Development of an Intelligent Urban Water Network System
Abstract
:1. Introduction
1.1. History of Water Networks
1.2. Issues of Traditional Water Supply Systems
2. Intelligent Water Network
2.1. Necessity of an Intelligent Water Network
2.2. Structure of Intelligent Water Network
2.3. Conservation of Energy and Water
2.4. Asset Management and Infrastructure Monitoring
3. Benefits and Economic Feasibility of Intelligent Water Network
- -
- How would remote technologies reduce the intensity of water quality monitoring?
- -
- What are the benefits to the life-span of infrastructures due to improved real-time asset condition knowledge?
- -
- How will the cost of these technologies affect their uptake?
4. Application of Technologies in Developing Intelligent Water Networks
4.1. Smart Pipe
4.2. Smart Water Meters
4.3. Pressure Sensors for Pressure Management and Leakage Detection
4.4. Real-Time Simulation of Water Networks
4.5. Application of Modelling, Optimisation Techniques, and Decision Support Systems
4.6. Cloud Computing and SCADA
4.7. Geographic Information System (GIS)
4.8. Application of Artificial Intelligent (AI) Models for Water Network Management
5. Architecture for Intelligent Water Network System
6. SWOT Analysis of Water Systems
7. Conclusions
Author Contributions
Funding
Informed Consent Statement
Conflicts of Interest
References
- Mamassis, N.; Koutsoyiannis, D. A Web-Based Information System for the Inspection of the Hydraulic Works in Ancient Greece. In Ancient Water Technologies; Mays, L.W., Ed.; Springer: Amsterdam, The Netherlands, 2010; pp. 103–114. [Google Scholar]
- Zheng, X.Y.; Angelakis, A.N. Chinese and Greek Ancient Urban Hydro-Technologies: Similarities and Differences. Water Supply 2018, 18, 2208–2223. [Google Scholar] [CrossRef]
- Li, L.; Lee, G.-A.; Leping, J.; Juzhong, Z. Evidence for the Early Beginning (c. 9000 cal. BP) of Rice Domestication in China: A Response. Holocene 2007, 17, 1059–1068. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, A.; Dialynas, E.; Despotakis, V. Evolution of Water Supply Technologies through the Centuries in Crete, Greece. In Evolution of Water Supply through the Millennia; IWA Publishing: London, UK, 2019; Volume 1. [Google Scholar]
- Hassan, F.A. Climatic Change, Nile Floods and Civilization. Nat. Resour. 1998, 34, 34–40. [Google Scholar]
- Angelakis, A.; Zheng, X. Evolution of Water Supply, Sanitation, Wastewater, and Stormwater Technologies Globally. Water 2015, 7, 455–463. [Google Scholar] [CrossRef] [Green Version]
- Angelakis, A.; Mays, L.; De Feo, G.; Salgot, M.; Laureano, P.; Paranychianakis, N.; Li, H. Water and Wastewater in Ancient Civilizations. In Global Trends Challenges in Water Science, Research Management: A Compendium of Hot Topics Features from IWA-Specialist Groups; IWA Publishing: London, UK, 2012; pp. 90–94. [Google Scholar]
- Mays, L.W. A Very Brief History of Hydraulic Technology during Antiquity. Environ. Fluid Mech. 2008, 8, 471–484. [Google Scholar] [CrossRef]
- Mays, L.W. A Brief History of Water Technology During Antiquity: Before the Romans; Springer: Amsterdam, The Netherlands, 2010; pp. 1–28. [Google Scholar] [CrossRef]
- The Editing Committee (Ed.) History of Chinese Hydraulic Engineering; The Hydraulic Engineering & Hydro Power Press: Beijing, China, 1979. [Google Scholar]
- Zheng, X.Y. The Ancient Urban Water System Construction of China: The Lessons from History for a Sustainable Future. Int. J. Glob. Environ. Issues 2015, 14, 187–199. [Google Scholar] [CrossRef]
- Laureano, P.; Venice, U. The Water Atlas: Traditional Knowledge to Combat Desertification; Bollati Boringhieri: Torino, Italy, 2001. [Google Scholar]
