Numerical Benchmark Studies on Flow and Solute Transport in Geological Reservoirs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Mathematical Model
2.2. Numerical Simulators
2.2.1. MODFLOW/MT3DMS
2.2.2. FEFLOW 6.0
2.2.3. COMSOL Multiphysics
2.2.4. DuMuX
2.3. Set Up of the Numerical Model
2.4. Problem Definition
2.4.1. Problem 1D—Solute Tracer Transport for Steady-State Flow in a Homogenous Aquifer Forced Head Gradient
2.4.2. Problem 2D-Solute Tracer Transport in a Forced Gradient Confined Homogenous Aquifer Point Source
2.4.3. Problem 3D—Solute Transport for Confined Homogeneous Multi-Layered Forced Gradient Conditions
3. Results
3.1. Problem 1D—Solute Transport in a Homogeneous Aquifer
3.2. Problem 2D-Solute Transport in a Homogeneous Aquifer in Forced Gradient
3.3. Problem 3: 3D Flow and Solute Transport Simulation in a Layered Georeservoir
3.4. Spatial Discretisation Effects on Computational Efficiency
3.5. Computational Time (CPU Time) of Single Processor and Parallelisation
4. Discussion
4.1. Resource Use Efficiency and Discretisation
4.2. Transport Simulation Efficiency
4.3. Computation Time and Memory Use Efficiency
4.4. Implementation of BC in Software
- −
- Implementation of the model grid;
- −
- Implementation of flow and transport boundary conditions.
4.5. User-Friendliness
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ogata, A.; Banks, R.B. A Solution of the Differential Equation of Longitudinal Dispersion in Porous Media; Profl. Paper No. 411-A.; US Geological Survey: Washington, DC, USA, 1961.
- Zheng, C.; Wang, P.P. A Modular Three-Dimensional Multi-Species Transport Model for Simulation of Advection, Dispersion and Chemical Reactions of Contaminants in Groundwater Systems; MT3DMS; US Army Corps of Engineers: Washington, DC, USA, 1999; p. 239. [Google Scholar]
- Diersch, H.-J.G. FEFLOW: Finite Element Modeling of Flow, Mass and Heat Transport in Porous Media; Springer: Berlin/Heidelberg, Germany; DHI-WASY GmbH: Berlin, Germany, 2013; p. 996. [Google Scholar]
- Shao, H.; He, W.; Hokr, M.; Gardner, P.W.; Kunz, H.; Balvin, A. Flow Processes. In Thermo-Hydro-Mechanical-Chemical Processes in Fractured Porous Media: Modelling and Benchmarking. Terrestrial Environmental Sciences; Kolditz, O., Görke, U.J., Shao, H., Wang, W., Bauer, S., Eds.; Springer: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Flemisch, B.; Berre, I.; Boon, W.; Fumagalli, A.; Schwenck, N.; Scotti, A.; Stefansson, I.; Tatomir, A. Benchmarks for single-phase flow in fractured porous media. Adv. Water Resour. 2018, 111, 239–258. [Google Scholar] [CrossRef] [Green Version]
- Zhou, D.; Tatomir, A.; Tomac, I.; Sauter, M. Verification benchmark for a single-phase flow hydro-mechanical model comparison between COMSOL Multiphysics and DuMuX. E3S Web Conf. 2020, 205, 02002. [Google Scholar] [CrossRef]
- Berre, I.; Boon, W.M.; Flemisch, B.; Fumagalli, A.; Gläser, D.; Keilegavlen, E.; Scotti, A.; Stefansson, I.; Tatomir, A.; Brenner, K.; et al. Verification benchmarks for single-phase flow in three-dimensional fractured porous media. Water Resour. Res. 2021, 147, 103759. [Google Scholar] [CrossRef]
- Berkowitz, B.; Cortis, A.; Dror, I.; Scher, H. Laboratory experiments on dispersive transport across interfaces: The role of flow435direction. Water Resour. Res. 2009, 45, W02201. [Google Scholar] [CrossRef] [Green Version]
- Maina, F.H.; Ackerer, P.; Younes, A.; Guadagnini, A.; Berkowitz, B. Benchmarking numerical codes for tracer transport with the aid of laboratory-scale experiments in 2D heterogeneous porous media. J. Contam. Hydrol. 2018, 212, 55–64. [Google Scholar] [CrossRef]
- Class, H.; Ebigbo, A.; Helmig, R.; Dahle, H.K.; Nordbotten, J.M.; Celia, M.A.; Audigane, P.; Darcis, M.; Ennis-King, J.; Fan, Y.; et al. A benchmark study on problems related to CO2 storage in geologic formations, Summary and discussion of the results. Comput. Geosci. 2009, 13, 409–434. [Google Scholar] [CrossRef]
- Konikow, L.F. Use of Numerical Models to Simulate Groundwater Flow and Transport; US Geological Survey: Washington, DC, USA, 1996; p. 480.
