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Abstract: Species distribution models (SDMs) are important tools for exploring the complex as-
sociation between species and habitats. Here, we applied six SDMs combining 1946 pieces of
presence/absence data regarding European anchovy eggs with environmental parameters from
surveys conducted in the Strait of Sicily from 1998 to 2016. We aimed to investigate the mechanisms
influencing spawning habitat suitability for anchovy (Engraulis encrasicolus). The dataset was split
into a training subset (75%) and a test subset (25%) for evaluating the predictive performance of the
models. The results suggested the role of environmental parameters in explaining egg occurrence,
model accuracy and spatial predictions. Bottom depth consistently had the highest importance,
followed by absolute dynamic topography, which gives insights about local mesoscale oceanographic
features. Each modelling method, except the linear model, produced successful performance for both
the training and the test datasets. The spatial predictions were estimated as weighted averages of
single-model predictions, with weights based on discriminatory power measured by the area under
the receiver operating characteristic curve (AUC). This ensemble approach often provided more
robust predictions than a single model. The coastal waters were identified as the most favorable for
anchovy spawning, especially the south-central sector and the area around the southern-most tip
of Sicily.

Keywords: ensemble distribution modelling; regression models; machine-learning methods; spawning
habitat; anchovy; Strait of Sicily

1. Introduction

The growing need for quantitative information on species habitat during all life stages,
for resource management and conservation planning, has caused a fast development in the
Species Distribution Models (SDMs) in recent years [1–4]. Their wide use is due mainly
to their flexibility and ability to quantify highly complex associations that characterize
species and their habitat and to estimate spatially explicit predictions of environmental
suitability [5,6].

Of particular interest in marine ecosystem-based management is the distribution of
pelagic species, whose spawning strategy, offspring fate and standing stock biomass are
highly affected by variability of environmental conditions, especially in the very olig-
otrophic Mediterranean Sea [7–10]. Specifically, the upwelling off the southern coast of
Sicily [11] drives a highly productive assemblage of pelagic fish including the European
anchovy (Engraulis encrasicolus, [12,13]). It is the target species for local fisheries and an
intermediate link in the flow of energy from lower to higher trophic levels. Therefore, it
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substantially contributes to the diet of numerous predators and to the total catches from
fisheries [14,15]. The short lifespan (2–3 years), reproductive strategy with large quantities
of pelagic eggs and extended spawning season [16,17] make its biomass very susceptible
to environmental variability. In the Strait of Sicily, the anchovy spawning period of this
species occurs during the summer period, when the temperature increases and the water
column is stratified [18], favoring the aggregation of prey in the surface layer, where most
of the eggs and larvae are typically concentrated [19]. Therefore, habitat conditions have
a high impact on survival in early life stages (eggs and larvae) and are considered more
important than the effects of fishing effort in many Mediterranean regions [9,20–22].

Recently, the preferential spawning habitat of European anchovy in relation to envi-
ronmental parameters has been examined for the Mediterranean Sea [23]. Its spawning
distribution is mainly driven by depth gradient, which limits the potential spawning habitat
to the continental shelf, within the 200 m isobaths [19,24–28]. Other important factors af-
fecting anchovy spawning behavior are variations in primary production, temperature and
stability of water column [18,29–33]. Several studies showed that the fate of recruitment is
manly linked to local surface circulation during the spawning season [9,34–37]. In the Strait
of Sicily, the surface circulation is dominated by the flow of the Modified Atlantic Waters
(MAW; [38–42]), locally called Atlantic Ionian Stream (AIS). The AIS fuels high variability
in both hydrological and physico-chemical conditions that may favor the local retention
of eggs and larvae and the enrichment of primary production in the upper water layers,
creating favorable feeding conditions for anchovy early life history stages [13,34,43,44].

However, most of the studies carried out until now have examined the relationship
between the species distribution and a single environmental parameter. When a multi-
variate approach was applied, predictions of spawning habitat distribution were mainly
based on a single statistical technique. Since the selection of the best a priori model is not
straightforward [45], an approach based on the testing of multiple models can provide a
more robust estimation of the occurrence of anchovy spawning [46–48]. In this paper, six
different SDMs were applied combining a long presence/absence time series of European
anchovy eggs in the Strait of Sicily and co-occurring environmental information. The
approach included regression-based methods (Generalized Linear Model (GLM), Gen-
eralized Additive Model (GAM) and Multivariate Adaptive Regression Spline (MARS))
and machine-learning methods (Random Forest (RF), Boosted Regression Trees (BRT) and
Support Vector Machines (SVM)).