- Voudouris, K.S.; Christodoulakos, Y.; Steiakakis, E.; Angelakis, A.N. Hydrogeological Characteristics of Hellenic Aqueducts-like Qanats. Water 2013, 5, 1326–1345. [Google Scholar] [CrossRef] [Green Version]
- Kalavrouziotis, I.; Angelakis, A. Prolegomena. In e-PROCEEDINGS of IWA Regional Symposium on Water, Wastewater and Environment: Traditions and Culture, Greece; Hellenic Open University: Petras, Greece, 2014. [Google Scholar]
- Koutsoyiannis, D.; Zarkadoulas, N.; Angelakis, A.N.; Tchobanoglous, G. Urban Water Management in Ancient Greece: Legacies and Lessons. J. Water Resour. Plan. Manag. 2008, 134, 45–54. [Google Scholar] [CrossRef] [Green Version]
- De Feo, G.; Angelakis, A.N.; Antoniou, G.P.; El-Gohary, F.; Haut, B.; Passchier, C.W.; Zheng, X.Y. Historical and Technical Notes on Aqueducts from Prehistoric to Medieval Times. Water 2013, 5, 1996–2025. [Google Scholar] [CrossRef] [Green Version]
- Andreas, A.; Larry, W.M.; Koutsoyiannis, D.; Mamassis, N. Evolution of Water Supply through the Millennia; IWA Publishing: London, UK, 2012. [Google Scholar]
- Aldhouse-Green, M.J. Dictionary of Celtic Myth and Legend; Thames, and Hudson: London, UK, 1992. [Google Scholar]
- Hodge, A.T. Roman Aqueducts & Water Supply; Duckworth: London, UK, 1995. [Google Scholar]
- Lewis, M.J.T. Surveying Instruments of Greece and Rome; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Sage, M. Roman Conquests: Gaul; Casemate Publishers: Philadelphia, PA, USA, 2012. [Google Scholar]
- George, F.W.H.; Novak, R.A. Water Flow in the Castellum at Nimes. Am. J. Archaeol. 1988, 92, 393–407. [Google Scholar]
- Ormsbee, L.E. The History of Water Distribution Network Analysis: The Computer Age. In Proceedings of the Water Distribution Systems Analysis Symposium 2006, Cincinnati, OH, USA, 27–30 August 2006; pp. 1–6. [Google Scholar]
- Secretary-General, UN 2013, Secretary-General’s message on World Water Day. 2021. Available online: https://www.un.org/sg/en/content/sg/statement/2013-03-22/secretary-generals-message-world-water-day (accessed on 25 February 2021).
- REUTERS. Water Use Rising Faster than World Population. Available online: https://www.reuters.com/article/us-population-water-idUSTRE79O3WO20111025 (accessed on 26 October 2011).
- Sorbello, J.; Marck, R. Applications for Intelligent Water Network Systems. Water: J. Aust. Water Assoc. 2014, 41, 75–80. [Google Scholar]
- Australian Bureau of Statistics. National, State and Territory Population. 2020. Available online: https://www.abs.gov.au/statistics/people/population/national-state-and-territory-population/latest-release (accessed on 23 February 2021).
- Corcoran, E.; Nellemann, C.; Baker, E.; Bos, R.; Osborn, D.; Savelli, H. Sick Water? The Central Role of Wastewater Management in Sustainable Development. A Rapid Response Assessment. United Nations Environment Programme (UNEP), UN-HABITAT, GRID-Arendal. 2010. Available online: https://sswm.info/sites/default/files/reference_attachments/CORCRAN%20et%20al%202010%20Sick%20Water_0.pdf (accessed on 5 May 2010).
- PLAS, R. A Look at the Average Australian Household’s Water Consumption. 2021. Available online: https://www.rapidplas.com.au/blog/ook-average-australian-households-water-consumption/#:~:text=How%20much%20water%20does%20an,actually%20increases%20to%20800%20litres (accessed on 25 February 2021).
- Australian Governement Bureau of Meterorology, Future Climate, State of the Climate 2020. Available online: http://www.bom.gov.au/state-of-the-climate/future-climate.shtml (accessed on 6 April 2022).
- Australian Governement Bureau of Meterorology, Australia’s Changing Climate. Available online: http://www.bom.gov.au/state-of-the-climate/australias-changing-climate.shtml (accessed on 6 April 2022).
