Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site
2.2. Experimental Design
2.3. Sample Collection and Analysis
2.4. Data Analysis
3. Results
3.1. Dynamic Changes of Different P Forms in Overlying Water of Rice Fields
3.2. The Ratio of Different Forms of P in the Overlying Water
3.3. The Effect of Fertilizer Reduction and Straw Application on Dynamic Changes of Different P Forms in Leaching Water
3.4. The Proportion of Different Forms of P in the Leaching Water
4. Discussion
4.1. P in Overlying Water under Fertilizer Reduction and Straw Application
4.2. P in Leaching Water under Fertilizer Reduction and Straw Application
4.3. The Risk of P Loss during Rice Cultivation
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hu, B.; Chu, C.C. Nitrogen-phosphorus interplay: Old story with molecular tale. New Phytol. 2020, 225, 1455–1460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yin, H.J.; Zhao, W.Q.; Li, T.; Cheng, X.Y.; Liu, Q. Balancing straw returning and chemical fertilizers in China: Role of straw nutrient resources. Renew Sust. Energ. Rev. 2018, 81, 2695–2702. [Google Scholar] [CrossRef]
- Goyette, J.O.; Bennett, E.M.; Maranger, R. Low buffering capacity and slow recovery of anthropogenic phosphorus pollution in watersheds. Nat. Geosci. 2018, 11, 921–925. [Google Scholar] [CrossRef]
- Hua, L.L.; Liu, J.; Zhai, L.M.; Xi, B.; Zhang, F.L.; Wang, H.Y.; Liu, H.B.; Chen, A.Q.; Fu, B. Risks of phosphorus runoff losses from five Chinese paddy soils under conventional management practices. Agric. Ecosyst. Environ. 2017, 245, 112–123. [Google Scholar] [CrossRef]
- Liu, L.H.; Ouyang, W.; Liu, H.B.; Zhu, J.Q.; Fan, X.P.; Zhang, F.L.; Ma, Y.H.; Chen, J.R.; Hao, F.H.; Lian, Z.M. Drainage optimization of paddy field watershed for diffuse phosphorus pollution control and sustainable agricultural development. Agric. Ecosyst. Environ. 2021, 308, 107238. [Google Scholar] [CrossRef]
- Cui, N.X.; Cai, M.; Zhang, X.; Abdelhafez, A.A.; Zhou, L.; Sun, H.F.; Chen, G.F.; Zou, G.Y.; Zhou, S. Runoff loss of nitrogen and phosphorus from a rice paddy field in the east of China: Effects of long-term chemical N fertilizer and organic manure applications. Glob. Ecol. Conserv. 2020, 22, e01011. [Google Scholar] [CrossRef]
- Minamikawa, K.; Fumoto, T.; Iizumi, T.; Cha-Un, N.; Pimple, U.; Nishimori, M.; Ishigooka, Y.; Kuwagata, T. Prediction of future methane emission from irrigated rice paddies in central Thailand under different water management practices. Sci. Total Environ. 2016, 566, 641–651. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.J.; Zhang, W.; Wu, M.; Liu, G.S.; Zhang, Z.J.; Yang, J.C. Effects of irrigation schedules and phosphorus fertilizer rates on grain yield and quality of upland rice and paddy rice. Environ. Exp. Bot. 2021, 186, 104465. [Google Scholar] [CrossRef]
- Fink, J.R.; Inda, A.V.; Bavaresco, J.; Barron, V.; Torrent, J.; Bayer, C. Adsorption and desorption of phosphorus in subtropical soils as affected by management system and mineralogy. Soil Till Res. 2016, 155, 62–68. [Google Scholar] [CrossRef]
- Shaheen, S.M.; Wang, J.X.; Baumann, K.; Wang, S.L.; Leinweber, P.; Rinklebe, J. Redox-induced mobilization of phosphorus in groundwater affected arable soil profiles. Chemosphere 2021, 275, 129928. [Google Scholar] [CrossRef]
