Numerical Simulation of the Trajectory of Garbage Falling into the Sea at the Coastal Landfill in Northeast Taiwan
Abstract
:1. Introduction
2. Environment of Study Area
2.1. Bathymetry
2.2. Tide
2.3. Monsoon
2.4. Typhoon
3. Description and Validation of Model Simulation
4. Results
4.1. No-Wind Scenario
4.2. Northeast Monsoon Scenario
4.3. Typhoon Scenarios
4.3.1. Typhoon Fung-Wong (2008)
4.3.2. Typhoon Soulik (2013)
4.3.3. Sinlaku (2002)
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef] [Green Version]
- Martinez, E.; Maamaatuaiahutapu, K.; Taillandier, V. Floating marine debris surface drift: Convergence and accumulation toward the South Pacific subtropical gyre. Mar. Pollut. Bull. 2009, 58, 1347–1355. [Google Scholar] [CrossRef]
- Martínez-Vicente, V.; Clark, J.R.; Corradi, P.; Aliani, S.; Arias, M.; Bochow, M.; Bonnery, G.; Cole, M.; Cózar, A.; Donnelly, R.; et al. Measuring marine plastic debris from space: Initial assessment of observation requirements. Remote Sens. 2019, 11, 2443. [Google Scholar] [CrossRef] [Green Version]
- Kikaki, A.; Karantzalos, K.; Power, C.A.; Raitsos, D.E. Remotely Sensing the Source and Transport of Marine Plastic Debris in Bay Islands of Honduras (Caribbean Sea). Remote Sens. 2020, 12, 1727. [Google Scholar] [CrossRef]
- Merlino, S.; Paterni, M.; Berton, A.; Massetti, L. Unmanned aerial vehicles for debris survey in coastal areas: Long-term monitoring programme to study spatial and temporal accumulation of the dynamics of beached marine litter. Remote Sens. 2020, 12, 1260. [Google Scholar] [CrossRef] [Green Version]
- Hardesty, B.D.; Harari, J.; Isobe, A.; Lebreton, L.; Maximenko, N.; Potemra, J.; van Sebille, E.; Vethaak, A.D.; Wilcox, C. Using numerical model simulations to improve the understanding of micro-plastic distribution and pathways in the marine environment. Front. Mar. Sci. 2017, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Lebreton, L.C.M.; Greer, S.D.; Borrero, J.C. Numerical modelling of floating debris in the world’s oceans. Mar. Pollut. Bull. 2012, 64, 653–661. [Google Scholar] [CrossRef]
- Potemra, J.T. Numerical modeling with application to tracking marine debris. Mar. Pollut. Bull. 2012, 65, 42–50. [Google Scholar] [CrossRef]
- Maes, C.; Blanke, B. Tracking the origins of plastic debris across the Coral Sea: A case study from the Ouvéa Island, New Caledonia. Mar. Pollut. Bull. 2015, 97, 160–168. [Google Scholar] [CrossRef]
- Pereiro, D.; Souto, C.; Gago, J. Calibration of a marine floating litter transport model. J. Oper. Oceanogr. 2018, 11, 125–133. [Google Scholar] [CrossRef]
- Maximenko, N.; Corradi, P.; Law, K.L.; Van Sebille, E.; Garaba, S.P.; Lampitt, R.S.; Galgani, F.; Martinez-Vincete, V.; Goddijn-Murphy, L.; Veiga, J.M.; et al. Towards the integrated marine debris observing system. Front. Mar. Sci. 2019, 6, 447. [Google Scholar] [CrossRef] [Green Version]
- Veiga, J.M.; Fleet, D.; Kinsey, S.; Nilsson, P.; Vlachogianni, T.; Werner, S.; Galgani, F.; Thompson, R.C.; Dagevos, J.; Gago, J.; et al. Identifying sources of marine litter. MSFD GES TG Marine Litter Thematic Report. In JRC Technical Report 2016; European Commission: Brussels, Belgium, 2016; 43p. [Google Scholar]
- Beaven, R.P.; Stringfellow, A.M.; Nicholls, R.J.; Haigh, I.D.; Kebede, A.S.; Watts, J. The impact of coastal landfills on shoreline management plans. In Sardinia 2017: 16th International Waste Management and Landfill Symposium; CISA Publisher: Padova, Italy, 2007; pp. 1–12. [Google Scholar]
- Beaven, R.P.; Stringfellow, A.M.; Nicholls, R.J.; Haigh, I.D.; Kebede, A.S.; Watts, J. Future challenges of coastal landfills exacerbated by sea level rise. Waste Manag. 2020, 105, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Brand, J.H. Assessing the Risk of Pollution from Historic Coastal Landfills. Ph.D. Thesis, Queen Mary University of London, London, UK, 2017. [Google Scholar]
- Parker, B.B. Tidal Analysis and Prediction; NOAA Special Publication NOS CO-OPS 3; U.S. Department of Commerce: Washington, DC, USA, 2007; 378p.