- Woods, J.A.; Teubner, M.D.; Simmons, C.T.; Narayan, K.A. Numerical error in groundwater flow and solute transport simulation. Water Resour. Res. 2003, 39, 1158. [Google Scholar] [CrossRef] [Green Version]
- Konikow, L.F. The Secret to Successful Solute-Transport Modeling. Groundwater 2011, 49, 144–159. [Google Scholar] [CrossRef]
- Kinzelbach, W. Numerische Methoden zur Modellierung des Transportes von Schadstoffen im Grundwasser; Schriftenreihe Wasser-Abwasser; R. Oldenburg Verlag: München, Germany; Wien, Austria, 1987. [Google Scholar]
- Harbaugh, A.W.; Banta, E.R.; Hill, M.C.; McDonald, M.G. MODFLOW-2000, The US Geological Survey Modular Groundwater Model—User Guide to Modularisation Concepts and the Groundwater Flow Process; Open-File Report 00-92; US Geological Survey: Washington, DC, USA, 2000; p. 121.
- Bear, J. Hydraulics of Groundwater; McGraw-Hill: New York, NY, USA, 1979; p. 569. [Google Scholar]
- Goode, D.J.; Konikow, L.F. Modification of a Method-of Characteristics Solute-Transport Model to Incorporate Decay and Equilibrium-Controlled Sorption or Ion Exchange; Water-Resources Investigations Report 89-4030; Department of the Interior, US Geological Survey: Washington, DC, USA, 1989; p. 65.
- Schroth, M.H.; Istok, J.D.; Haggerty, R. In situ evaluation of solute retardation using single-well push–pull tests. Adv. Water Resour. 2000, 24, 105–117. [Google Scholar] [CrossRef]
- Gelhar, L.W.; Collins, M.A. General Analysis of Longitudinal Dispersion in Nonuniform flow. Water Resour. Res. 1971, 7, 1511–1521. [Google Scholar] [CrossRef]
- Hughes, J.D.; Langevin, C.D.; Banta, E.R. Documentation for the MODFLOW 6 Framework: US Geological Survey Techniques and Methods; Book 6, Chap. A57; US Geological Survey: Washington, DC, USA, 2017; p. 40. [CrossRef] [Green Version]
- Langevin, C.D.; Hughes, J.D.; Banta, E.R.; Provost, A.M.; Niswonger, R.G.; Panday, S. MODFLOW 6 Modular Hydrologic Model version 6.2.1; US Geological Survey Software Release; US Geological Survey: Washington, DC, USA, 2021. [CrossRef]
- Karmakar, S.; Ghergut, J.; Sauter, M. Early-flowback tracer signals to induced-fracture characterisation in crystalline and sedimentary formation-a parametric study. Geothermics 2016, 63, 242–252. [Google Scholar] [CrossRef]
- Li, Q.; Ito, K.; Wu, Z.; Lowry, C.S.; Loheide, S.P. COMSOL Multiphysics: A Novel Approach to Ground Water Modeling. Groundwater 2009, 47, 480–487. [Google Scholar] [CrossRef]
- Joodi, A.S.; Sizaret, S.; Binet, S.; Bruand, A.; Alberic, P.; Lepiller, M. Development of a Darcy-Brinkman model to simulate water flow and tracer transport in a heterogeneous karstic aquifer (Val d’Orléans, France). Hydrogeol. J. 2010, 18, 295–309. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Holzbecher, E.; Sauter, M. A novel approach using arbitrary Lagrangian-Eulerian (ALE) method for the flow simulation in unconfined aquifers. Comput. Geosci. 2014, 62, 88–94. [Google Scholar] [CrossRef]
- Oehlmann, S.; Geyer, T.; Licha, T.; Birk, S. Influence of aquifer heterogeneity on karst hydraulics and catchment delineation employing distributive modeling approaches. Hydrol. Earth Syst. Sci. 2013, 17, 47294742. [Google Scholar] [CrossRef] [Green Version]
