Predicting Daily Streamflow in a Cold Climate Using a Novel Data Mining Technique: Radial M5 Model Tree
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region and Datasets
2.2. Artificial Neural Network (ANN)
2.3. Radial Basis Function Neural Network (RBFNN)
2.4. Multivariate Adaptive Regression Spline (MARS)
2.5. M5 Model Tree
2.6. Radial M5 Model Tree
2.7. Comparative Matrix
3. Application and Results
4. Discussion
5. Conclusions
- -
- It was observed that the RM5Tree method is very successful and it performs better than the other four methods in predicting the streamflow in both stations.
- -
- The RM5Tree considerably improved the accuracy of M5Tree; improvements in RMSE, MAE, MAPE, and NSE in testing stage are 26.5, 17.9, 5.9 and 10.9% for the Ostavallselet and 1.6, 0.8, 1, and 1.8% for the Skallbole, respectively.
- -
- The RM5Tree method performed superior to the ANN, RBFNN, MARS, and M5Tree in estimating the streamflow of the downstream (Skallbole) station using data of the upstream station (Ostavallselet); the RMSE, MAE, MAPE, and NSE of the M5Tree model were improved by 30.6, 28.3, 28, and 55.8% in the testing period by applying RM5Tree model, respectively. Although RM5Tree provided better prediction results for streamflow forecasting, this study still has some limitations. The main limitation is the less data inputs usage for modeling streamflow variable. The streamflow variable not only depends on the previous values of streamflow, but also on other climatic variables. Therefore, in future studies, other climatic variables data can be also used to model the streamflow process.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McInerney, D.; Thyer, M.; Kavetski, D.; Laugesen, R.; Woldemeskel, F.; Tuteja, N.; Kuczera, G. Seamless streamflow model provides forecasts at all scales from daily to monthly and matches the performance of non-seamless monthly model. Hydrol. Earth Syst. Sci. Discuss. 2022, 1, 1–22. [Google Scholar] [CrossRef]
- Shen, Y.; Wang, S.; Zhang, B.; Zhu, J. Development of a stochastic hydrological modeling system for improving ensemble streamflow prediction. J. Hydrol. 2022, 608, 127683. [Google Scholar] [CrossRef]
- Chernos, M.; MacDonald, R.; Straker, J.; Green, K.; Craig, J. Simulating the cumulative effects of potential open-pit mining and climate change on streamflow and water quality in a mountainous watershed. Sci. Total Environ. 2021, 806, 150394. [Google Scholar] [CrossRef] [PubMed]
- Jia, B.; Zhou, J.; Tang, Z.; Xu, Z.; Chen, X.; Fang, W. Effective stochastic streamflow simulation method based on Gaussian mixture model. J. Hydrol. 2021, 605, 127366. [Google Scholar] [CrossRef]
- Liu, Y.; Ji, C.; Wang, Y.; Zhang, Y.; Hou, X.; Xie, Y. Quantifying streamflow predictive uncertainty for the optimization of short-term cascade hydropower stations operations. J. Hydrol. 2021, 605, 127376. [Google Scholar] [CrossRef]
- Hunt, K.M.; Matthews, G.R.; Pappenberger, F.; Prudhomme, C. Using a long short-term memory (LSTM) neural network to boost river streamflow forecasts over the western United States. Hydrol. Earth Syst. Sci. Discuss. 2022, volume 1, 1–30. [Google Scholar] [CrossRef]
- Towler, E.; Woodson, D.; Baker, S.; Ge, M.; Prairie, J.; Rajagopalan, B.; Shanahan, S.; Smith, R. Incorporating Mid-Term Temperature Predictions into Streamflow Forecasts and Operational Reservoir Projections in the Colorado River Basin. J. Water Resour. Plan. Manag. 2022, 148, 04022007. [Google Scholar] [CrossRef]