- Pereiro, D.; Souto, C.; Gago, J. Dynamics of floating marine debris in the northern Iberian waters: A model approach. J. Sea Res. 2019, 144, 57–66. [Google Scholar] [CrossRef]
- Zaleski, S.F.; Watabayashi, G.; Dong, C.; Barker, C.H.; MacFadyen, A.; Righi, D.; Kachook, G.; Zelenke, B. Predicting surface oil transport in California using a high-resolution Regional Ocean Modeling System (ROMS) and the National Oceanic and Atmospheric Administration’s (NOAA’s) Trajectory Analysis Planner (TAP). Int. Oil Spill Conf. Proc. 2017, 2017, 2017309. [Google Scholar] [CrossRef]
- Carlson, D.F.; Suaria, G.; Aliani, S.; Fredj, E.; Fortibuoni, T.; Griffa, A.; Russo, A.; Melli, V. Combining Litter Observations with a Regional Ocean Model to Identify Sources and Sinks of Floating Debris in a Semi-enclosed Basin: The Adriatic Sea. Front. Mar. Sci. 2017, 4, 78. [Google Scholar] [CrossRef] [Green Version]
- Shchepetkin, A.F.; McWilliams, J.C. A method for computing horizontal pressure-gradient force in an oceanic model with a non-aligned vertical coordinate. J. Geophys. Res. 2003, 108, 3090. [Google Scholar] [CrossRef]
- Shchepetkin, A.F.; McWilliams, J.C. The Regional Ocean Modeling System (ROMS): A split-explicit, free-surface, topography-following coordinates ocean model. Ocean Model. 2005, 9, 347–404. [Google Scholar] [CrossRef]
- Moore, A.M.; Arango, H.G.; Miller, A.J.; Cornuelle, B.D.; Di Lorenzo, E.; Neilson, D.J. A comprehensive ocean prediction and analysis system based on the tangent linear and adjoint of a regional ocean model. Ocean Model. 2004, 7, 227–258. [Google Scholar] [CrossRef]
- Warner, J.C.; Geyer, W.R.; Lerczak, J.A. Numerical modeling of an estuary: A comprehensive skill assessment. J. Geophys. Res. 2005, 110, C05001. [Google Scholar] [CrossRef]
- Chen, K.Y.; Huang, C.F.; Huang, S.W.; Liu, J.Y.; Guo, J. Mapping coastal circulations using moving vehicle acoustic tomography. J. Acoust. Soc. Am. 2020, 148, EL353–EL358. [Google Scholar] [CrossRef]
- Flather, R.A. A tidal model of the northwest European continental shelf. Mem. Soc. Roy. Sci. Liege 1976, 10, 141–164. [Google Scholar]
- Egbert, G.; Erofeeva, S. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2020, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Zheng, Z.W.; Zheng, Q.; Lee, C.Y.; Gopalakrishnan, G. Transient modulation of Kuroshio upper layer flow by directly impinging typhoon Morakot in east of Taiwan in 2009. J. Geophys. Res. Oceans 2014, 119, 4462–4473. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Zheng, Q.; Gopalakrishnan, G.; Kuo, Y.C.; Yeh, T.K. Response of upper ocean cooling off northeastern Taiwan to typhoon passages. Ocean Model. 2017, 115, 105–118. [Google Scholar] [CrossRef]