- Farley, M.; Trow, S. Losses in Water Distribution Networks; IWA Publishing: London, UK, 2003. [Google Scholar]
- Bakker, K. Water Security: Research Challenges and Opportunities. Science 2012, 337, 914–915. [Google Scholar] [CrossRef]
- Clark, R.M.; Hakim, S. (Eds.) Securing Water and Wastewater Systems: Global Perspectives. In Securing Water and Wastewater Systems; Springer International Publishing: New York, NY, USA, 2014; pp. 1–27. [Google Scholar]
- Abdalla, H.; Rahmat-Ullah, Z.; Abdallah, M.; Alsmadi, S.; Elashwah, N. Eco-Efficiency Analysis of Integrated Grey and Black Water Management Systems. Resour. Conserv. Recycl. 2021, 172, 105681. [Google Scholar] [CrossRef]
- Jagtap, S.; Garcia-Garcia, G.; Rahimifard, S. Optimisation of the Resource Efficiency of Food Manufacturing via the Internet of Things. Comput. Ind. 2021, 127, 103397. [Google Scholar] [CrossRef]
- Perumal, T.; Sulaiman, M.N.; Leong, C.Y. Internet of Things (IoT) Enabled Water Monitoring Ssystem. In Proceedings of the 2015 IEEE 4th Global Conference on Consumer Electronics (GCCE), Osaka, Japan, 27–30 October 2015; pp. 86–87. [Google Scholar]
- Pradhan, S.; Al-Ghamdi, S.G.; Mackey, H.R. Greywater Recycling in Buildings Using Living Walls and Green Roofs: A Review of the Applicability and Challenges. Sci. Total Environ. 2019, 652, 330–344. [Google Scholar] [CrossRef]
- United Nations. World Population Prospects 2017. 2017. Available online: https://esa.un.org/unpd/wpp/DataQuery/ (accessed on 29 January 2020).
- Sachidananda, M.; PatrickWebb, D.; Rahimifard, S. A Concept of Water Usage Efficiency to Support Water Reduction in Manufacturing Industry. Sustainability 2016, 8, 1222. [Google Scholar] [CrossRef] [Green Version]
- Boyle, T.; Giurco, D.; Mukheibir, P.; Liu, A.; Moy, C.; White, S.; Stewart, R. Intelligent Metering for Urban Water: A Review. Water 2013, 5, 1052–1081. [Google Scholar] [CrossRef] [Green Version]
- Baptista, J.; Pires, J.; Alves, D.; Marques, S.; Aleixo, C.; Andrade, I.; Ramos, L. Relatório Anual do Sector de Águas e Resíduos em Portugal; ERSAR–Entidade Reguladora dos Serviços de Águas e Resíduos: Lisbon, Portugal, 2016; Volume 1, p. 186. [Google Scholar]
- Ritzema, H.; Kirkpatrick, H.; Stibinger, J.; Heinhuis, H.; Belting, H.; Schrijver, R.; Diemont, H. Water Management Supporting the Delivery of Ecosystem Services for Grassland, Heath and Moorland. Sustainability 2016, 8, 440. [Google Scholar] [CrossRef] [Green Version]
- Marney, D.; Sharma, A. The Application and Utility of ‘Smarts’ for Monitoring Water and its Infrastructure. Water: J. Aust. Water Assoc. 2012, 39, 86–92. [Google Scholar]
- WSAA Occasional Paper 27 Climate Change Adaptation and the Australian Water Industry. 2012. Available online: https://www.wsaa.asn.au/publication/occasional-paper-27-climate-change-adaptation-and-australian-water-industry (accessed on 25 February 2021).