- Hapuarachchi, H.; Bari, M.; Kabir, A.; Hasan, M.; Woldemeskel, F.; Gamage, N.; Feikema, P. Development of a national 7-day ensemble streamflow forecasting service for Australia. Hydrol. Earth Syst. Sci. Discuss. 2022, volume 2, 1–35. [Google Scholar] [CrossRef]
- Zhou, Y.; Cui, Z.; Lin, K.; Sheng, S.; Chen, H.; Guo, S.; Xu, C.-Y. Short-term flood probability density forecasting using a conceptual hydrological model with machine learning techniques. J. Hydrol. 2021, 604, 127255. [Google Scholar] [CrossRef]
- Wegayehu, E.B.; Muluneh, F.B. Short-Term Daily Univariate Streamflow Forecasting Using Deep Learning Models. Adv. Meteorol. 2022, 2022, 1–21. [Google Scholar] [CrossRef]
- Cho, K.; Kim, Y. Improving streamflow prediction in the WRF-Hydro model with LSTM networks. J. Hydrol. 2021, 605, 127297. [Google Scholar] [CrossRef]
- Essam, Y.; Huang, Y.F.; Ng, J.L.; Birima, A.H.; Ahmed, A.N.; El-Shafie, A. Predicting streamflow in Peninsular Malaysia using support vector machine and deep learning algorithms. Sci. Rep. 2022, 12, 1–26. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Hou, G.; Huang, F.; Qin, H.; Wang, B.; Yi, L. Directed graph deep neural network for multi-step daily streamflow forecasting. J. Hydrol. 2022, 607, 127515. [Google Scholar] [CrossRef]
- Afan, H.A.; Yafouz, A.; Birima, A.H.; Ahmed, A.N.; Kisi, O.; Chaplot, B.; El-Shafie, A. Linear and stratified sampling-based deep learning models for improving the river streamflow forecasting to mitigate flooding disaster. Nat. Hazards 2022, volume 1, 1–19. [Google Scholar] [CrossRef]
- Mehr, A.D.; Ghadimi, S.; Marttila, H.; Haghighi, A.T. A new evolutionary time series model for streamflow forecasting in boreal lake-river systems. Arch. Meteorol. Geophys. Bioclimatol. Ser. B 2022, volume 1, 1–14. [Google Scholar] [CrossRef]
- Hassan, S.A.; Khan, M.S. Climatic variability impact on river flow modeling of Chitral and Gilgit stations, Pakistan. Model. Earth Syst. Environ. 2022, volume 1, 1–11. [Google Scholar] [CrossRef]
- Samantaray, S.; Das, S.S.; Sahoo, A.; Satapathy, D.P. Monthly runoff prediction at Baitarani river basin by support vector machine based on Salp swarm algorithm. Ain Shams Eng. J. 2022, 13, 101732. [Google Scholar] [CrossRef]
- Zhou, P.; Li, C.; Li, Z.; Cai, Y. Assessing uncertainty propagation in hybrid models for daily streamflow simulation based on arbitrary polynomial chaos expansion. Adv. Water Resour. 2021, 160, 104110. [Google Scholar] [CrossRef]
- Nguyen, D.H.; Le, X.H.; Anh, D.T.; Kim, S.-H.; Bae, D.-H. Hourly streamflow forecasting using a Bayesian additive regression tree model hybridized with a genetic algorithm. J. Hydrol. 2022, 606, 127445. [Google Scholar] [CrossRef]
- Khosravi, K.; Golkarian, A.; Tiefenbacher, J.P. Using Optimized Deep Learning to Predict Daily Streamflow: A Comparison to Common Machine Learning Algorithms. Water Resour. Manag. 2022, 36, 699–716. [Google Scholar] [CrossRef]
- Feng, Z.-K.; Shi, P.-F.; Yang, T.; Niu, W.-J.; Zhou, J.-Z.; Cheng, C.-T. Parallel cooperation search algorithm and artificial intelligence method for streamflow time series forecasting. J. Hydrol. 2022, 606, 127434. [Google Scholar] [CrossRef]
