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Abstract: In recent decades, the Saïss plain, in the northwest of Morocco, has experienced a noticeable
increase in water demand due to a very significant population growth and economic development,
as well as the climate change effects. With the aim of reaching optimal and dynamic management
of these water resources, it is essential to have comprehensive and reliable information on the
state of the aquifer systems in the region. To achieve this, we assessed a geostatistical analysis
of groundwater level data, and created a multivariate regression model. Indeed, in this study, a
spatiotemporal analysis of groundwater depth based on piezometric measurements of 45 wells
was carried out for the period from 2005 to 2020. It compares and evaluates eight geostatistical
interpolation methods and solves the problem of data gaps of the piezometric measurement by
completing the chronological series of the groundwater level between 2005 and 2020 using the
ARIMA model. The results demonstrate that the variation in the groundwater level between 2005 and
2020 indicates that the water table level is decreased in certain areas, but it has improved or remained
constant in other areas. These results emphasize an urgent need for a dynamic management for the
conservation of groundwater resources in certain areas of the region under this study.

Keywords: groundwater resources; time series; geostatistics; modeling; spatiotemporal analysis;
Saïss aquifer

1. Introduction

Groundwater is the main source of water supply for domestic, agricultural, and indus-
trial needs in the Saïss plain in northern Morocco. In recent decades, the water demand has
increased due to a very significant population growth and economic development, as well
as climate change effects, which have placed remarkable pressure on the water resources.
Indeed, climate change, having a significant impact on the availability of water resources,
may worsen the country’s situation in terms of the sustainable supply of surface and
groundwater. Coupled with growing demand, some regions of Morocco are experiencing
water scarcity. Since the early 1980s, the study area has experienced continuous drought; as
a result, groundwater exploitation has become more intensive, leading to the decline of
groundwater levels and the formation of aquifer depressions [1–3].

With the aim of optimal and dynamic management of these water resources, it is
essential to have complete and reliable information on the state of the aquifer system of the
Saïss plain. Measurements of groundwater levels from observation wells are a source of
precise information for analyzing the state of water resources; however, these series are
not always continuous in time and space and generally contain gaps for various reasons.
Therefore, accurate modeling of groundwater levels in unmonitored locations is necessary
for better planning and management.
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Understanding, analyzing, and studying the behavior of aquifer systems is essential
for making any management decision and for optimum exploitation and rational use of
water [4]. The basic tool for this analysis is the regionalized map of piezometric level. It
usually serves as a reference to the hydrogeological and environmental studies. It allows,
among others, the understanding of the morphology, geometry, and hydrodynamics of the
aquifer [5].

Geostatistics is a branch of statistics in which the continuity and spatial behavior
of phenomena are incorporated into the interpolation process. It is applied in various
fields of Earth sciences, mainly regarding groundwater resources. In addition, the use of
geostatistics for the processing of groundwater data extends to several fields of study. It
has been implemented by several researchers, particularly for the study of groundwater
level variation [6–12], the study of chemical contamination of groundwater [13,14], and the
assessment of groundwater quality [15–19].

In Morocco, geostatistical approaches have been used by many researchers in different
fields. For instance, the authors of [20] used geostatistics to interpolate the transmissivity in
the Cretaceous basin of Errachidia. It was also used by Lahlou et al. [21] to study spatiotem-
poral variation of groundwater salinization in the Tadla region. Finally, Rochdane et al. [22]
and Nouayti et al. [23] used statistical and geostatistical methods to study the spatial varia-
tion of groundwater quality. Unfortunately, geostatistical approaches have not been used
for groundwater level monitoring in the Saïss plain.

This work initially aims to test and compare several spatial interpolation methods,
namely, deterministic methods (the inverse distance weighting method (IDW), the method
of radial networks of the basis function (RBF), and the polynomial local interpolation (PLI)),
single-variable probabilistic methods (ordinary kriging (OK), universal kriging (UK), and
(EBK)) and multivariate probabilistic methods (ordinary cokriging (OCK) and universal
cokriging (UCK)) for the spatiotemporal interpolation of groundwater level in the Saïss
plain. All comparisons between the models are assessed and carried out based on statistical
accuracy indicators provided by cross-validation and statistics. In the second step, we
proceed by solving the problem of missing data from the measurement campaigns of the
ABHS piezometric network by reconstructing the time series of the groundwater level
between 2005 and 2020 using the ARIMA model. Finally, we investigate and analyze
the spatiotemporal evolution of the groundwater resources of the Saïss plain. The scope
of this work directly affects the economic decision-making, policies, and strategies for
sustainable management of water. Indeed, the choice of the optimal method to interpolate
the groundwater level in this region is a starting point for future studies to be conducted.