- Wang, K.Y.; Onodera, S.I.; Saito, M.; Okuda, N.; Okubo, T. Estimation of Phosphorus Transport Influenced by Climate Change in a Rice Paddy Catchment Using SWAT. Int. J. Environ. Res. 2021, 15, 759–772. [Google Scholar] [CrossRef]
- Lewis, W.M.; Wurtsbaugh, W.A.; Paerl, H.W. Rationale for Control of Anthropogenic Nitrogen and Phosphorus to Reduce Eutrophication of Inland Waters. Environ. Sci. Technol. 2011, 45, 10300–10305. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.H.; Yang, L.Z.; Yan, T.M.; Wang, J.G. Downward movement of phosphorus in paddy soil installed in large-scale monolith lysimeters. Agric. Ecosyst. Environ. 2005, 111, 270–278. [Google Scholar] [CrossRef]
- Zhang, S.J.; Guo, X.Y.; Yun, W.F.; Xia, Y.; You, Z.Y.; Rillig, M.C. Arbuscular mycorrhiza contributes to the control of phosphorus loss in paddy fields. Plant Soil 2020, 447, 623–636. [Google Scholar] [CrossRef]
- Yang, J.Y.; He, Z.L.; Yang, Y.G.; Stoffella, P.; Yang, X.E.; Banks, D.; Mishra, S. Use of amendments to reduce leaching loss of phosphorus and other nutrients from a sandy soil in Florida. Environ. Sci. Pollut. Res. 2007, 14, 266–269. [Google Scholar] [CrossRef]
- Zhang, Z.J.; Zhu, Y.M.; Guo, P.Y.; Liu, G.S. Potential loss of phosphorus from a rice field in Taihu Lake basin. J. Environ. Qual. 2004, 33, 1403–1412. [Google Scholar] [CrossRef]
- Cho, J.Y.; Han, K.W.; Choi, J.K.; Kim, Y.J.; Yoon, K.S. N and P losses from a paddy field plot in central Korea. Soil Sci. Plant Nutr. 2002, 48, 301–306. [Google Scholar] [CrossRef]
- Xie, X.J.; Ran, W.; Shen, Q.R.; Yang, C.Y.; Yang, J.J.; Cao, Z.H. Field studies on P-32 movement and P leaching from flooded paddy soils in the region of Taihu Lake, China. Environ. Geochem. Health 2004, 26, 237–243. [Google Scholar] [CrossRef]
- Liu, J.; Ouyang, X.Q.; Shen, J.L.; Li, Y.; Sun, W.R.; Jiang, W.Q.; Wu, J.S. Nitrogen and phosphorus runoff losses were influenced by chemical fertilization but not by pesticide application in a double rice-cropping system in the subtropical hilly region of China. Sci. Total Environ. 2020, 715, 136852. [Google Scholar] [CrossRef]
- Xu, Y.Q.; Su, B.L.; Wang, H.Q.; He, J.Y.; Yang, Y.X. Analysis of the water balance and the nitrogen and phosphorus runoff pollution of a paddy field in situ in the Taihu Lake basin. Paddy Water Environ. 2020, 18, 385–398. [Google Scholar] [CrossRef]
- Fei, C.; Zhang, S.R.; Wei, W.L.; Liang, B.; Li, J.L.; Ding, X.D. Straw and optimized nitrogen fertilizer decreases phosphorus leaching risks in a long-term greenhouse soil. J. Soils Sediments 2020, 20, 1199–1207. [Google Scholar] [CrossRef]
- Hua, K.K.; Zhu, B. Phosphorus loss through surface runoff and leaching in response to the long-term application of different organic amendments on sloping croplands. J. Soils Sediments 2020, 20, 3459–3471. [Google Scholar] [CrossRef]
- Li, M.; Hu, Z.Y.; Zhu, X.Q.; Zhou, G.H. Risk of phosphorus leaching from phosphorus-enriched soils in the Dianchi catchment, Southwestern China. Environ. Sci. Pollut. Res. 2015, 22, 8460–8470. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, D.; Zhang, G.; Wang, Y.; Wang, C.; Teng, Y.; Christie, P. Nitrogen and phosphorus leaching losses from intensively managed paddy fields with straw retention. Agric. Water Manag. 2014, 141, 66–73. [Google Scholar] [CrossRef]
- Jalali, M.; Jalali, M. Assessment risk of phosphorus leaching from calcareous soils using soil test phosphorus. Chemosphere 2017, 171, 106–117. [Google Scholar] [CrossRef]