- Latifoğlu, L. The Performance Analysis of Robust Local Mean Mode Decomposition Method for Forecasting of Hydrological Time Series. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, volume 2, 1–20. [Google Scholar] [CrossRef]
- Ghaderpour, E.; Vujadinovic, T.; Hassan, Q.K. Application of the Least-Squares Wavelet software in hydrology: Athabasca River Basin. J. Hydrol. Reg. Stud. 2021, 36, 100847. [Google Scholar] [CrossRef]
- Zamrane, Z.; Mahé, G.; Laftouhi, N.-E. Wavelet Analysis of Rainfall and Runoff Multidecadal Time Series on Large River Basins in Western North Africa. Water 2021, 13, 3243. [Google Scholar] [CrossRef]
- Lian, Y.; Luo, J.; Wang, J.; Zuo, G.; Wei, N. Climate-driven Model Based on Long Short-Term Memory and Bayesian Optimization for Multi-day-ahead Daily Streamflow Forecasting. Water Resour. Manag. 2021, 36, 21–37. [Google Scholar] [CrossRef]
- Rahmani, F.; Fattahi, M.H. Association between forecasting models’ precision and nonlinear patterns of daily river flow time series. Model. Earth Syst. Environ. 2022, volume 1, 1–10. [Google Scholar] [CrossRef]
- Kisi, O.; Shiri, J.; Karimi, S.; Adnan, R.M. Three Different Adaptive Neuro Fuzzy Computing Techniques for Forecasting Long-Period Daily Streamflows. In Studies in Big Data; Springer Science and Business Media LLC: Singapore, 2018; pp. 303–321. [Google Scholar]
- Ahmed, A.A.; Deo, R.C.; Ghahramani, A.; Feng, Q.; Raj, N.; Yin, Z.; Yang, L. New Double Decomposition Deep Learning Methods for Stream-Flow Water Level Forecasting Using Remote Sensing Modis Satellite Variables, Climate Indices and Observations. 2022. Available online: https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4002418 (accessed on 15 January 2022). [CrossRef]
- Kilinc, H.C.; Haznedar, B. A Hybrid Model for Streamflow Forecasting in the Basin of Euphrates. Water 2022, 14, 80. [Google Scholar] [CrossRef]
- Kilinc, H.C. Daily Streamflow Forecasting Based on the Hybrid Particle Swarm Optimization and Long Short-Term Memory Model in the Orontes Basin. Water 2022, 14, 490. [Google Scholar] [CrossRef]
- Yuan, X.; Chen, C.; Lei, X.; Yuan, Y.; Muhammad Adnan, R. Monthly runoff forecasting based on LSTM–ALO model. Stoch. Environ. Res. Risk Assess. 2018, 32, 2199–2212. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Kisi, O.; Yaseen, Z.M.; Shahid, S.; Zounemat-Kermani, M. Improving streamflow prediction using a new hybrid ELM model combined with hybrid particle swarm optimization and grey wolf optimization. Knowledge-Based Syst. 2021, 230, 107379. [Google Scholar] [CrossRef]
- Rezaie-Balf, M.; Naganna, S.R.; Kisi, O.; El-Shafie, A. Enhancing streamflow forecasting using the augmenting ensemble procedure coupled machine learning models: Case study of Aswan High Dam. Hydrol. Sci. J. 2019, 64, 1629–1646. [Google Scholar] [CrossRef]
- Feng, B.-F.; Xu, Y.-S.; Zhang, T.; Zhang, X. Hydrological time series prediction by extreme learning machine and sparrow search algorithm. Water Supply 2021, 22, 3143–3157. [Google Scholar] [CrossRef]
- Wang, M.; Rezaie-Balf, M.; Naganna, S.R.; Yaseen, Z.M. Sourcing CHIRPS precipitation data for streamflow forecasting using intrinsic time-scale decomposition based machine learning models. Hydrol. Sci. J. 2021, 66, 1437–1456. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; Heddam, S.; Zounemat-Kermani, M.; Kisi, O.; Li, B. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J. Hydrol. 2020, 586, 124371. [Google Scholar] [CrossRef]