2. Materials and Methods
2.1. The Biological Dataset

Anchovy egg data used in this study are from nineteen summer oceanographic surveys
carried out in the Strait of Sicily from 1998 to 2016 (Table 1), during the peak of anchovy
spawning period in the study area [18]. Because spawning of the European anchovy occurs
on the continental shelf [9], only stations with depths less than 200 m were included in the
analysis, with a sampling grid of 6 × 6 nautical miles. Plankton samples were collected
with a Bongo40 net towed obliquely from the surface to a 100 m depth, wherever possible.
The Bongo40 net is composed of two coupled nets with a mouth diameter of 40 cm and
mesh size of 200 µ. Samples were stored in 4% buffered formaldehyde (and/or 70% alcohol)
sea-water solution for identification of anchovy eggs in the laboratory by stereomicroscopy.
A presence/absence data matrix was finally obtained and used as response variable in use
the SDMs.

2.2. The Environmental Dataset

A set of environmental parameters was selected based on available knowledge about
their direct influence on the spawning behavior of the adult population and on the survival
of anchovy offspring.
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First, the bottom depth was included as an explanatory variable in estimated mod-
els, as this parameter represents a discriminant factor for all life stages of the European
anchovy [31].

Table 1. List of ichthyoplankton summer surveys in the study area during 1998–2016 with number of
stations on the continental shelf (depths < 200 m).

Year Survey Period Number of Stations

1998 BANSIC98 25 June–11 July 1998 73
1999 BANSIC99B 19 June–25 June 1999 53
2000 BANSIC2000 24 June–8 July 2000 74
2001 ANSIC2001 7 July–25 July 2001 77
2002 ANSIC2002 11 July–31 July 2002 181
2003 ANSIC2003 11 July–2 August 2003 129
2004 ANSIC2004 18 June–7 July 2004 131
2005 BANSIC2005 7 July–24 July 2005 97
2006 BANSIC2006 30 July–10 August 2006 74
2007 BANSIC2007 28 June–17 July 2007 106
2008 BANSIC2008 25 June–14 July 2008 119
2009 BANSIC2009 3 July–22 July 2009 96
2010 BANSIC2010 25 June–14 July 2010 118
2011 BANSIC2011 8 July–26 July 2011 77
2012 BANSIC2012 4 July–23 July 2012 86
2013 BANSIC2013 26 June–16 July 2013 134
2014 BANSIC2014 22 July–9 August 2014 103
2015 BANSIC2015 16 July–3 August 2015 103
2016 BANSIC2016 30 June–14 July 2016 115

Continuous vertical profiles of temperature were acquired in all Bongo40 stations
from the surface to the bottom by means of a SBE911 plus CTD probe (Sea-Bird Inc
mod. 9/11 plus). The collected downcast data were quality-checked and processed in
accordance with the instructions of the Mediterranean and Ocean Data Base [49], using the
Seasoft-Win32 software (Washington, DC, USA). As anchovy eggs in the Mediterranean
Sea are mainly found in the surface layer [50,51], the temperature data were averaged by
station from surface to 10 m depth.

The mixed layer depth (MLD in m) was derived from each CTD profile using the
algorithm described in [52], since it is an important driver for the definition of the potential
spawning habitat [53].

The relevant impact of mesoscale oceanographic features such as upwelling, cold
filaments and fronts on the spatial distribution of the planktonic early life stages of an-
chovy [9,54] was also taken into account. Oceanographic structures can influence the
distribution of chemical and physical properties of the water column with a potential
effect on anchovy egg survival and larval development [55]. Therefore, surface circulation
features were evaluated by means of Absolute Dynamic Topography (ADT in cm) (daily
data; spatial resolution: 0.125 × 0.125 degree) and the derived u and v components of
geostrophic currents, produced by Copernicus Marine Environment Monitoring Service
(CMEMS, http://marine.copernicus.eu/ (accessed on 15 July 2021)). ADT represents im-
portant oceanographic features such as mesoscale eddies and meanders [56], which affect
primary production and can act as physical barriers for eggs or be responsible for their
dispersal offshore. In addition, absolute speed (parameter speed.gos (cm s−1)) was derived
from the zonal (u) and meridional (v) components of surface current and used as predictors
in the modelling.

