Hydrological Change Detection and Process Simulation for a Semi-Arid Catchment in Northern China
Abstract
:1. Introduction
2. Study Area and Data Sources
3. Methodologies
3.1. Trend-Free Pre-Whiting
3.2. Mann–Kendall Method
3.3. Pettitt Test
3.4. Sequential Cluster Test
3.5. Morlet Wavelet Analysis
3.6. RCCC-WBM Model
4. Results
4.1. Interannual and Seasonal Variations of Hydrometeorological Series in 1973–2014
4.2. Mutation Test of Hydrometeorological Series in 1973–2014
4.3. Periodicity Analysis of Hydrometeorological Series in 1973–2014
4.4. Hydrological Modeling for Stream Flow in 1973–2014
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Montanari, A.; Young, G.; Savenije, H.H.G.; Hughes, D.; Wagener, T.; Ren, L.L.; Koutsoyiannis, D.; Cudennec, C.; Toth, E.; Grimaldi, S.; et al. “Panta Rhei—Everything Flows”: Change in hydrology and society—The IAHS Scientific Decade 2013–2022. Hydrol. Sci. J. 2013, 58, 1256–1275. [Google Scholar] [CrossRef]
- Xue, D.; Zhou, J.; Zhao, X.; Liu, C.; Wei, W.; Yang, X.; Li, Q.; Zhao, Y. Impacts of climate change and human activities on runoff change in a typical arid watershed, NW China. Ecol. Indic. 2021, 121, 107013. [Google Scholar] [CrossRef]
- Yang, G.; Zhang, M.; Xie, Z.; Li, J.; Ma, M.; Lai, P.; Wang, J. Quantifying the Contributions of Climate Change and Human Activities to Water Volume in Lake Qinghai, China. Remote Sens. 2021, 14, 99. [Google Scholar] [CrossRef]
- Guo, Q.; Yang, Y.; Xiong, X. Using hydrologic simulation to identify contributions of climate change and human activity to runoff changes in the Kuye river basin, China. Environ. Earth Sci. 2016, 75, 417. [Google Scholar] [CrossRef]
- Liu, J.; Zhou, Z.; Yan, Z.; Gong, J.; Jia, Y.; Xu, C.; Wang, H. A new approach to separating the impacts of climate change and multiple human activities on water cycle processes based on a distributed hydrological model. J. Hydrol. 2019, 578, 124096. [Google Scholar] [CrossRef]
- Jin, H.; Rui, X.; Li, X. Analysing the Performance of Four Hydrological Models in a Chinese Arid and Semi-Arid Catchment. Sustainability 2022, 14, 3677. [Google Scholar] [CrossRef]
- Luo, L.; Zhou, Q.; He, H.S.; Duan, L.; Zhang, G.; Xie, H. Relative Importance of Land Use and Climate Change on Hydrology in Agricultural Watershed of Southern China. Sustainability 2020, 12, 6423. [Google Scholar] [CrossRef]
- Gao, T.; Xie, L. Spatiotemporal changes in precipitation extremes over Yangtze River basin, China, considering the rainfall shift in the late 1970s. Glob. Planet. Chang. 2016, 147, 106–124. [Google Scholar] [CrossRef]
- Zhang, A.; Zheng, C.; Wang, S.; Yao, Y. Analysis of streamflow variations in the Heihe River Basin, northwest China: Trends, abrupt changes, driving factors and ecological influences. J. Hydrol. Reg. Stud. 2015, 3, 106–124. [Google Scholar] [CrossRef] [Green Version]
- Zhou, C.; van Nooijen, R.; Kolechkina, A.; Hrachowitz, M. Comparative analysis of nonparametric change-point detectors commonly used in hydrology. Hydrol. Sci. J. 2019, 64, 1690–1710. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Hou, X.; Wang, Y. Spatiotemporal variations and regional differences of extreme precipitation events in the Coastal area of China from 1961 to 2014. Atmos. Res. 2017, 197, 94–104. [Google Scholar] [CrossRef]
- Roundy, P.E. Interpretation of the spectrum of eastward-moving tropical convective anomalies. Q. J. R. Meteorol. Soc. 2019, 146, 795–806. [Google Scholar] [CrossRef]
- Minaei, M.; Irannezhad, M. Spatio-temporal trend analysis of precipitation, temperature, and river discharge in the northeast of Iran in recent decades. Theor. Appl. Climatol. 2018, 131, 167–179. [Google Scholar] [CrossRef]
- Sonali, P.; Kumar, N.D. Detection and attribution of seasonal temperature changes in India with climate models in the CMIP5 archive. J. Water Clim. Chang. 2016, 7, 83–102. [Google Scholar] [CrossRef] [Green Version]