- Kilinc, H.C.; Yurtsever, A. Short-Term Streamflow Forecasting Using Hybrid Deep Learning Model Based on Grey Wolf Algorithm for Hydrological Time Series. Sustain. 2022, 14, 3352. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; Trajkovic, S.; Zounemat-Kermani, M.; Li, B.; Kisi, O. Daily streamflow prediction using optimally pruned extreme learning machine. J. Hydrol. 2019, 577, 123981. [Google Scholar] [CrossRef]
- Adnan, R.M.; Kisi, O.; Mostafa, R.R.; Ahmed, A.N.; El-Shafie, A. The potential of a novel support vector machine trained with modified mayfly optimization algorithm for streamflow prediction. Hydrol. Sci. J. 2022, 67, 161–174. [Google Scholar] [CrossRef]
- Adnan, R.M.; Mostafa, R.R.; Elbeltagi, A.; Yaseen, Z.M.; Shahid, S.; Kisi, O. Development of new machine learning model for streamflow prediction: Case studies in Pakistan. Stoch. Hydrol. Hydraul. 2021, 36, 999–1033. [Google Scholar] [CrossRef]
- Kişi, Özgür Streamflow Forecasting Using Different Artificial Neural Network Algorithms. J. Hydrol. Eng. 2007, 12, 532–539. [CrossRef]
- Adnan, R.M.; Yuan, X.; Kisi, O.; Yuan, Y. Streamflow forecasting using artificial neural network and support vector machine models. Am. Acad. Sci. Res. J. Eng. Technol. Sci. 2017, 29, 286–294. [Google Scholar]
- Piotrowski, A.P.; Napiorkowski, J. Optimizing neural networks for river flow forecasting—Evolutionary Computation methods versus the Levenberg–Marquardt approach. J. Hydrol. 2011, 407, 12–27. [Google Scholar] [CrossRef]
- Yaseen, Z.M.; El-Shafie, A.; Afan, H.A.; Hameed, M.; Mohtar, W.H.M.W.; Hussain, A. RBFNN versus FFNN for daily river flow forecasting at Johor River, Malaysia. Neural Comput. Appl. 2015, 27, 1533–1542. [Google Scholar] [CrossRef]
- Friedman, J.H. Multivariate adaptive regression splines. Ann. Stat. 1991, volume 2, 1–67. [Google Scholar] [CrossRef]
- Al-Sudani, Z.A.; Salih, S.; Sharafati, A.; Yaseen, Z.M. Development of multivariate adaptive regression spline integrated with differential evolution model for streamflow simulation. J. Hydrol. 2019, 573, 1–12. [Google Scholar] [CrossRef]
- Adnan, R.M.; Liang, Z.; Parmar, K.S.; Soni, K.; Kisi, O. Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Comput. Appl. 2021, 33, 2853–2871. [Google Scholar] [CrossRef]
- Adnan, R.M.; Yuan, X.; Kisi, O.; Adnan, M.; Mehmood, A. Stream Flow Forecasting of Poorly Gauged Mountainous Watershed by Least Square Support Vector Machine, Fuzzy Genetic Algorithm and M5 Model Tree Using Climatic Data from Nearby Station. Water Resour. Manag. 2018, 32, 4469–4486. [Google Scholar] [CrossRef]
Ostavallselet Station (Upstream) | Skallbole Station (Downstream) | |||||
---|---|---|---|---|---|---|
Whole data | Training | Testing | Whole data | Training | Testing | |
Min (m3/s) | 16 | 16 | 26.4 | 7.20 | 7.20 | 14.4 |
Max (m3/s) | 1050 | 1050 | 593 | 430 | 430 | 350 |
Mean (m3/s) | 126.4 | 125.2 | 127.2 | 68.5 | 70.3 | 67.7 |
Skewness | 65.7 | 77.9 | 56.4 | 36.4 | 38.1 | 34.2 |
Std. dev. | 2.83 | 3.11 | 1.69 | 2.38 | 2.71 | 1.34 |
Input Combinations | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | |
Qt−1 | 12.60 | 7.55 | 0.944 | 0.709 | 13.31 | 8.67 | 0.921 | 0.674 |
Qt−1,Qt−2 | 12.19 | 7.42 | 0.947 | 0.714 | 13.45 | 8.70 | 0.919 | 0.673 |