Finally, sea surface chlorophyll-a concentration (chl-a in mg m−3) was included in
the modelling as an indicator of primary productivity [57] and a proxy for the presence of
favorable feeding conditions for anchovy. Daily high resolution (1 × 1 km) satellite data
from CMEMS were used for this purpose.

http://marine.copernicus.eu/
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The satellite-based information was extracted for each planktonic station subject to
the analysis, based on their spatial and temporal location.

2.3. Species Distribution Modelling

All SDMs were performed on the presence/absence of eggs and environmental pa-
rameters using the statistical software R 3.6.3 (Vienna, Austria) [58].

The available dataset was checked for the presence of any outliers, the collinearity
among independent variables and the distribution of the input parameters. MLD and
the concentration of chl-a were transformed via natural logarithm to achieve uniform
distribution, useful for improving the model application.

The survey data were randomly split into two subsets, the first to train the models
(training dataset: 75% of total number of stations) and the second one to validate the
predictive performance of the estimated models (test dataset: 25% of available stations).
All species distribution models were fitted using the “sdm” library [59] of the R environ-
ment [58]. For each model applied on the training set, the AUC-metric was used to select
the most significant input variables useful for discrimination of stations with presence or
absence of anchovy eggs. The AUC-metric calculates the improvement in model perfor-
mance with the inclusion of each variable, compared to when the variable is excluded.
Partial dependence plots for each significant predictor were used to describe the role of pre-
dictors in the explanation of the species distribution. The response curves were generated
following the procedure proposed by [60].

2.3.1. Regression-Based Models

Three regression models were fitted to presence/absence data of anchovy eggs and
environmental parameters: GLM, GAM and MARS. The assumption of binomial error
distribution and logit link function were chosen for all modelling approaches.

GLM is a mathematical extensions of linear models that do not force data into non-
linear scales, and thereby allow for non-linearity and non-constant variance structures in
the data. Model is fit using maximum likelihood and by allowing the linear model to be
related to the response variable via a link function and the magnitude of the variance of
each measurement to be a function of its predicted value [61].

GAM is a semi-parametric extensions of GLM, where the only underlying assumption
made is that the functions are additive and the linear predictor is the sum of smoothing
functions. This makes GAM very flexible, and adaptable to very complex functions [62].

MARS is a non-parametric regression model used to estimate complex nonlinear
relationships by a series of truncated spline functions of the predictors. It estimates a set of
functions called “basic functions” (BF), which represent the information included in one
or more independent variables. The BF are combined to obtain a sequence of candidate
models with different BF numbers, from which MARS selects the optimal model [63].

2.3.2. Machine-Learning Models

Three machine-learning models were fitted: RF, BRT and SVM.
An RF is an ensemble classifier consisting of many decision trees, where the final

predicted class is obtained by combining the predictions of all individual trees. A training
set for each individual tree is constructed by randomly re-sampling data with replacement
from available data in the original dataset. The number of trees was determine based on
lowest error rate on validation data [64].

BRT combines the concept of regression trees with the concept of boosting. Boosting
is an ensemble method that derives an answer from a large pool of models. In this case,
this large pool of models is generated by creating trees that attempt to explain the variation
in the data that is currently unexplained by existing trees [65]. The function assesses the
optimal number of boosting trees using k-fold cross validation, described in [66].

SVM applies an algorithm with polynomial kernels able to estimate an optimal hy-
perplane with the maximal margin of separation between positive and negative stations.



Water 2022, 14, 1400 5 of 16

The Kernel parameter selection and Cost parameter were defined minimizing error rate on
validation data [67].

2.3.3. Model Validation and Mapping

The output values from each species distribution model ranged from 0 to 1, repre-
senting the probability of the occurrence of anchovy eggs at a particular sampling station.
For each SDM, an optimal threshold was estimated to transform the continuous output
into a binary factor: positive stations (representing stations where the presence of an-
chovy eggs is expected to occur) with predicted values greater than the threshold and
negative stations otherwise. Various measurements of accuracy were applied to each
SDM for both the training and the independent test data to evaluate discriminating ability
and reliability, including threshold-dependent statistics (Sensitivity and Specificity) and
threshold-independent statistics (AUC) [68].