- Oehlmann, S.; Geyer, T.; Licha, T.; Sauter, M. Reducing the ambiguity of karst aquifer models by pattern matching of flow and transport on catchment scale. Hydrol. Earth Syst. Sci. 2015, 19, 893–912. [Google Scholar] [CrossRef] [Green Version]
- Tatomir, A.; De Vriendt, K.; Zhou, D.; Gao, H.; Duschl, F.; Sun, F.; Licha, T.; Sauter, M. Kinetic Interface Sensitive Tracers: Experimental Validation in a Two-Phase Flow Column Experiment. A Proof of Concept. Water Resour. Res. 2018, 54, 10223–10241. [Google Scholar] [CrossRef]
- Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.; Wolff, M.; et al. DuMux: DUNE for multi-{phase, component, scale, physics, …} flow and transport in porous media. Adv. Water Resour. 2011, 34, 1102–1112. [Google Scholar] [CrossRef]
- Bastian, P.; Blatt, M.; Dedner, A.; Engwer, C.; Klöfkorn, R.; Kornhuber, R.; Ohlberger, M.; Sander, O. A generic grid interface for adaptive and parallel scientific computing. Part I: Abstract framework. Computing 2008, 82, 103–119. [Google Scholar] [CrossRef]
- Helmig, R. Multiphase Flow and Transport Processes in the Subsurface: A Contribution to the Modeling of Hydrosystems; Springer: Berlin, Germany, 1997. [Google Scholar]
- Niemi, A.; Bensabat, J.; Shtivelman, V.; Edlmann, K.; Gouze, P.; Luquot, L.; Hingerl, F.; Benson, S.M.; Pezard, P.A.; Rasmusson, K.; et al. Heletz experimental site overview, characterisation and data analysis for CO2 injection and geological storage. Int. J. Greenh. Gas Control 2016, 48, 3–23. [Google Scholar] [CrossRef] [Green Version]
- Tatomir, A.B.; Halisch, M.; Duschl, F.; Peche, A.; Wiegand, B.; Schaffer, M.; Licha, T.; Niemi, A.; Bensabat, J.; Sauter, M. An Integrated Core. An IntegratedCore-Based Analysis for the Characterisation of Flow, Transport and Mineralogical Parameters of the Heletz Pilot CO2 Storage SiteReservoir. Int. J. Greenh. Gas Control 2016, 48, 24–43. [Google Scholar] [CrossRef]
- Anderson, M.A. Movement of contaminants in groundwater: Groundwater transport-advection and dispersion. In Groundwater Contamination; National Academy Press: Washington, DC, USA, 1984; pp. 37–45. [Google Scholar]
- Gelhar, L.W.; Welty, C.; Rehfeldt, K.R. A critical review of data on field-scale dispersion in aquifers. Water Resour. Res. 1992, 28, 1955–1974. [Google Scholar] [CrossRef]
- Lantz, R.B. Quantitative Evaluation of Numerical Diffusion (Truncation Error). Soc. Petrol. Eng. J. 1971, 11, 315–320. [Google Scholar] [CrossRef]
- Dong, Y.; Li, G. A Parallel PCG Solver for MODFLOW. Groundwater 2009, 47, 845–850. [Google Scholar] [CrossRef]
- Ji, X.; Li, D.; Cheng, T.; Wang, X.-S.; Wang, Q. Parallelisation of MODFLOW Using a GPU Library. Groundwater 2014, 52, 618–623. [Google Scholar] [CrossRef]
- Huebner, K.H.; Thorton, E.A.; Byrom, T.G. The Finite Element Method for Engineers, 3rd ed.; John Wiley and Sons: New York, NY, USA, 1995. [Google Scholar]
- Langevin, C.D.; Hughes, J.D.; Banta, E.R.; Niswonger, R.G.; Panday, S.; Provost, A.M. Documentation for the MODFLOW6 Groundwater Flow Model: US Geological Survey Techniques and Methods; Book 6, Chap. A55; US Geological Survey: Washington, DC, USA, 2017; p. 197. [CrossRef] [Green Version]