Qt−1,Qt−2, Qt−3 | 11.87 | 7.11 | 0.940 | 0.725 | 13.27 | 8.43 | 0.913 | 0.683 |
Qt−1,Qt−2, Qt−3, Qt−4 | 12.16 | 7.33 | 0.948 | 0.717 | 13.29 | 8.48 | 0.921 | 0.681 |
Methods | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | |
MARS | 11.87 | 7.11 | 0.940 | 0.725 | 13.27 | 8.43 | 0.913 | 0.683 |
RBFNN | 11.82 | 7.10 | 0.951 | 0.726 | 13.26 | 8.41 | 0.921 | 0.685 |
ANN | 11.68 | 7.05 | 0.952 | 0.728 | 13.32 | 8.44 | 0.921 | 0.682 |
M5Tree | 11.53 | 7.13 | 0.953 | 0.725 | 17.07 | 9.98 | 0.929 | 0.624 |
RM5Tree | 9.36 | 5.25 | 0.939 | 0.798 | 12.54 | 8.19 | 0.874 | 0.692 |
Input Combinations | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | |
Qt−1 | 12.96 | 7.38 | 0.063 | 0.855 | 15.32 | 10.96 | 0.098 | 0.735 |
Qt−1,Qt−2 | 11.40 | 6.91 | 0.062 | 0.864 | 15.25 | 10.89 | 0.097 | 0.738 |
Qt−1,Qt−2, Qt−3 | 11.63 | 7.01 | 0.063 | 0.862 | 15.58 | 11.19 | 0.101 | 0.730 |
Qt−1,Qt−2, Qt−3, Qt−4 | 11.37 | 6.92 | 0.062 | 0.864 | 15.42 | 11.04 | 0.099 | 0.734 |
Methods | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | |
MARS | 11.40 | 6.91 | 0.062 | 0.864 | 15.25 | 10.89 | 0.097 | 0.738 |
RBFNN | 12.95 | 7.41 | 0.064 | 0.854 | 15.30 | 10.93 | 0.098 | 0.728 |
ANN | 12.89 | 7.41 | 0.064 | 0.854 | 15.31 | 10.90 | 0.098 | 0.731 |
M5Tree | 12.95 | 7.38 | 0.063 | 0.855 | 15.31 | 10.95 | 0.098 | 0.732 |
RM5Tree | 11.25 | 6.87 | 0.060 | 0.869 | 15.07 | 10.86 | 0.097 | 0.745 |
Input Combinations | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | |
Qt−1 | 34.88 | 23.60 | 0.210 | 0.526 | 32.39 | 23.74 | 0.221 | 0.468 |
Qt−1,Qt−2 | 33.71 | 22.57 | 0.200 | 0.546 | 30.74 | 22.42 | 0.203 | 0.498 |
Qt−1,Qt−2, Qt−3 | 32.09 | 21.75 | 0.192 | 0.563 | 30.55 | 22.34 | 0.203 | 0.500 |
Qt−1,Qt−2, Qt−3, Qt−4 | 33.25 | 22.09 | 0.193 | 0.556 | 30.15 | 22.07 | 0.202 | 0.506 |
Methods | Training | Testing | ||||||
---|---|---|---|---|---|---|---|---|
RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | RMSE (m3/s) | MAE (m3/s) | MAPE | NSE | |
MARS | 33.25 | 22.09 | 0.193 | 0.556 | 30.15 | 22.07 | 0.202 | 0.506 |
RBFNN | 32.93 | 21.91 | 0.192 | 0.560 | 30.18 | 22.03 | 0.199 | 0.507 |
ANN | 32.30 | 21.69 | 0.191 | 0.564 | 31.41 | 22.38 | 0.202 | 0.499 |
M5Tree | 33.23 | 22.03 | 0.191 | 0.557 | 41.84 | 29.61 | 0.268 | 0.337 |
RM5Tree | 22.12 | 13.17 | 0.115 | 0.735 | 29.03 | 21.23 | 0.193 | 0.525 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kisi, O.; Heddam, S.; Keshtegar, B.; Piri, J.; Adnan, R.M. Predicting Daily Streamflow in a Cold Climate Using a Novel Data Mining Technique: Radial M5 Model Tree. Water 2022, 14, 1449. https://doi.org/10.3390/w14091449
Kisi O, Heddam S, Keshtegar B, Piri J, Adnan RM. Predicting Daily Streamflow in a Cold Climate Using a Novel Data Mining Technique: Radial M5 Model Tree. Water. 2022; 14(9):1449. https://doi.org/10.3390/w14091449
Chicago/Turabian StyleKisi, Ozgur, Salim Heddam, Behrooz Keshtegar, Jamshid Piri, and Rana Muhammad Adnan. 2022. "Predicting Daily Streamflow in a Cold Climate Using a Novel Data Mining Technique: Radial M5 Model Tree" Water 14, no. 9: 1449. https://doi.org/10.3390/w14091449
APA StyleKisi, O., Heddam, S., Keshtegar, B., Piri, J., & Adnan, R. M. (2022). Predicting Daily Streamflow in a Cold Climate Using a Novel Data Mining Technique: Radial M5 Model Tree. Water, 14(9), 1449. https://doi.org/10.3390/w14091449