours of pumps (h) 32.67 21.78 22.12 22
Maximum depth of the river (m) 5.36 5.23 5.25 5.34

10

Number of pump startups/shutoffs 648 429 594 452
Energy consumption of the pumping station (Kw·h) 9194.34 6867.2 6853.61 6995.87

Working hours of pumps (h) 32.87 23.98 23.75 24.27
Maximum depth of the river (m) 6.51 5.84 6.32 5.86

30

Number of pump startups/shutoffs 927 623 753 671
Energy consumption of the pumping station (Kw·h) 9895.34 7841.64 7939.3 7902.73

Working hours of pumps (h) 33.8 27.71 27.98 28
Maximum depth of the river (m) 6.91 6.35 5.68 6.37

50

Number of pump startups/shutoffs 813 601 752 640
Energy consumption of the pumping station (Kw·h) 10,243.22 8350.66 8263.08 8302.5

Working hours of pumps (h) 36.93 29.87 29.27 29.41
Maximum depth of the river (m) 6.58 6.27 6.56 6.34

100

Number of pump startups/shutoffs 618 300 530 298
Energy consumption of the pumping station (Kw·h) 10,878.99 8872.16 9032.58 8967.95

Working hours of pumps (h) 37.16 32.02 33.01 32.34
Maximum depth of the river (m) 6.66 5.67 6.1 5.75

4.2. Comparison Results
4.2.1. TOPSIS Comparison Results

Using TOPSIS to compare the optimization results, the comparison results (TOPSIS
comprehensive evaluation index) of the three approaches can be obtained. Figure 3 shows
the TOPSIS comparison results of the three approaches in the optimization module after
10,000 SWMM simulations (100 population × 100 generation) [34] for each return period.
From Figure 3, we can see the convergence generation for each approach and the quality
of the optimization results. All three approaches converge gradually in stages to the best
optimization results before the number of iterations reaches in terms of convergence rate,
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when the return periods are 10, 30, and 50 years, NSGA-II-TOPSIS is faster than PSO-
LWSM, while under other return periods, PSO-LWSM is faster than NSGA-II-TOPSIS. The
convergence rate of MOPSO-TOPSIS is faster than that of PSO-LWSM when the return
period is 50 years, while under other return periods, PSO-LWSM is faster than MOPSO-
TOPSIS. The averaged values of the TOPSIS comprehensive evaluation index of the three
approaches under different return periods are 0.021, 0.154, and 0.375, respectively. A smaller
index indicates a better approach. In terms of optimization results (TOPSIS comprehensive
evaluation index), PSO-LWSM is better than NSGA-II-TOPSIS and MOPSO-TOPSIS under
all return periods.
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4.2.2. E&C Comparison Results

Using E&C to compare the optimization results of the three approaches, the following
comparison results can be obtained (Figure 4).
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It can be seen from Figure 4 that the E&C comparison results of PSO-LWSM are still
better than those of NSGA-II-TOPSIS and MOPSO-TOPSIS, although AHP is used to give
subjective weights here (Table 3).

The averaged values of the E&C comprehensive evaluation index of PSO-LWSM,
NSGA-II-TOPSIS, and MOPSO-TOPSIS under different return periods after optimization
are 0.785, 0.813, and 0.839, respectively. Based on Figures 3 and 4, and Table 4, no matter
how the three approaches are compared, the optimization results of PSO-LWSM are better
than those of NSGA-II-TOPSIS and MOPSO-TOPSIS in this case study.
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4.2.3. Sensitivity Analysis Results

The complete results of sensitivity analysis are provided in the Supplementary Infor-
mation (Tables S1–S5 and Figures S1–S3) considering the length of the paper. Through
sensitivity analysis, it can be seen that the order of sensitivity of four optimization objectives
from high to low is n > Th > E > Hvmax. Although altering the weight values may cause
the changes of PSO-LWSM optimization results, the obtained results are still better than
those of NSGA-II-TOPSIS and MOPSO-TOPSIS.

Based on the sensitivity analysis results, objectives with higher sensitivity should
choose relatively lower weights when using AHP, to ensure stability of the optimization
results. Furthermore, from the perspective of operational economy, the weights of n, E
and Th should be raised. Considering that the sensitivity of E is lower than that of Th,
and the sensitivity of E, Th and Hvmax is much lower than that of n, the weights of the
four objectives should be E > Th > Hvmax > n when using PSO-LWSM. The AHP weight
selection scheme in this paper obeys this principle.

These results validate the efficiency of the proposed framework. The framework can
also be applied to any other objectives with different optimization approaches in the opti-
mization module for a pumping system to reduce energy consumption and maintenance
costs. From the point of view of the framework itself, there are no barriers to applying this
framework to other optimisation problems. Further verification work will be carried out in
other areas in future, providing additional support to the conclusions.

5. Conclusions

In this study, a framework for comparing multi-objective optimization approaches for
a stormwater drainage pumping system is proposed, which consists of two modules, the
optimization module, and the comparison module. It integrates four optimization objec-
tives based on the number of pump startups/shutoffs, energy consumption, working hours,
and drainage capacity. Three optimization approaches, PSO-LWSM, MOPSO-TOPSIS, and
NSGA-II-TOPSIS, are used and compared under different return periods. The Xiaohekou
case in Ma’anshan city, China is presented to validate this framework.

The results show that the framework is feasible and has achieved a good optimization
solution. The optimization performance of PSO-LWSM is better than that of the NSGA-II-
TOPSIS and MOPSO-TOPSIS in the Xiaohekou case. The proposed framework in this study
enables easy quantification of the objectives for multi-objective optimization and can be
used to optimize and compare the operational economy and drainage capacity of drainage
pumping stations. In further study, the overall economic loss of the whole drainage system
may be considered from other factors such as the duration of flooding at nodes to provide
comprehensive optimization support for a pumping system.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w14081248/s1, Figure S1: Slope of four objectives under different
weight schemes and return periods; Figure S2: TOPSIS comparison results of eight weight schemes;
Figure S3: E&C comparison results of eight weight schemes; Table S1:Weights corresponding to
different schemes and return periods; Table S2: Optimization results with corresponding eight weight
schemes; Table S3: Objective slope under different weight schemes and return periods; Table S4:
Results of TOPSIS comparison for eight weight schemes; Table S5: Results of E&C comparison for
eight weight schemes.
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