- Kochian, L.V. PLANT NUTRITION Rooting for more phosphorus. Nature 2012, 488, 466–467. [Google Scholar] [CrossRef]
- Nest, T.V.; Vandecasteele, B.; Ruysschaert, G.; Merckx, R. Prediction of P concentrations in soil leachates: Results from 6 long term field trials on soils with a high P load. Agric. Ecosyst. Environ. 2017, 237, 55–65. [Google Scholar] [CrossRef]
- Qi, D.L.; Wu, Q.X.; Zhu, J.Q. Nitrogen and phosphorus losses from paddy fields and the yield of rice with different water and nitrogen management practices. Sci. Rep. 2020, 10, 9734. [Google Scholar] [CrossRef]
- Qi, D.L.; Yan, J.; Zhu, J.Q. Effect of a reduced fertilizer rate on the water quality of paddy fields and rice yields under fishpond effluent irrigation. Agric. Water Manag. 2020, 231, 105999. [Google Scholar] [CrossRef]
- Lee, J.H.; Lee, J.G.; Jeong, S.T.; Gwon, H.S.; Kim, P.J.; Kim, G.W. Straw recycling in rice paddy: Trade-off between greenhouse gas emission and soil carbon stock increase. Soil Till Res. 2020, 199, 104598. [Google Scholar] [CrossRef]
- Chen, Z.M.; Wang, H.Y.; Liu, X.W.; Zhao, X.L.; Lu, D.J.; Zhou, J.M.; Li, C.Z. Changes in soil microbial community and organic carbon fractions under short-term straw return in a rice-wheat cropping system. Soil Till Res. 2017, 165, 121–127. [Google Scholar] [CrossRef]
- Hu, N.J.; Wang, B.J.; Gu, Z.H.; Tao, B.R.; Zhang, Z.W.; Hu, S.J.; Zhu, L.Q.; Meng, Y.L. Effects of different straw returning modes on greenhouse gas emissions and crop yields in a rice-wheat rotation system. Agric. Ecosyst. Environ. 2016, 223, 115–122. [Google Scholar] [CrossRef]
- Brar, B.S.; Singh, J.; Singh, G.; Kaur, G. Effects of Long Term Application of Inorganic and Organic Fertilizers on Soil Organic Carbon and Physical Properties in Maize-Wheat Rotation. Agronomy 2015, 5, 220–238. [Google Scholar] [CrossRef]
- Yang, Y.J.; Zhang, H.P.; Qian, X.Q.; Duan, J.N.; Wang, G.L. Excessive application of pig manure increases the risk of P loss in calcic cinnamon soil in China. Sci. Total Environ. 2017, 609, 102–108. [Google Scholar] [CrossRef]
- National Bureau of Statistics of China. China Statistical Yearbook; China Statistics Press: Beijing, China, 2019.
- Shaanxi Provincial Bureau of Statistics. Shaanxi Statistical Yearbook; China Statistics Press: Beijing, China, 2019.
- Wei, S.K.; Yang, H.; Abbaspour, K.; Mousavi, J.; Gnauck, A. Game theory based models to analyze water conflicts in the Middle Route of the South-to-North Water Transfer Project in China. Water Res. 2010, 44, 2499–2516. [Google Scholar] [CrossRef]
- Reidsma, P.; Feng, S.Y.; van Loon, M.; Luo, X.J.; Kang, C.K.; Lubbers, M.; Kanellopoltlos, A.; Wolf, J.; van Ittersum, M.K.; Qu, F.T. Integrated assessment of agricultural land use policies on nutrient pollution and sustainable development in Taihu Basin, China. Environ. Sci. Policy 2012, 18, 66–76. [Google Scholar] [CrossRef]
- Nagumo, T.; Tajima, S.; Chikushi, S.; Yamashita, A. Phosphorus Balance and Soil Phosphorus Status in Paddy Rice Fields with Various Fertilizer Practices. Plant Prod. Sci. 2013, 16, 69–76. [Google Scholar] [CrossRef]
- Dai, H.P.; Wei, S.H.; Skuza, L.D.; Zhang, Q. Phytoremediation of two ecotypes cadmium hyperaccumulator Bidens pilosa L. sourced from clean soils. Chemosphere 2021, 273, 129652. [Google Scholar] [CrossRef]
- USDA. Soil Survey Manual; Soil Conservation Service: Washinton, DC, USA, 1993.