2. Materials and Methods
2.1. Study Area and Data Collection

The Saïss plain is located in the NW of Morocco with an area of about 2200 km2, 95 km
length and 30 km width. It occupies a significant part of the Sebou watershed with the two
largest cities (Fez and Meknes) and several centers (Figure 1). The Fez–Meknes basin is part
of the south Rifin. The study area delimitation was based on the aquifer system extension
and not on the watershed limit.
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in December and January. During the summer, low precipitation, high temperatures, and 
PET determine a deficit climate balance. 

Figure 1. Geographic location map of the study area.

It is considered a vast asymmetrical syncline in the E–W direction which gradually
sinks from south to north and straightens abruptly in contact with pre-Rifin ridges. It is
characterized by a low topography decreasing from the south to the north and varying
between 250 m and 600 m.

The region is drained by many rivers, including Oued Fez and Oued Mekkès, and
their tributaries are the most important. The groundwater system consists of two aquifers
(unconfined and confined aquifer). The unconfined aquifer is located in the Plio-Quaternary
formation, while the confined aquifer is included in the Liassic limestone and dolomite
surmounted by a very thick layer of Miocene marls which can reach 1000 m in thickness.
The two aquifers communicate through very deep faults such as the Aïn Taoujdate flex-
ure [24,25]. This study concerns the unconfined aquifer, and all the borehole piezometers
are observing only this unconfined aquifer. The region also offers considerable opportuni-
ties in terms of thermal mineral water resources, with the springs of Sidi Harazem, Moulay
Yacoub, and Ain Allah [26]. The climate of the region is Mediterranean, dry and hot in
summer and wet and cool in winter, with significant seasonal temperature differences
and an average rainfall of 500 mm in Fez and 600 mm in Meknes. The time series of
precipitation, temperature, and potential and actual evapotranspiration reconstructed at
the annual and monthly scales are presented in Figures 2 and 3 [27].

The monthly average temperatures are high in summer and generally mild in win-
ter. The average values of potential evapotranspiration (PET) are high. According to
Thornthwaite’s formula, the average PET fluctuates between 800 and 900 mm/year. The
summer season, almost devoid of rain, records the maximum of the PET, with a maximum
in July and August. During the winter, the PET values attenuate considerably, especially in
December and January. During the summer, low precipitation, high temperatures, and PET
determine a deficit climate balance.
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The population of the Fez–Meknes basin is around two million inhabitants and is
growing continuously by 3 to 5% per year [28]. Agriculture and crafts are the main economic
activities in the Saïss plain.

The piezometric data analyzed in this work were collected from the ABHS. The time
series of the groundwater level relate to 39 wells in 2005 and 45 wells in 2020. Other
thematic data concerning the aquifer (topography, climatology, geology, etc.) were inte-
grated into a geospatial database managed by a Geographic Information System (GIS) for
further processing.

2.2. Methodology
2.2.1. Spatial Variability of the Groundwater Resources
Spatial Interpolation

Our research consists of carrying out a study and a comparative analysis of the
different spatial interpolation methods, namely, deterministic methods (IDW, RBF, and LPI),
monovariable probabilistic methods (OK, UK, and EBK), and multivariable probabilistic
methods (OCK and UCK), in order to choose the spatial interpolation method which seems
the most suitable and appropriate for characterizing and mapping the spatial variability
of the groundwater level. Then, we impute missing data from the time series of the
piezometric network to study and analyze the temporal evolution of the groundwater
resources of the Saïss aquifer (Figure 4).

Before starting the spatial interpolation, an exploratory analysis of the spatial data
and then a data processing and quality control step were carried out. The latter makes
it possible to examine the distribution and the spatial correlation of the variable, verify
the normality of the measured datasets, and identify the overall trends of these datasets.
The different interpolation methods chosen were then compared. All deterministic and
probabilistic spatial interpolation methods can be represented as a weighted sum of the
measured data [6,12].

The difference between deterministic and probabilistic (geostatistical) interpolation
methods is that deterministic techniques (IDW, RBF, and LPI) do not take into account the
spatial correlation between data points and do not provide a measure of the accuracy of
estimates, while geostatistical interpolation techniques (kriging) take into consideration the
spatial autocorrelation of the measured points and provide indicators of the accuracy of
the estimates [6,29]. These probabilistic methods can be applied to variables that indicate a
certain homogeneity of characteristics in space (stationary variables) and to nonstationary
variables with well-marked tendencies in certain directions [30].

Spatial autocorrelation is examined using a semivariogram, which can be defined as
half the variance of the difference between pairs of samples with distance h and whose
equation is as follows [31]:

γ(h) =
1

2N(h) ∑N(h)
i=1 [Z(xi)− Z(xi + h)]2.

When the experimental semivariogram is defined, a model (theoretical variogram)
must be fitted to the points. The modeling of semivariograms is an important step that
requires choosing the mathematical function and its parameters which best fit the experi-
mental variogram.