- Li, C.; Wu, P.T.; Li, X.L.; Zhou, T.W.; Sun, S.K.; Wang, Y.B.; Luan, X.B.; Yu, X. Spatial and temporal evolution of climatic factors and its impacts on potential evapotranspiration in Loess Plateau of Northern Shaanxi, China. Sci. Total Environ. 2017, 589, 165–172. [Google Scholar] [CrossRef] [PubMed]
- Dashtpagerdi, M.M.; Kousari, M.R.; Vagharfard, H.; Ghonchepour, D.; Hosseini, M.E.; Ahani, H. An investigation of drought magnitude trend during 1975–2005 in arid and semi-arid regions of Iran. Environ. Earth Sci. 2014, 73, 1231–1244. [Google Scholar] [CrossRef]
- Mallick, J.; Talukdar, S.; Alsubih, M.; Salam, R.; Ahmed, M.; Ben, K.N.; Shamimuzzaman, M. Analysing the trend of rainfall in Asir region of Saudi Arabia using the family of Mann-Kendall tests, innovative trend analysis, and detrended fluctuation analysis. Theor. Appl. Climatol. 2020, 143, 823–841. [Google Scholar] [CrossRef]
- Liu, D.; Mishra, A.K.; Ray, D.K. Sensitivity of global major crop yields to climate variables: A non-parametric elasticity analysis. Total Environ. 2020, 748, 141431. [Google Scholar] [CrossRef]
- George, Z.N.; Yali, E.W. Evaluation of Streamflow under Climate Change in the Zambezi River Basin of Southern Africa. Water 2021, 13, 3114. [Google Scholar] [CrossRef]
- Zhang, Y.; Wu, Z.; Singh, V.P.; Su, Q.; He, H.; Yin, H.; Zhang, Y.; Wang, F. Simulation of Crop Water Demand and Consumption Considering Irrigation Effects Based on Coupled Hydrology-Crop Growth Mode. J. Adv. Model. Earth Syst. 2021, 13, e2020MS002360. [Google Scholar] [CrossRef]
- Zhou, Z.; Jia, Y.; Qiu, Y.; Liu, J.; Wang, H.; Xu, C.; Li, J.; Liu, L. Simulation of Dualistic Hydrological Processes Affected by Intensive Human Activities Based on Distributed Hydrological Model. J. Water Resour. Plan. Manag. 2018, 144, 04018077. [Google Scholar] [CrossRef] [Green Version]
- Zoccatelli, D.; Marra, F.; Smith, J.; Goodrich, D.; Unkrich, C.; Rosensaft, M.; Morin, E. Hydrological modelling in desert areas of the eastern Mediterranean. J. Hydrol. 2020, 587, 124879. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Khaleghi, M.R. Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: The Zoshk–Abardeh watershed). Model. Earth Syst. Environ. 2020, 6, 2003–2013. [Google Scholar] [CrossRef]
- Xu, C.Y. Issues influencing accuracy of hydrological modeling in a changing environment. Water Sci. Eng. 2021, 14, 167–170. [Google Scholar] [CrossRef]
- Xu, H.; Ren, Y.; Zheng, H.; Ouyang, Z.; Jiang, B. Analysis of Runoff Trends and Drivers in the Haihe River Basin, China. Int. J. Environ. Res. Public Health 2020, 17, 1577. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, X.; Sun, W.; Mu, X.; Gao, P.; Zhao, G. Runoff affected by climate and anthropogenic changes in a large semi-arid river basin. Hydrol. Process. 2020, 34, 1906–1919. [Google Scholar] [CrossRef]
- Wu, L.; Zhang, X.; Hao, F.; Wu, Y.; Li, C.; Xu, Y. Evaluating the contributions of climate change and human activities to runoff in typical semi-arid area, China. J. Hydrol. 2020, 590, 125555. [Google Scholar] [CrossRef]
- Umar, D.A.; Ramli, M.F.; Aris, A.Z.; Jamil, N.R.; Abdulkareem, J.H. Runoff irregularities, trends, and variations in tropical semi-arid river catchment. J. Hydrol. Reg. Stud. 2018, 19, 335–348. [Google Scholar] [CrossRef]
- Chinnasamy, P.; Maske, A.B.; Honap, V.; Chaudhary, S.; Agoramoorthy, G. Sustainable development of water resources in marginalised semi-arid regions of India: Case study of Dahod in Gujarat, India. Nat. Resour. Forum 2021, 45, 105–119. [Google Scholar] [CrossRef]
- He, Y.; Jiang, X.; Wang, N.; Zhang, S.; Ning, T.; Zhao, Y.; Hu, Y. Changes in mountainous runoff in three inland river basins in the arid Hexi Corridor, China, and its influencing factors. Sustain. Cities Soc. 2019, 50, 101703. [Google Scholar] [CrossRef]