The ability of models to correctly predict species presence and absence was examined
with sensitivity and specificity, respectively [69]. The maximum sum of sensitivity and
specificity was used in SDM as criteria for optimizing the threshold.

In addition, a threshold-independent measure was estimated: the AUC [70]. A high
AUC indicates that sites with high predicted suitability values tend to be areas of known
presence and locations with lower model prediction values tend to be areas where the
species presence is unknown. An AUC lower than 0.5 means that the model is not able to
discriminate, 0.7 indicates satisfactory discrimination, 0.8 good discrimination, and 0.9 or
higher very good discrimination [71].

Finally, we also estimated the probability of occurrence based on an ensemble of all
models, because these predictions are often more robust than predictions derived from
a single model [46–48]. Ensemble predictions were calculated as weighted averages of
single-model predictions, with weights assigned to each modelling technique based on its
discriminatory power as measured by the AUC. The Kriging-based spatial interpolation
was used to map the results from ensemble approach within the study area.

3. Results
3.1. Regression-Based Outputs

The regression models included bottom depth as the primary effect on spawning,
followed by ADT, speed.gos and MLD in all cases. GAM and MARS models also included
chl-a and temperature (Figures 1a, 2a and 3a). In GLM, the linear relationship between
egg occurrence and both bottom depth and ADT is negative, while speed.gos and MLD
have a positive effect on egg presence (Figure 1b). A similar pattern of response was
found in MARS and GAM results for all selected variables. The partial plot of bottom
depth indicated an optimal range for the spawning grounds between 50 and 100 m. Some
particular environmental conditions (ADT values > 10 cm in absolute value; speed.gos
around 30 cm s−1; temperature < 25 ◦C; chl-a > 0.05 mg m−3 and 10 < MLD < 15 m) are
linked to a higher probability of the presence of anchovy eggs (Figures 2 and 3b).

3.2. Machine-Learning Outputs

Five-hundred decision trees were used to select the best RF model and 450 boosting
trees for the BRT model. A cost parameter equal to a one-and-a-third degree polynomial
Kernel characterized the SVM model with the best performance.

As already observed for regression models, the machine-learning models also showed
that anchovy egg distribution was principally driven by changes in bottom depth and ADT.
Surface currents in terms of velocity, temperature and chl-a were moderately important for
determining egg presence (Figures 4a, 5a and 6a).
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factory discrimination (Table 2). The estimated threshold was about 0.40 for all models, 
with the exception of RF (0.52). These values, combined with sensitivity values higher 
than specificity, indicated that generally all models performed well in correctly identify-
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The partial dependence plots (Figures 4b, 5b and 6b) show similar patterns to the
regression plots. Specifically, the probability of egg occurrence increases in correspondence
with an optimal range for bottom depth (between 50 and 100 m) and speed.gos (about
30 cm s−1). BRT model resulted in patterns similar to regression models for temperature
and chl-a (temperature < 25 ◦C and chl-a > 0.05 mg m−3). Otherwise, for RF and SVM
models, the higher probability of the presence of eggs is linked to temperature values
between 20 and 25 ◦C, chl-a values between 0.05 and 0.1 mg m−3 and negative ADT values
between −10 cm and 0.

3.3. Evaluation of Model Results

With the exception of the GLM, which showed a relatively weaker performance, the
predictions obtained from the training data proved to be reliable for the modelling tech-
niques. According to the classification by [72], the RF model had a good discrimination
power (AUC = 0.81) and the other models assessed in this study, with AUC values ranging
between 0.74 (GAM and MARS models) and 0.78 (BRT and SVM models), provided sat-
isfactory discrimination (Table 2). The estimated threshold was about 0.40 for all models,
with the exception of RF (0.52). These values, combined with sensitivity values higher than
specificity, indicated that generally all models performed well in correctly identifying hauls
with the presence of anchovy eggs. However, the machine-learning models outperformed
regression predicting the reproductive habitat of anchovies (Table 2).

Table 2. Model evaluation of six modelling techniques predicting the distribution of anchovy eggs in
the training dataset.