- Morosini, A.F.; Caruso, O.; Costanzo, F.; Savic, D. Emergency Management of Water Distribution Systems: The Nodal Demand Control. J. Procedia Eng. 2017, 186, 428–435. [Google Scholar] [CrossRef]
- Bush, C.A.; Uber, J.G. Sampling Design Methods for Water Distribution Model Calibration. J. Water Resour. Plan. Manag. 1998, 124, 334–344. [Google Scholar] [CrossRef]
- Davis, P.; Sullivan, E.; Marlow, D.; Marney, D. A Selection Framework for Infrastructure Condition Monitoring Technologies in Water and Wastewater Networks. Expert Syst. Appl. 2013, 40, 1947–1958. [Google Scholar] [CrossRef]
- Mercedes Garcia, A.V.; López-Jiménez, P.A.; Sánchez-Romero, F.-J.; Pérez-Sánchez, M. Objectives, Keys and Results in the Water Networks to Reach the Sustainable Development Goals. Water 2021, 13, 1268. [Google Scholar] [CrossRef]
- Adeoti, O.; Fati, B.O. Barriers to Extending Piped Water Distribution Networks: The Case of Ekiti State, Nigeria. Util. Policy 2020, 63, 100983. [Google Scholar] [CrossRef]
- Cetrulo, T.B.; Marques, R.C.; Malheiros, T.F.; Cetrulo, N.M. Monitoring inequality in water access: Challenges for the 2030 Agenda for Sustainable Development 2020. Sci. Total Environ. 2020, 727, 138746. [Google Scholar] [CrossRef]
- Hameed, M.; Sharqi, S.S.; Yaseen, Z.M.; Afan, H.A.; Hussain, A.; Elshafie, A. Application of Artificial Intelligence (AI) Techniques in Water Quality Index Prediction: A Case Study in Tropical Region, Malaysia. Neural Comput. Appl. 2017, 28, 893–905. [Google Scholar] [CrossRef]
- Thompson, K.; Sorbello, J.; Dang, H.; Snadden, D. Approaches to Efficiency and Intelligent Water Networks at Yarra Valley Water. Water J. Aust. Water Assoc. 2012, 39, 101–107. Available online: https://issuu.com/australianwater/docs/water_journal_december_2012 (accessed on 6 April 2022).
- Chauhan, R.K.; Chauhan, K.; Dewal, M. Implementation of an Intelligent System in Process Control. In Proceedings of the National Conference on Trends in Instrumentation and Control Engineering (TICE 2009), Patiala, India, 28–29 October 2009; pp. 156–160. [Google Scholar]
- Chauhan, R.K.; Chauhan, K.; Dewal, M. Automated pH control of Water Distributed Systems. In Proceedings of the International Conference on Advanced Computing and Communication Technologies, Asia Pacific Institute of Information Technology SD India, Panipat, India, 30 October 2010; pp. 111–115. [Google Scholar]
- Roy, U. Leak Detection in Pipe Networks Using Hybrid ANN Method. Water Conserv. Sci. Eng. 2017, 2, 145–152. [Google Scholar] [CrossRef] [Green Version]
- Cheng, W.; Fang, H.; Xu, G.; Chen, M. Using SCADA to Detect and Locate Bursts in a Long-Distance Water Pipeline. Water 2018, 10, 1727. [Google Scholar] [CrossRef] [Green Version]
- Jagtap, S.; Skouteris, G.; Choudhari, V.; Rahimifard, S.; Duong, L.N.K. An Internet of Things Approach for Water Efficiency: A Case Study of the Beverage Factory. Sustainability 2021, 13, 3343. [Google Scholar] [CrossRef]
- Jagtap, S.; Skouteris, G.; Choudhari, V.; Rahimifard, S. Improving Water Efficiency in the Beverage Industry with the Internet of Things. In Implementing Data Analytics and Architectures for Next Generation Wireless Communications; IGI Global: Hershey, PA, USA, 2022; pp. 18–26. [Google Scholar]
- Ramos, H.; Mcnabola, A.; López-Jiménez, P.; Pérez-Sánchez, M. Smart Water Management towards Future Water Sustainable Networks. Water 2019, 12, 58. [Google Scholar] [CrossRef] [Green Version]
- Nam, T.; Pardo, T.A. Conceptualizing Smart City with Dimensions of Technology, People, and Institutions. In Proceedings of the 12th Annual International Digital Government Research Conference: Digital Government Innovation in Challenging Times, New York, NY, USA, 12–15 June 2011; pp. 282–291. [Google Scholar]
- Hellström, D.; Jeppsson, U.; Kärrman, E. A Framework for Systems Analysis of Sustainable Urban Water Management. Environ. Impact Assess. Rev. 2000, 20, 311–321. [Google Scholar] [CrossRef]
- WorldWater 2021, Water Infrastructure Monitoring to Improve Water Supply in Antofagasta, Chile. 2021. Available online: https://www.waterworld.com/drinking-water/infrastructure-funding/article/16210039/water-infrastructure-monitoring-to-improve-water-supply-in-antofagasta-chile (accessed on 7 March 2022).