- Martinsen, G.; Liu, S.; Mo, X.; Bauer-Gottwein, P. Joint optimization of water allocation and water quality management in Haihe River basin. Sci. Total Environ. 2018, 654, 72–84. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Zhang, J.; Yan, X.; Wang, G.; He, R.; Guan, T.; Liu, C. Quantitative assessment of the attribution of runoff change caused by four factors in the Haihe River basin. Adv. Water Sci. 2021, 32, 171–181. (In Chinese) [Google Scholar] [CrossRef]
- Darshana, P.A.; Pandey, R.P. Analysing trends in reference evapotranspiration and weather variables in the Tons River Basin in Central India. Stoch. Environ. Res. Risk Assess. 2013, 27, 1407–1421. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. 1990, 25, 86–91. [Google Scholar] [CrossRef]
- Wu, C.; Ji, C.; Shi, B.; Wang, Y.; Gao, J.; Yang, Y.; Mu, J. The impact of climate change and human activities on streamflow and sediment load in the Pearl River basin. Int. J. Sediment Res. 2019, 34, 307–321. [Google Scholar] [CrossRef]
- Pakalidou, N.; Karacosta, P. Study of very long-period extreme precipitation records in Thessaloniki, Greece. Atmos. Res. 2018, 208, 106–115. [Google Scholar] [CrossRef] [Green Version]
- Hu, S.; Feng, F.; Liu, W.; She, D. Changes in temporal inequality and persistence of precipitation over China during the period 1961–2013. Hydrol. Res. 2018, 49, 1283–1291. [Google Scholar] [CrossRef] [Green Version]
- Pettitt, A.N. A Non-Parametric Approach to the Change-Point Problem. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1979, 28, 126–135. [Google Scholar] [CrossRef]
- Ding, J. Statistics detection for transition point in flood time sequences. Eng. J. Wuhan Univ. 1986, 5, 36–41. (In Chinese) [Google Scholar]
- Ma, Z.; Kang, S.; Zhang, L.; Tong, L.; Su, X. Analysis of impacts of climate variability and human activity on streamflow for a river basin in arid region of northwest China. J. Hydrol. 2008, 352, 239–249. [Google Scholar] [CrossRef]
- Sun, L.; Wang, Y.; Zhang, J.; Yang, Q.; Bao, Z.; Guan, X.; Guan, T.; Chen, X.; Wang, G. Impact of environmental change on runoff in a transitional basin: Tao River Basin from the Tibetan Plateau to the Loess Plateau, China. Adv. Clim. Chang. Res. 2019, 10, 214–224. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; He, R.; Liu, C.; Ma, T.; Bao, Z.; Liu, Y. Runoff sensitivity to climate change for hydro-climatically different catchments in China. Stoch. Environ. Res. Risk Assess. 2016, 31, 1011–1021. [Google Scholar] [CrossRef]
- Guan, X.; Zhang, J.; Elmahdi, A.; Li, X.; Liu, J.; Liu, Y.; Jin, J.; Liu, Y.; Bao, Z.; Liu, C.; et al. The Capacity of the Hydrological Modeling for Water Resource Assessment under the Changing Environment in Semi-Arid River Basins in China. Water 2019, 11, 1328. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.E.; Sutcliffe, J. River flow forecasting through conceptual models: Part 1—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Roostaee, M.; Deng, Z. Effects of Digital Elevation Model Resolution on Watershed-Based Hydrologic Simulation. Water Resour. Manag. 2020, 34, 2433–2447. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, J.; Elmahdi, A.; Yang, Q.; Guan, X.; Liu, C.; He, R.; Wang, G. Transferability of the xin’anjiang model based on similarity in climate and geography. Water Sci. Technol. Water Supply 2021, 21, 2191–2201. [Google Scholar] [CrossRef]
- Huang, P.; Li, Z.; Chen, J.; Li, Q.; Yao, C. Event-based hydrological modeling for detecting dominant hydrological process and suitable model strategy for semi-arid catchments. J. Hydrol. 2016, 542, 292–303. [Google Scholar] [CrossRef]
- Bu, J.; Lu, C.; Niu, J.; Gao, Y. Attribution of Runoff Reduction in the Juma River Basin to Climate Variation Direct Human Intervention and Land Use Change. Water 2018, 10, 1775. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.; Kang, T.; Bu, J.; Chen, J.; Wang, Z.; Gao, Y. Detection and Attribution of Runoff Reduction of Weihe River over Different Periods during 1961–2016. Water 2020, 12, 1416. [Google Scholar] [CrossRef]