- Zheng, Z.W.; Ho, C.R.; Zheng, Q.; Lo, Y.T.; Kuo, N.J.; Gopalakrishnan, G. Effects of preexisting cyclonic eddies on upper ocean responses to Category 5 typhoons in the western North Pacific. J. Geophys. Res. Oceans 2010, 115, C09013. [Google Scholar] [CrossRef]
- Shen, D.; Li, X.; Wang, J.; Bao, S.; Pietrafesa, L.J. Dynamical ocean responses to Typhoon Malakas in the vicinity of Taiwan. J. Geophys. Res. Oceans 2021, 126, e2020JC016663. [Google Scholar] [CrossRef]
- Duhec, A.V.; Jeanne, R.F.; Maximenko, N.; Hafner, J. Composition and potential origin of marine debris stranded in the Western Indian Ocean on remote Alphonse Island, Seychelles. Mar. Pollut. Bull. 2015, 96, 76–86. [Google Scholar] [CrossRef]
- Allshouse, M.R.; Ivey, G.N.; Lowe, R.J.; Jones, N.L.; Beegle-Krause, C.J.; Xu, J.; Peacock, T. Impact of windage on ocean surface Lagrangian coherent structures. Environ. Fluid Mech. 2017, 17, 473–483. [Google Scholar] [CrossRef]
- Ko, C.T.; Hsin, Y.C.; Jeng, M.S. Global distribution and cleanup opportunities for macro ocean litter: A quarter century of accumulation dynamics under windage effects. Environ. Res. Lett. 2020, 15, 104063. [Google Scholar] [CrossRef]
- Onink, V.; Wichmann, D.; Delandmeter, P.; van Sebille, E. The role of Ekman current, geostrophy, and Stokes drift in the accumulation of floating microplastic. J. Geophys. Res. Oceans 2019, 124, 1474–1490. [Google Scholar] [CrossRef] [Green Version]
Typhoon Name | Warning Period | Lowest Pressure | Highest Wind Speed | Route |
---|---|---|---|---|
Fung-Wong (2008) | 0330Z 26 July–0330Z 29 July | 948 hPa | 43 m/s | 3 |
Soulik (2013) | 0030Z 07 July–1530Z 13 July | 925 hPa | 51 m/s | 2 |
Sinlaku (2002) | 2115Z 03 September–2150Z 07 September | 950 hPa | 40 m/s | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lai, Y.-H.; Lu, C.-Y.; Zheng, Z.-W.; Chiang, L.-C.; Ho, C.-R. Numerical Simulation of the Trajectory of Garbage Falling into the Sea at the Coastal Landfill in Northeast Taiwan. Water 2022, 14, 1251. https://doi.org/10.3390/w14081251
Lai Y-H, Lu C-Y, Zheng Z-W, Chiang L-C, Ho C-R. Numerical Simulation of the Trajectory of Garbage Falling into the Sea at the Coastal Landfill in Northeast Taiwan. Water. 2022; 14(8):1251. https://doi.org/10.3390/w14081251
Chicago/Turabian StyleLai, Yu-Hsuan, Ching-Yuan Lu, Zhe-Wen Zheng, Li-Chun Chiang, and Chung-Ru Ho. 2022. "Numerical Simulation of the Trajectory of Garbage Falling into the Sea at the Coastal Landfill in Northeast Taiwan" Water 14, no. 8: 1251. https://doi.org/10.3390/w14081251
APA StyleLai, Y. -H., Lu, C. -Y., Zheng, Z. -W., Chiang, L. -C., & Ho, C. -R. (2022). Numerical Simulation of the Trajectory of Garbage Falling into the Sea at the Coastal Landfill in Northeast Taiwan. Water, 14(8), 1251. https://doi.org/10.3390/w14081251