- Briamonte, L.; Zucaro, R.; Luzzi Conti, S. Sustainable Management of Water Resources: Agricultural Sector and Environmental Protection. Econ. Agro-Aliment. /Food Econ. 2020, 22, 1–7. [Google Scholar] [CrossRef]
- Pérez-Sánchez, M.; Sánchez-Romero, F.J.; López-Jiménez, P.A. Nexo Agua-Energía: Optimización Energética en Sistemas de Distribución. Aplicación “Postrasvase Júcar-Vinalopó”, España. Tecnol. Ciencias Agua 2017, 8, 19–36. [Google Scholar] [CrossRef]
- Tadokoro, H.; Onishi, M.; Kageyama, K.; Kurisu, H.; Takahashi, S. Smart Water Management and Usage Systems for Society and Environment. Hitachi Rev. 2011, 60, 164–171. [Google Scholar]
- Howell, S.; Rezgui, Y.; Beach, T. Integrating Building and Urban Semantics to Empower Smart Water Solutions. Autom. Constr. 2017, 81, 434–448. [Google Scholar] [CrossRef]
- Mounce, S.R.; Pedraza, C.; Jackson, T.; Linford, P.; Boxall, J.B. Cloud Based Machine Learning Approaches for Leakage Assessment and Management in Smart Water Networks. Procedia Eng. 2015, 119, 43–52. [Google Scholar] [CrossRef] [Green Version]
- Lombardi, P.; Giordano, S.; Farouh, H.; Yousef, W. Modelling the Smart City Performance. Innov. Eur. J. Soc. Sci. Res. 2012, 25, 137–149. [Google Scholar] [CrossRef]
- Colldahl, C.; Frey, S.; Kelemen, J. Smart Cities: Strategic Sustainable Development for an Urban World. Sweden: School of Engineering, Blekinge Institute of Technology. 2013. Available online: https://www.divaportal.org/smash/get/diva2:832150/FULLTEXT01.pdf (accessed on 18 July 2017).
- Giffinger, R.; Fertner, C.; Kramar, H.; Kalasek, R.; Pichler-Milanovi’c, N.; Meijers, E. Smart Cities: Ranking of European Medium-Sized. Vienna, Austria: Centre of Regional Science (SRF), Vienna University of Technology. 2007. Available online: http://www.smart-cities.eu/download/smart_cities_final_report.pdf (accessed on 16 July 2017).
- Selek, B.; Adigüzel, A.; İritaş, Ö.; Karaaslan, Y.; Kinaci, C.; Muhammetoğlu, A.; Muhammetoğlu, H. Management of Water Losses in Water Supply and Distribution Networks in Turkey. Turk. J. Water Sci. Manag. 2018, 2, 58–75. [Google Scholar] [CrossRef]
- Barate, P.R. Study on Benefits and Economic Feasibility of Smart Water Distribution System. Int. J. Innov. Sci. Res. Technol. 2017, 2, 255–260. [Google Scholar]
- Beal, C.D.; Flynn, J. Toward the Digital Water Age: Survey and Case Studies of Australian Water Utility Smart-Metering Programs. Util. Policy 2015, 32, 29–37. [Google Scholar] [CrossRef] [Green Version]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. Benefits and Challenges of Using Smart Meters for Advancing Residential Water Demand Modeling and Management: A Review. Environ. Model. Softw. 2015, 72, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J. Designing a Cost-Effective and Reliable Pipeline Leak-Detection System. J. Pipes Pipelines Int. 1997, 42, 20–26. [Google Scholar]
- Araujo, L.; Ramos, H.; Coelho, S. Pressure Control for Leakage Minimisation in Water Distribution Systems Management. J. Water Resour. Manag. 2006, 20, 133–149. [Google Scholar] [CrossRef]
- El-Zahab, S.; Zayed, T. Leak Detection in Water Distribution Networks: An Introductory Overview. Smart Water 2019, 4, 5. [Google Scholar] [CrossRef] [Green Version]
- Smit, S.; Tutusaus, M.; Curry, E.; Messervey, T.; D’Andrea, Z. Business Drivers for Adopting Smart Water Technology. In Proceedings of the 36th IAHR World Congress, The Hague, The Netherlands, 28 June–3 July 2015; Volume 28. [Google Scholar]