- Li, R.; Zheng, H.; Huang, B.; Xu, H.; Li, Y. Dynamic Impacts of Climate and Land-Use Changes on Surface Runoff in the Mountainous Region of the Haihe River Basin, China. Adv. Meteorol. 2018, 2018, 3297343. [Google Scholar] [CrossRef] [Green Version]
- Wei, Q.; Sun, C.; Wu, G.; Pan, L. Haihe River discharge to Bohai Bay, North China: Trends, climate, and human activities. Hydrol. Res. 2017, 48, 1058–1070. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R.; Kong, P. Land use changes and socio-economic development strongly deteriorate river ecosystem health in one of the largest basins in China. Total Environ. 2018, 616–617, 376–385. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Gao, X.; Yang, Z.; Xu, T. Trend and Attribution Analysis of Runoff Changes in the Weihe River Basin in the Last 50 Years. Water 2021, 14, 47. [Google Scholar] [CrossRef]
- Kabir, R.; John, W.; Pomeroy, P.H.W. The sensitivity of snow hydrology to changes in air temperature and precipitation in three North American headwater basins. J. Hydrol. 2022, 606, 127460. [Google Scholar] [CrossRef]
- Wang, G.; Zhang, J.; Li, X.; Bao, Z.; Liu, Y.; Liu, C.; He, R.; Luo, J. Investigating causes of changes in runoff using hydrological simulation approach. Appl. Water Sci. 2017, 7, 2245–2253. [Google Scholar] [CrossRef] [Green Version]
- Xu, F.; Jia, Y.; Niu, C.; Sobkowiak, L.; Zhao, L. Evaluating spatial differences in the contributions of climate variability and human activity to runoff change in the Haihe River basin. Hydrol. Sci. J. 2021, 66, 2060–2073. [Google Scholar] [CrossRef]
- Liu, J.; Li, M.; Wu, M.; Luan, X.; Wang, W.; Yu, Z. Influences of the south–to-north water diversion project and virtual water flows on regional water resources considering both water quantity and quality. J. Clean. Prod. 2020, 244, 118920. [Google Scholar] [CrossRef]
- Kattel, G.R.; Shang, W.; Wang, Z.; Langford, J. China’s South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North. Sustainability 2019, 11, 3735. [Google Scholar] [CrossRef] [Green Version]
Series | S | Trend | ZMK | Significance |
---|---|---|---|---|
Precipitation | −0.479 mm/year | ↓ | −0.1734 | No |
Temperature | +0.028 °C/year | ↑ | 3.8364 | Yes |
Runoff | −1.431 mm/year | ↓ | −4.4433 | Yes |
Series | Mann–Kendall | Pettitt | Sequential Cluster |
---|---|---|---|
Precipitation | 1977, 2013 | 1979 | 1973 |
Temperature | 1993 | 1996 | 1996 |
Runoff | 1992, 1996 | 1997 | 1996 |
Runoff_TFPW | 1996 | 1996 | 1996 |
Series | 1973–1996 | 1996–2014 | Relative Change/% |
---|---|---|---|
Precipitation/mm | 518.0 | 484.7 | −6.4 |
Temperature/°C | 6.18 | 7.02 | +13.6 |
Runoff/mm | 73.3 | 38.1 | −48.0 |
Statistics | Before 1996 | After 1996 | ||
---|---|---|---|---|
Calibration Period (1973–1988) | Verification Period (1989–1996) | Calibration Period (1997–2008) | Verification Period (2009–2014) | |
NSE | 0.74 | 0.72 | 0.33 | −0.24 |
RE | −1.24% | −1.32% | −1.12% | 21.29% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, J.; Bao, Z.; Yang, Y.; Wang, G. Hydrological Change Detection and Process Simulation for a Semi-Arid Catchment in Northern China. Water 2022, 14, 1267. https://doi.org/10.3390/w14081267
Liu Y, Zhang J, Bao Z, Yang Y, Wang G. Hydrological Change Detection and Process Simulation for a Semi-Arid Catchment in Northern China. Water. 2022; 14(8):1267. https://doi.org/10.3390/w14081267
Chicago/Turabian StyleLiu, Yue, Jianyun Zhang, Zhenxin Bao, Yanqing Yang, and Guoqing Wang. 2022. "Hydrological Change Detection and Process Simulation for a Semi-Arid Catchment in Northern China" Water 14, no. 8: 1267. https://doi.org/10.3390/w14081267
APA StyleLiu, Y., Zhang, J., Bao, Z., Yang, Y., & Wang, G. (2022). Hydrological Change Detection and Process Simulation for a Semi-Arid Catchment in Northern China. Water, 14(8), 1267. https://doi.org/10.3390/w14081267