- Peiró, J.; Sherwin, S. Finite Difference, Finite Element and Finite Volume Methods for Partial Differential Equations. In Handbook of Materials Modeling; Yip, S., Ed.; Springer: Dordrecht, The Netherlands, 2005. [Google Scholar] [CrossRef]
- Cainelli, O.; Bellin, A.; Putti, M. On the accuracy of classic numerical schemes for modeling flow in saturated heterogeneous formations. Adv. Water Resour. 2012, 47, 43–55. [Google Scholar] [CrossRef]
- Gläser, D.; Dell’Oca, A.; Tatomir, A.; Bensabat, J.; Class, H.; Guadagnini, A.; Helmig, R.; McDermott, C.; Riva, M.; Sauter, M. An Approach Towards a FEP-based Model for Risk Assessment for Hydraulic Fracturing Operations. Energy Procedia 2016, 97, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Taherdangkoo, R.; Tatomir, A.; Sauter, M. Modeling of methane migration from gas wellbores into shallow groundwater at basin scale. Environ. Earth Sci. 2020, 79, 432. [Google Scholar] [CrossRef]
- Zhou, D.; Tatomir, A.; Sauter, M. Thermo-hydro-mechanical modelling study of heat extraction and flow processes in enhanced geothermal systems. Adv. Geosci. 2021, 54, 229–240. [Google Scholar] [CrossRef]
Number of | Simulation Time (in Seconds) | |||||
---|---|---|---|---|---|---|
Elements | Computation in Single Core | Computation in 4 Cores (Parallel Computing) | ||||
100 × 200 m | COMSOL | FEFLOW | MODFLOW/MT3DMS | DuMuX | COMSOL | FEFLOW |
20 × 40 | 10 | 12.6 | 0.831 | 19.853 | 12 | 11.2 |
40 × 80 | 17 | 24.5 | 3.051 | 73.654 | 19 | 24.5 |
80 × 160 | 49 | 46.7 | 39.91 | 298.689 | 44 | 41.1 |
160 × 320 | 205 | 120.6 | 583.299 | 1267.602 | 175 | 92.9 |
320 × 640 | 977 | 517.6 | 9307.75 | 6893.497 | 802 | 369.2 |
Number of | Simulation Time (in Seconds) | |||||
---|---|---|---|---|---|---|
Elements | Computation in Single Core | Computation in 4 Cores (Parallel Computing) | ||||
50 × 100 × 12 m | COMSOL | FEFLOW | MODFLOW/MT3DMS | DuMuX | COMSOL | FEFLOW |
20 × 40 × 24 | 1421 | 150 | 23.28 | 167859 | 1392 | 83.2 |
40 × 80 × 24 | ** | 616 | 151.5 | * | 68400 | 273.9 |
80 × 160 × 24 | ** | 2307 | 2024 | * | ** | 1125.6 |
160 × 320 × 24 | ** | 12,850 | 24,038 | * | ** | 6331.8 |
320 × 640 × 24 | ** | 61,880 | 570,001 | * | ** | 50623 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karmakar, S.; Tatomir, A.; Oehlmann, S.; Giese, M.; Sauter, M. Numerical Benchmark Studies on Flow and Solute Transport in Geological Reservoirs. Water 2022, 14, 1310. https://doi.org/10.3390/w14081310
Karmakar S, Tatomir A, Oehlmann S, Giese M, Sauter M. Numerical Benchmark Studies on Flow and Solute Transport in Geological Reservoirs. Water. 2022; 14(8):1310. https://doi.org/10.3390/w14081310
Chicago/Turabian StyleKarmakar, Shyamal, Alexandru Tatomir, Sandra Oehlmann, Markus Giese, and Martin Sauter. 2022. "Numerical Benchmark Studies on Flow and Solute Transport in Geological Reservoirs" Water 14, no. 8: 1310. https://doi.org/10.3390/w14081310
APA StyleKarmakar, S., Tatomir, A., Oehlmann, S., Giese, M., & Sauter, M. (2022). Numerical Benchmark Studies on Flow and Solute Transport in Geological Reservoirs. Water, 14(8), 1310. https://doi.org/10.3390/w14081310