- Randall, T.; Koech, R. Smart Water Metering Technology for Water Management in Urban Areas. Water eJ 2019, 4, 1–14. [Google Scholar] [CrossRef]
- Berardi, L.; Giustolisi, O. Calibration of Design Models for Leakage Management of Water Distribution Networks. Water Resour. Manag. 2021, 35, 2537–2551. [Google Scholar] [CrossRef]
- Erbe, V.; Frehmann, T.; Geiger, W.; Krebs, P.; Londong, J.; Rosenwinkel, K.-H.; Seggelke, K. Integrated Modelling as an Analytical and Optimisation Tool for Urban Watershed Management. Water Sci. Technol. 2002, 46, 141–150. [Google Scholar] [CrossRef]
- Seggelke, K.; Brown, R.; Krebs, P. Integrated Approaches in Urban Storm Drainage: Where Do We Stand? Environ. Manag. 2005, 35, 396–409. [Google Scholar]
- Gourbesville, P. Key Challenges for Smart Water. Procedia Eng. 2016, 154, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Stair, R.; Reynolds, G. Fundamentals of Information Systems; Nelson Education: Scarborough, ON, Canada, 2012. [Google Scholar]
- Gourbesville, P. ICT for Water Efficiency; IntechOpen: London, UK, 2011. [Google Scholar]
- Martyusheva, O. SmartWater Grid. USA: Department of Civil and Environmental Engineering, Colorado State University. 2014. Available online: https://www.engr.colostate.edu/~pierre/ce_old/Projects/Rising%20Stars%20Website/Martyusheva,Olga_PlanB_TechnicalReport.pdf (accessed on 1 August 2017).
- Lin, Y.F.; Liu, C.; Whisler, J. Smart Pipe—Nanosensors for Monitoring Water Quantity and Quality in Public Water Systems. In Proceedings of the World Environmental and Water Resources Congress 2009, Great Rivers, IL, USA, 17–21 May 2009; Starrett, S., Ed.; ASCE: Reston, VA, USA, 2009; pp. 1–8. [Google Scholar]
- Baldwin, T. Smart Water Meters, Australian Government. 2021. Available online: https://www.infrastructure.gov.au/cities/smart-cities/collaboration-platform/smart-water-meters.aspx#:~:text=Smart%20Water%20Meters%20(SWMs)%20have,pumped%20to%20overhead%20distribution%20tanks (accessed on 11 March 2022).
- Gurung, T.R.; Stewart, R.A.; Sharma, A.K.; Beal, C.D. Smart Meters for Enhanced Water Supply Network Modelling and Infrastructure Planning. Resour. Conserv. Recycl. 2014, 90, 34–50. [Google Scholar] [CrossRef] [Green Version]
- Lee, I.; Lee, K. The Internet of Things (IoT): Applications, investments, and challenges for enterprises. Bus. Horiz. 2015, 58, 431–440. [Google Scholar] [CrossRef]
- Jagtap, S.; Bader, F.; Garcia-Garcia, G.; Trollman, H.; Fadiji, T.; Salonitis, K. Food logistics 4.0: Opportunities and Challenges. Logistics 2021, 5, 2. [Google Scholar] [CrossRef]
- Alliance for Water Efficiency. Smart Metering Introduction. Obtained on 12 August 2015, from Alliance for Water Efficiency. 2010. Available online: http://www.allianceforwatere_ciency.org/smart-meter-introduction.aspx (accessed on 30 July 2017).
- Ntuli, N.; Abu-Mahfouz, A. A Simple Security Architecture for Smart Water Management System. Procedia Comput. Sci. 2016, 83, 1164–1169. [Google Scholar] [CrossRef] [Green Version]
- Turner, A.; Retamal, M.; White, S.; Palfreeman, L.; Panikkar, A. Third Party Evaluation of Wide Bay Water Smart Metering and Sustainable Water Pricing Initiative Project, SMEC, Institute for sustainable futures, University of Technology Sydney, DEWHA, Sydney, Australia, 5 February 2010. Available online: https://opus.lib.uts.edu.au/bitstream/10453/37611/1/evaluation-feb2010.pdf (accessed on 12 March 2022).