- Zhang, S.J.; Wang, L.; Ma, F.; Zhang, X.; Li, Z.; Li, S.Y.; Jiang, X.F. Can arbuscular mycorrhiza and fertilizer management reduce phosphorus runoff from paddy fields? J. Environ. Sci. 2015, 33, 211–218. [Google Scholar] [CrossRef]
- Tootoonchi, M.; Bhadha, J.H.; Lang, T.A.; McCray, J.M.; Clark, M.W.; Daroub, S.H. Reducing drainage water phosphorus concentration with rice cultivation under different water management regimes. Agric. Water Manag. 2018, 205, 30–37. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphate in natural waters. Anal. Chim. Acta 1962, 27, 678–681. [Google Scholar] [CrossRef]
- Wang, J.C.; Zhang, L.; Lu, Q.; Raza, W.; Huang, Q.W.; Shen, Q.R. Ammonia oxidizer abundance in paddy soil profile with different fertilizer regimes. Appl. Soil Ecol. 2014, 84, 38–44. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, X.; Gao, J.X.; Butterly, C.R.; Chen, Q.H.; Liu, M.Q.; Yang, Y.W.; Xi, Y.G.; Xiao, X.J. Effects of fertilizer types on nitrogen and phosphorous loss from rice-wheat rotation system in the Taihu Lake region of China. Agric. Ecosyst. Environ. 2019, 285, 106605. [Google Scholar] [CrossRef]
- Ellison, M.E.; Brett, M.T. Particulate phosphorus bioavailability as a function of stream flow and land cover. Water Res. 2006, 40, 1258–1268. [Google Scholar] [CrossRef] [PubMed]
- Ni, X.J.; Yuan, Y.P.; Liu, W.L. Impact factors and mechanisms of dissolved reactive phosphorus (DRP) losses from agricultural fields: A review and synthesis study in the Lake Erie basin. Sci. Total Environ. 2020, 714, 136624. [Google Scholar] [CrossRef] [PubMed]
- Pu, J.; Wang, S.R.; Ni, Z.K.; Wu, Y.; Liu, X.F.; Wu, T.; Wu, H.X. Implications of phosphorus partitioning at the suspended particle-water interface for lake eutrophication in China’s largest freshwater lake, Poyang Lake. Chemosphere 2021, 263, 128334. [Google Scholar] [CrossRef] [PubMed]
- Gardner, C.M.K.; Cooper, D.M.; Hughes, S. Phosphorus in soils and field drainage water in the Thame catchment, UK. Sci. Total Environ. 2002, 282, 253–262. [Google Scholar] [CrossRef]
- Read, E.K.; Ivancic, M.; Hanson, P.; Cade-Menun, B.J.; McMahon, K.D. Phosphorus speciation in a eutrophic lake by P-31 NMR spectroscopy. Water Res. 2014, 62, 229–240. [Google Scholar] [CrossRef]
- Yang, B.; Kang, Z.J.; Lu, D.L.; Dan, S.F.; Ning, Z.M.; Lan, W.L.; Zhong, Q.P. Spatial Variations in the Abundance and Chemical Speciation of Phosphorus across the River-Sea Interface in the Northern Beibu Gulf. Water 2018, 10, 1103. [Google Scholar] [CrossRef] [Green Version]