Training Dataset GLM GAM MARS RF BRT SVM

Threshold-dependent measures
Threshold 0.42 0.42 0.40 0.52 0.42 0.41
Sensitivity 0.69 0.76 0.76 0.82 0.79 0.77
Specificity 0.63 0.63 0.64 0.76 0.64 0.66

Threshold-independent measures
AUC 0.69 0.74 0.74 0.81 0.78 0.78

The modelling techniques also showed a satisfactory performance when applied to the
test dataset. RF was the most accurate, with an AUC of 0.76. The estimated threshold was
about 0.40 for all models, except for GAM (threshold = 0.51). All models (excluding GAM)
performed best when they classified positive stations compared to negative (Table 3).

Table 3. Model evaluation of six modelling techniques predicting the distribution of anchovy eggs in
the test dataset.

Test Dataset GLM GAM MARS RF BRT SVM

Threshold-dependent measures
Threshold 0.41 0.51 0.45 0.40 0.43 0.42
Sensitivity 0.77 0.66 0.68 0.79 0.76 0.71
Specificity 0.59 0.72 0.66 0.60 0.64 0.66

Threshold-independent measures
AUC 0.70 0.73 0.72 0.76 0.75 0.73

3.4. Displaying the Anchovy Spawning Habitat

The ensemble model identified the coastal waters as the most favorable for anchovy
spawning, with the differences between years limited to areal extent. The areas associated
with high probability of eggs (red areas in Figure 7) extended more offshore between 1998
and 2002 and between 2004 and 2006. In other years the preferential area was restricted to
shallow waters near the coastline. This was observed in particular in 2011 and 2015, when
only two restricted areas exhibited conditions favorable to spawning: a narrow band in the
south-central sector of Sicilian coast and the area around the southern-most tip of Sicily
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(Cape Passero). In general, the unfavorable areas (blue areas in Figure 7) were associated
with depths greater than 100 m.
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4. Discussion

SDMs are a valuable statistical approach able to provide important information dur-
ing the decision-making processes aimed at sustainable fishing and species conserva-
tion [5,6,72]. Methodological advances have enhanced SDM capabilities, allowing a better
knowledge of species distributions and relationships with environmental conditions. How-
ever, these approaches could be affected by limitations due to the a priori choice of an
optimal model [45]. An ensemble of SDMs provides a method for resolving differences
between individual models and estimating more robustly the relationship between species
and habitats [46,47].

The Strait of Sicily is a particularly interesting area because it is characterized by highly
variable oceanographic conditions among years [73] that strongly affect the spawning and
survival of first stages of fish with severe consequences on their stock biomasses. This is
the case for the European anchovy, a short-lived species with a demographic structure
locally dominated by age classes 1–2 years [74]. This paper represents the first attempt
to evaluate the performance of different statistical modelling approaches applied to the
investigation of anchovy spawning habitat in the Strait of Sicily, using the longest time
series of egg presence/absence data available for the study area. Specifically, spawning
habitat suitability was assessed by averaging predictions resulting from six different SDMs.
The multiple approach included three regression models and three machine-learning
models, based on data collected during 19 ichthyoplankton surveys (years 1998–2016)
in the Strait of Sicily. The methodology offered a promising adaptive tool for selecting
realistic conservation areas for this species as function of current environmental conditions.
Validation of model outputs demonstrated the great efficacy and ecological relevance
of the selected environmental parameters in predicting spawning habitat distribution,
with the exception of GLM. In general, non-linear techniques, with complex ecological
response, provided more realistic results compared with classical linear techniques. In
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addition, machine-learning models, particularly RF, performed better than regression
models. The high performance of machine-learning algorithms is well-documented in SDM
applications [47,75–77], consistently outperforming regression-based methods. This result
could suggest a potential overfitting issue [66,78]. However, this was not the case for this
study, because the models applied on the test dataset showed an equally good performance
in the predictions. The higher performance of RF is attributed to its ability to combine the
most popular class from several individual trees [64,79], which makes it a widely applied
machine-learning algorithm for various field of studies [80,81].