- Kayaalp, F.; Zengin, A.; Kara, R.; Zavrak, S. Leakage Detection and Localization on Water Transportation Pipelines: A Multi-Label Classification Approach. Neural Comput. Appl. 2017, 28, 2905–2914. [Google Scholar] [CrossRef]
- Abdulla, M.B.; Herzallah, R.O.; Hammad, M.A. Pipeline Leak Detection Using Artificial Neural Network: Experimental Study. In Proceedings of the 5th International Conference on Modelling, Identification and Control (ICMIC), Cairo, Egypt, 31 August–2 September 2013; pp. 328–332. [Google Scholar]
- Puust, R.; Kapelan, Z.; Savic, D.A.; Koppel, T. A Review of Methods for Leakage Management in Pipe Networks. Urban Water J. 2010, 7, 25–45. [Google Scholar] [CrossRef]
- Wachla, D.; Przystalka, P.; Moczulski, W. A Method of Leakage Location in Water Distribution Networks Using Artificial Neuro-Fuzzy System. IFAC-PapersOnLine 2015, 48, 1216–1223. [Google Scholar] [CrossRef]
- Western Water, Network Intelligence Strategy Report, PS20 V3, Draft Final, Greater Western Water, Sunbury, PA, USA, Revised version of June 2019. Available online: https://www.westernwater.com.au/assets/volumes/general-downloads/reports/water-quality-report-2019.pdf (accessed on 7 March 2022).
- Wu, W.; Gao, J.; Yuan, Y.; Zhao, H.; Chang, K. Water Distribution Network Real-Time Simulation Based on SCADA System Using OPC Communication. In Proceedings of the 2011 International Conference on Networking, Sensing and Control, Delft, The Netherlands, 11–13 April 2011. [Google Scholar]
- Dawood, T.; Elwakil, E.; Novoa, H.M.; Delgado, J.F.G. Artificial Intelligence for the Modeling of Water Pipes Deterioration Mechanisms. Autom. Constr. 2020, 120, 103398. [Google Scholar] [CrossRef]
- Airaksinen, M.; Pinto-Seppa, I.; Piira, K.; Ahvenniemi, H.; Huovila, A. Real-Time Decision Support Systems for City Management. In Smart City–Research Highlights; Airaksinen, M., Kokkala, M., Eds.; VTT Technical Research Centre of Finland Ltd.: Espoo, Finland, 2015; pp. 21–38. Available online: http://www.vtt.fi/inf/pdf/researchhighlights/2015/R12.pdf (accessed on 24 July 2017).
- Boulos, P.; Wiley, A. Can We Make Water Systems Smarter? Opflow. 2013. Available online: http://innovyze.com/news/showcases/SmartWaterNetworks.pdf (accessed on 19 July 2017).
- Gurung, T.R.; Stewart, R.A.; Beal, C.D.; Sharma, A.K. Smart Meter Enabled Water End-Use Demand Data: Platform for the Enhanced Infrastructure Planning of Contemporary Urban Water Supply Networks. J. Clean. Prod. 2015, 87, 642–654. [Google Scholar] [CrossRef] [Green Version]
- Romano, M.; Kapelan, Z. Adaptive Water Demand Forecasting for near Real-Time Management of Smart Water Distribution Systems. Environ. Model. Softw. 2014, 60, 265–276. [Google Scholar] [CrossRef] [Green Version]
- Rossman, L.A. EPANET 2 User’s Manual; U.S. Environmental Protection Agency (EPA): Cincinnati, OH, USA, 2000. [Google Scholar]
- Nazari, A.; Meisami, H. Instructing WaterGEMS Software Usage; Water Online: Exton, PA, USA, 2008. [Google Scholar]
- Samora, I.; Franca, M.; Schleiss, A.; Ramos, H. Simulated Annealing in Optimization of Energy Production in a Water Supply Network. Water Resour. Manag. 2016, 30, 1533–1547. [Google Scholar] [CrossRef]
- Sanchis, R.; Díaz-Madroñero, M.; López-Jiménez, P.A.; Pérez-Sánchez, M. Solution Approaches for the Management of the Water Resources in Irrigation Water Systems with Fuzzy Costs. Water 2019, 12, 2432. [Google Scholar] [CrossRef] [Green Version]
- Furht, B.; Escalante, A. Handbook of Cloud Computing; Springer: New York, NY, USA, 2010. [Google Scholar]
- EPA. Distribution System Water Quality Monitoring: Sensor Technology Evaluation Methodology and Results.A Guide for Sensor Manufacturers and Water Utilities. Ohio: EPA–Environmental Protection Agency. 2009. Available online: https://cfpub.epa.gov/si/si_public_record_report.cfm?Lab=NHSRC&address=nhsrc/&dirEntryId=212368 (accessed on 11 August 2017).