- Dierberg, F.E.; DeBusk, T.A. Particulate phosphorus transformations in south Florida stormwater treatment areas used for Everglades protection. Ecol. Eng. 2008, 34, 100–115. [Google Scholar] [CrossRef]
- Feng, W.Y.; Yang, F.; Zhang, C.; Liu, J.; Song, F.H.; Chen, H.Y.; Zhu, Y.R.; Liu, S.S.; Giesy, J.P. Composition characterization and biotransformation of dissolved, particulate and algae organic phosphorus in eutrophic lakes. Environ. Pollut. 2020, 265, 114838. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.Z.; Yang, S.H.; Xu, J.Z.; Luo, Y.F.; Hou, H.J. Nitrogen and phosphorus leaching losses from paddy fields with different water and nitrogen managements. Paddy Water Environ. 2011, 9, 333–342. [Google Scholar] [CrossRef]
- Liang, X.Q.; Li, L.; Chen, Y.X.; Li, H.; Liu, J.; He, M.M.; Ye, Y.S.; Tian, G.M.; Lundy, M. Dissolved Phosphorus Losses by Lateral Seepage from Swine Manure Amendments for Organic Rice Production. Soil Sci. Soc. Am. J. 2013, 77, 765–773. [Google Scholar] [CrossRef]
- Niyungeko, C.; Liang, X.Q.; Liu, C.L.; Liu, Z.W.; Sheteiwy, M.; Zhang, H.F.; Zhou, J.J.; Tian, G.M. Effect of biogas slurry application rate on colloidal phosphorus leaching in paddy soil: A column study. Geoderma 2018, 325, 117–124. [Google Scholar] [CrossRef]
- Kanter, D.R.; Brownlie, W.J. Joint nitrogen and phosphorus management for sustainable development and climate goals. Environ. Sci. Policy 2019, 92, 106–117. [Google Scholar] [CrossRef]
- Liu, X.P.; Bi, Q.F.; Qiu, L.L.; Li, K.J.; Yang, X.R.; Lin, X.Y. Increased risk of phosphorus and metal leaching from paddy soils after excessive manure application: Insights from a mesocosm study. Sci. Total Environ. 2019, 666, 778–785. [Google Scholar] [CrossRef]
- Wu, Y.L.; Huang, W.C.; Zhou, F.; Fu, J.; Wang, S.; Cui, X.Q.; Wang, Q.H.; Bo, Y.; Yang, S.Y.; Wang, N.; et al. Raindrop-induced ejection at soil-water interface contributes substantially to nutrient runoff losses from rice paddies. Agric. Ecosyst. Environ. 2020, 304, 107135. [Google Scholar] [CrossRef]
- Hua, L.L.; Zhai, L.M.; Liu, J.; Liu, H.B.; Zhang, F.L.; Fan, X.P. Effect of irrigation-drainage unit on phosphorus interception in paddy field system. J. Environ. Manag. 2019, 235, 319–327. [Google Scholar] [CrossRef]
- Li, X.N.; Zhang, W.W.; Wu, J.Y.; Li, H.J.; Zhao, T.K.; Zhao, C.Q.; Shi, R.S.; Li, Z.S.; Wang, C.; Li, C. Loss of nitrogen and phosphorus from farmland runoff and the interception effect of an ecological drainage ditch in the North China Plain-A field study in a modern agricultural park. Ecol. Eng. 2021, 169, 106310. [Google Scholar] [CrossRef]