Although the correct-classification rates were quite similar in all tested models, differ-
ences were found in the selection of significant variables and evaluation of their importance,
as indicated also by [45,82]. However, despite the heterogeneity in the relative importance
of the covariates among models, the interpretation of several SDM outcomes collectively
helped to identify the optimal environmental windows for anchovy egg distribution in the
study area. For instance, all approaches showed the major role played by bottom depth
and ADT in affecting egg occurrence, with small differences among them. Specifically,
egg occurrence was primarily related to bottom depth in the 50–100 m range, confirming
a pattern of distribution linked to the coastal zone [9,29,44,83]. Moreover, egg distribu-
tion was influenced by spatial patterns of ADT, which depends mainly on the mesoscale
oceanographic structure occurring in the surface layers. In the Strait of Sicily, the surface
hydrodynamics is dominated by the AIS, which flows south-eastwards along a meandering
path that varies over the years [73]. In terms of ADT, this current is characterized by values
close to zero in its core, and its flow is characterized by negative values in the coastal
(upwelling) area and positive values offshore. In this context, egg occurrence is mainly
associated with the negative ADT values along the southern coast of Sicily, in relation to
the AIS motion [32]. The significance of ADT reinforces the important role played by hy-
drography in affecting the anchovy spawning behavior in the Strait of Sicily, in agreement
with other studies [9,54,84].

Conversely, the relative contribution of the remaining parameters, especially chlorophyll-
a concentration, temperature and surface current, in predicting species occurrence was vari-
able, suggesting a secondary but significant impact in affecting egg distribution during the
peak of spawning. This study identified an optimal temperature window between 20 and
24 ◦C, not surprisingly higher than the range of 18–19 ◦C reported in [29], where temperature
was depth averaged in the uppermost 40 m layer of the water column, and within the range
observed for this species in the Mediterranean Sea [85]. The higher chlorophyll-a concentration
associated with the egg occurrence confirms the findings of previous studies [29,84] and rein-
forces the hypothesis of a reproductive strategy aimed at maximizing the reproductive success
of the species by assuring food availability during the larval development period [86,87]. The
observed significant contribution of the current speed in explaining the egg spatial patterns in
most models suggests the occurrence of advection from spawning areas to retention areas,
as highlighted by other studies using Lagrangian dispersion models [9,54,88,89]. Conversely,
the extent of mixed layer depth showed limited positive impact, highlighting an association
between the presence of eggs and well-stratified waters typically characterizing the summer
period (e.g., outputs of GLM and GAM models).

Despite some differences, it is also worth noting that most of the results of previous
studies on the reproductive habitat of anchovies in the Strait of Sicily, even if obtained with
different single modeling approaches and on shorter biological and environmental time
series [9,29–34] are generally confirmed here. However, the added value of this study is
its accurate comparisons of different modelling approaches, contributing to the develop-
ment of more robust predictive models [46,47,90,91]. In addition, in this study, we took
advantage of the extensive literature on the relationships between the environment and the
reproductive biology of the European anchovy to validate the results of our methodological
approach from an ecological point of view. In particular, the variability in the outcomes of
the individual models and the consistency with previous studies underlined the need for a
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comprehensive use of an ensemble of SDMs to detect, and understand the complexity of
relationships in the marine environment.

In this context, the understanding of the effects related to environmental fluctuations
can create the basis for defining reliable future previsions about the state of the natural
resource, significantly supporting sustainable fishery management actions concerning one
of the most exploited natural resources in the Mediterranean Sea [92]. The definition of the
spawning areas as well as the understanding of the environmental effect on recruitment
represent fundamental knowledge for the management of the fishing effort aimed at
guaranteeing the conservation of the resource in line with the priority objectives of current
international strategies. This work proposes an analytical approach that can be exported
to other contexts and sheds light on the main drivers that regulate the reproduction of
the European anchovy in a crucial area for the fishing of small pelagics, highlighting the
importance of monitoring programs for the conservation of the natural capital.

5. Conclusions

This study represents the first attempt to identify potential spawning habitat of the
European anchovy in the Strait of Sicily with different modelling approaches applied on
a long-term time series of environmental and biological information. The results have
important implications for species management and conservation planning, as they provide
an exhaustive characterization of the anchovy spawning habitat in the study area. Moreover,
it also provides an innovative comprehensive modeling approach aimed at delivering a
more effective predictive technique, first applied in the field of fisheries ecology.
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