- Boyer, S. SCADA: Supervisory Control and Data Acquision. USA: ISA–The Instrumentation, Systemas and Automation Society. 2004. Available online: https://www.isa.org/products/scada-supervisory-control-and-data-acquisition-1 (accessed on 20 July 2017).
- Britton, T.C.; Stewart, R.A.; O’Halloran, K.R. Smart Metering: Enabler for Rapid and Effective Post Meter Leakage Identification and Water Loss Management. J. Clean. Prod. 2013, 54, 166–176. [Google Scholar] [CrossRef] [Green Version]
- Sharvelle, S.; Dozier, A.; Arabi, M.; Reichel, B. A Geospatially-Enabled Web Tool for Urban Water Demand Forecasting and Assessment of Alternative Urban Water Management Strategies. Environ. Model. Softw. 2017, 97, 213–228. [Google Scholar] [CrossRef]
- Kutyłowska, M. Neural Network Approach for Failure Rate Prediction. Eng. Fail. Anal. 2015, 47, 41–48. [Google Scholar] [CrossRef]
- Bubtiena, A.M.; Elshafie, A.H.; Jafaar, O. Application of Artificial Neural Networks in Modeling Water Networks. In Proceedings of the IEEE 7th International Colloquium on Signal Processing and Its Applications, Penang, Malaysia, 4–6 March 2011; pp. 50–57. [Google Scholar]
- Amaitik, N.M.; Amaitik, S.M. Development of PCCP Wire Breaks Prediction Model Using Artificial Neural Networks. In Proceedings of the ASCE International Pipelines Conference, American Society of Civil Engineers, Atlanta, GA, USA, 22–27 July 2008; pp. 1–11. [Google Scholar]
- Sattar, A.M.; Ertuğrul, Ö.F.; Gharabaghi, B.; McBean, E.A.; Cao, J. Extreme Learning Machine Model for Water Network Management. Neural Comput. Appl. 2019, 31, 157–169. [Google Scholar] [CrossRef]
- Asnaashari, A.; McBean, E.A.; Gharabaghi, B.; Tutt, D. Forecasting Watermain Failure Using Artificial Neural Network Modelling. Can. Water Resour. J. 2013, 38, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Kleiner, Y.; Sadiq, R.; Rajani, B. Modeling Failure Risk in Buried Pipes Using Fuzzy Markov Deterioration Process. In Proceedings of the Pipeline Engineering and Construction: What’s on the Horizon? Pipeline Division Specialty Conference, San Diego, CA, USA, 1–4 August 2004; pp. 1–12. [Google Scholar]
- Sadiq, R.; Kleiner, Y.; Rajani, B. Fuzzy Cognitive Maps for Decision Support to Maintain Water Quality in Ageing Water Mains. In Proceedings of the 4th International Conference on Decision-Making in Urban and Civil Engineering, Porto, Portugal, 28–30 October 2004; pp. 1–10. [Google Scholar]
- Wu, W.; Dandy, G.; Maier, H. Application of Artificial Neural Networks to Forecasting Water Quality in a Chloraminated Water Distribution System. In Proceedings of the 19th International Congress on Modelling and Simulation, Perth, Australia, 12–16 December 2011; pp. 1112–1118. [Google Scholar]
- Campos, J.A.; Jiménez-Bello, M.A.; Alzamora, F.M. Real-Time Energy Optimization of Irrigation Scheduling by Parallel Multi-Objective Genetic Algorithms. Agric. Water Manag. 2020, 227, 105857. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Joseph, K.; Sharma, A.K.; van Staden, R. Development of an Intelligent Urban Water Network System. Water 2022, 14, 1320. https://doi.org/10.3390/w14091320
Joseph K, Sharma AK, van Staden R. Development of an Intelligent Urban Water Network System. Water. 2022; 14(9):1320. https://doi.org/10.3390/w14091320
Chicago/Turabian StyleJoseph, Kiran, Ashok K. Sharma, and Rudi van Staden. 2022. "Development of an Intelligent Urban Water Network System" Water 14, no. 9: 1320. https://doi.org/10.3390/w14091320
APA StyleJoseph, K., Sharma, A. K., & van Staden, R. (2022). Development of an Intelligent Urban Water Network System. Water, 14(9), 1320. https://doi.org/10.3390/w14091320