- Fu, J.; Jian, Y.W.; Wu, Y.L.; Chen, D.J.; Zhao, X.; Ma, Y.H.; Niu, S.W.; Wang, Y.F.; Zhang, F.L.; Xu, C.X.; et al. Nationwide estimates of nitrogen and phosphorus losses via runoff from rice paddies using data-constrained model simulations. J. Clean. Prod. 2021, 279, 123642. [Google Scholar] [CrossRef]
Year | Treatments | Base Fertilizer (kg ha−1) | Topdressing (kg ha−1) | ||
---|---|---|---|---|---|
Sulfur-Coated Urea | Superphosphate | Potassium Sulfate | Urea | ||
2018 | CK | 0 | 0 | 0 | 0 |
CF | 243 | 750 | 180 | 117 | |
RF | 194 | 600 | 180 | 93.6 | |
RFWS | 194 | 600 | 180 | 93.6 | |
RFRS | 194 | 600 | 180 | 93.6 | |
RFAS | 194 | 600 | 180 | 93.6 | |
2019 | CK | 0 | 0 | 0 | 0 |
CF | 243 | 750 | 180 | 117 | |
RF | 194 | 600 | 180 | 93.6 | |
RFWS | 194 | 600 | 180 | 93.6 | |
RFRS | 194 | 600 | 180 | 93.6 | |
RFAS | 194 | 600 | 180 | 93.6 |
Treatments | TP | TDP | PP | SRP | DOP |
---|---|---|---|---|---|
CK | 0.169 ± 0.068 c 1 | 0.123 ± 0.047 c | 0.046 ± 0.022 b | 0.096 ± 0.032 b | 0.027 ± 0.015 b |
CF | 0.658 ± 0.075 b | 0.371 ± 0.095 b | 0.287 ± 0.111 a | 0.198 ± 0.023 b | 0.173 ± 0.074 a |
RF | 0.426 ± 0.128 b | 0.241 ± 0.023 bc | 0.185 ± 0.107 ab | 0.151 ± 0.02 b | 0.09 ± 0.002 ab |
RFWS | 0.93 ± 0.103 a | 0.734 ± 0.13 a | 0.196 ± 0.032 ab | 0.605 ± 0.065 a | 0.129 ± 0.082 ab |
Treatments | TDP/TP% | PP/TP% | SRP/TDP% | DOP/TDP% |
---|---|---|---|---|
CK | 73.46 ± 2.69 a 1 | 26.54 ± 2.69 a | 78.59 ± 4.69 ab | 21.41 ± 4.69 bc |
CF | 56.73 ± 15.6 a | 43.27 ± 15.6 a | 54.92 ± 9.74 c | 45.08 ± 9.74 a |
RF | 59.5 ± 14.93 a | 40.5 ± 14.93 a | 62.49 ± 2.68 bc | 37.51 ± 2.68 ab |
RFWS | 78.55 ± 5.65 a | 21.45 ± 5.65 a | 83.26 ± 8.29 a | 16.74 ± 8.29 c |
Depth | Treatments | TP | TDP | PP | SRP | DOP |
---|---|---|---|---|---|---|
40 cm | CK | 0.112 ± 0.002 A 1 c 2 | 0.088 ± 0.004 Ab | 0.025 ± 0.006 Aa | 0.067 ± 0.003 Ac | 0.024 ± 0.001 Aa |
CF | 0.146 ± 0.006 Ba | 0.115 ± 0.008 Aa | 0.031 ± 0.003 Aa | 0.077 ± 0.004 Abc | 0.038 ± 0.012 Aa | |
RF | 0.133 ± 0.003 ABb | 0.102 ± 0.004 Bab | 0.032 ± 0.005 Aa | 0.096 ± 0.006 Aa | 0.033 ± 0.011 Aa | |
RFWS | 0.142 ± 0.004 Aab | 0.111 ± 0.011 Aa | 0.031 ± 0.006 Aa | 0.082 ± 0.008 Aab | 0.032 ± 0.011 Aa | |
60 cm | CK | 0.106 ± 0.01 Ab | 0.091 ± 0.012 Ab | 0.016 ± 0.003 Ab | 0.078 ± 0.009 Aa | 0.017 ± 0.008 Ab |
CF | 0.173 ± 0.012 Aa | 0.122 ± 0.015 Aa | 0.051 ± 0.007 Aa | 0.095 ± 0.001 Aa | 0.031 ± 0.012 Aab | |
RF | 0.148 ± 0.006 Aa | 0.124 ± 0.006 Aa | 0.024 ± 0.004 Ab | 0.092 ± 0.014 Aa | 0.045 ± 0.008 Aa | |
RFWS | 0.149 ± 0.013 Aa | 0.118 ± 0.005 Aab | 0.031 ± 0.008 Ab | 0.077 ± 0.005 Aa | 0.041 ± 0.009 Aab | |
100 cm | CK | 0.116 ± 0.007 Ac | 0.1 ± 0.009 Ab | 0.017 ± 0.006 Ab | 0.077 ± 0.005 Aa | 0.025 ± 0.01 Aa |
CF | 0.168 ± 0.002 Aa | 0.134 ± 0.014 Aa | 0.034 ± 0.014 Aab | 0.101 ± 0.02 Aa | 0.042 ± 0.017 Aa | |
RF | 0.129 ± 0.009 Bbc | 0.105 ± 0.009 Bab | 0.023 ± 0.002 Aab | 0.077 ± 0.001 Aa | 0.024 ± 0.011 Aa | |
RFWS | 0.154 ± 0.021 Aab | 0.108 ± 0.013 Aab | 0.045 ± 0.008 Aa | 0.084 ± 0.001 Aa | 0.028 ± 0.013 Aa |
Depth | Treatments | TDP/TP% | PP/TP% | SRP/TDP% | DOP/TDP% |
---|---|---|---|---|---|
40 cm | CK | 78.15 ± 4.75 A 1 a 2 | 21.85 ± 4.75 Aa | 76.55 ± 3.35 Ab | 27.21 ± 0.9 Aa |
CF | 78.71 ± 2.73 Aa | 21.29 ± 2.73 Aa | 67.16 ± 7.89 Ab | 32.79 ± 7.79 Aa | |
RF | 76.14 ± 3.46 Ba | 23.86 ± 3.46 Aa | 95.05 ± 10.05 Aa | 31.93 ± 9.2 Aa | |
RFWS | 78.3 ± 5.09 Aa | 21.7 ± 5.09 Aa | 74.06 ± 1.41 Ab | 28.72 ± 6.6 Aa | |
60 cm | CK | 85.22 ± 4.31 Aa | 15.58 ± 3.06 Ab | 86.7 ± 8.16 Aa | 18.24 ± 6.86 Ab |
CF | 70.47 ± 4.88 Ab | 29.53 ± 4.88 Aa | 78.22 ± 9.5 Aa | 24.85 ± 7.17 Aab | |
RF | 83.77 ± 2.45 Aa | 16.23 ± 2.45 Bb | 74.19 ± 7.63 Ba | 36.38 ± 4.86 Aa | |
RFWS | 79.52 ± 3.9 Aab | 20.48 ± 3.9 Aab | 65.59 ± 7.32 Aa | 34.65 ± 6.45 Aab | |
100 cm | CK | 86.35 ± 5.91 Aa | 14.93 ± 5.51 Ab | 77.18 ± 6.7 Aa | 24.82 ± 8.3 Aa |
CF | 79.5 ± 8.43 Aab | 20.5 ± 8.43 Aab | 76.24 ± 18.12 Aa | 30.97 ± 9.95 Aa | |
RF | 81.8 ± 1.78 ABab | 18.2 ± 1.78 ABab | 73.67 ± 5.4 Ba | 22.11 ± 8.4 Aa | |
RFWS | 70.7 ± 1.66 Ab | 29.3 ± 1.66 Aa | 78.57 ± 10.37 Aa | 25.2 ± 8.65 Aa |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhou, W.; Yang, Y.; Liu, X.; Cui, Z.; Lv, J. Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields. Water 2022, 14, 1250. https://doi.org/10.3390/w14081250
Zhou W, Yang Y, Liu X, Cui Z, Lv J. Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields. Water. 2022; 14(8):1250. https://doi.org/10.3390/w14081250
Chicago/Turabian StyleZhou, Wei, Yajun Yang, Xiaoqi Liu, Ziying Cui, and Jialong Lv. 2022. "Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields" Water 14, no. 8: 1250. https://doi.org/10.3390/w14081250
APA StyleZhou, W., Yang, Y., Liu, X., Cui, Z., & Lv, J. (2022). Effects of Fertilizer Reduction and Straw Application on Dynamic Changes of Phosphorus in Overlying and Leaching Water in Rice Fields. Water, 14(8), 1250. https://doi.org/10.3390/w14081250