In order to choose the optimal model and compare the interpolation methods, cross-
validation was used. This consists of predicting the value of each point in the dataset by
removing it and relying on the remaining data. Thus, the difference between the measured
value and the estimated value can be calculated.
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Criteria for Evaluating the Performance of Interpolation Methods

Three statistical performance evaluation indicators were used to verify the prediction
accuracy of the developed models. These are the coefficient of determination (R2), the
root-mean-square error (RMSE), and the mean error (ME). These measurements are derived
from the formulas given below:

R2 =
[∑n

i=1(Pi − Pave)(Qi − Qave)]
2

∑n
i=1(Pi − Pave)

2 ∑n
i=1(Qi − Qave)

2
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RMSE =

√√√√ 1
N

N

∑
i=1

[
Ẑ(xi)− Z(xi)

]2
ME =

1
N

N

∑
i=1

[
Ẑ(xi)− Z(xi)

]
where:
Pave: Average estimated values;
Qave: Average measured values;
Ẑ(xi): Value to be predicted for a given location;

Z(xi): Value observed at the location;
n: Number of values used for estimation.

2.2.2. Temporal Variability of the Groundwater Resources

The aim is to explore the groundwater resources of the aquifer through historical
data produced by the ABHS [32]. Predicting these groundwater resources represents a
real challenge due to the complexity of hydrological mechanisms [33]. Many numerical
models have been developed for this task. Some models are based on physical groundwater
modeling. Physical models require adjustment of parameters for each situation [34]. They
offer an accurate prediction solution but are difficult to generalize on a large scale. For
more systematic prediction needs, the use of time series of groundwater level has been
used for years by several authors as an essential tool in water resources planning [35–38].

Reconstruction of Missing Time Series Data

The collected data in the field may be incomplete due to failures during the acquisition
of measurements. This compromises the processing of information. Methods, called
imputation, are then applied to consolidate the time series with missing data.

Missing data is a big problem in data science. Knowing the types of missing data can
help in choosing the appropriate model to use for the reconstructed ones. There are three
types of missing data [39,40]:

Missing data that do not depend on any observable variable and any unobservable
parameter are then completely randomly missing data. The gaps in data are then considered
to be due to hazards. In this case, the analyses carried out are unbiased.

When missing data are related to the value of an external variable but not to the
values of the variable with missing data, we have randomly missing data. This is the most
classic case.

If the data are missing for some particular reason, then the data are nonrandom missing.
Most of the methods for imputing missing data are univariate, i.e., the imputation of

a variable is performed without using the values of the other variables. These univariate
methods are well suited to our case. One of the most popular time series forecasting models
is the ARIMA model [41–43].

For this study, in most cases, the missing data are alternated by observations in the
time series, which allowed their imputation by the model with good precision. According
to Osman et al. [37], the percentage of missing data and the mechanism of missing data
are the main discriminating criteria for choosing the method to use. ARIMA models are
suitable for dealing with multivariate time series. These same criteria for choosing methods
were identified in the building sector by Es-Sabar et al. [44], and by Semiromi and Koch [38]
in the groundwater sector for processing time series containing up to 40% missing values
with acceptable precision.

The mathematical writing of the ARIMA models varies from one author to another.
Most of the time, the differences concern the sign of the coefficients. XLSTAT [45] is the
most commonly found writing, and is used by most software [46].
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If we define by {Xt} a series with mean µ, then, if the series is supposed to follow an
ARIMA(p,d,q) (P,D,Q)s model, we can write:

Yt = (1 − B)d(1 − Bs)DXt − µ.

Ø(B)φ(Bs)Yt = θ(B)Θ(Bs)Zt, Zt ∼
(

0, σ2
)

with
φ(z) = 1 − ∑p

i=1 Øizi, φ(z) = 1 − ∑P
i=1 φizi.

θ(z) = 1 + ∑q
i=1 θizi, Θ(z) = 1 + ∑Q

i=1 Θizi.

where:
p is the order of the autoregressive part of the model;
q is the order of the moving average part of the model;
d is the differencing order of the model;
D is the differencing order of the seasonal part of the model;
s is the period of the model (for example, 12, if the data are monthly data, and if one noticed
a yearly periodicity in the data);
P is the order of the autoregressive seasonal part of the model;
Q is the order of the moving average seasonal part of the model;
φ, Ø, θ, Θ are the polynomial coefficients.

The ARIMA model (autoregressive integrated moving average) is a regular type of
time series collected at time intervals. Time series forecasting is the basis of many hydro-
logical analyses and decisions in water resource management. Statistical analysis always
pursues two objectives: first, to understand which parameters affected the observation of
the time series; and second, the projection of future scenarios based on historical data. An
ARIMA (p,q,d) time series supposes static conditions, where d is the number of differences,
p is the temporal autoregressive term, and q is the number of moving average [46,47].
The ARIMA model generates data from a time series. In this approach, data generation
is based on past and present variables. The main problem of this modeling approach is
the determination of the factors p, q, and d. In addition, in simulations using the ARIMA
model, all input data must be stationary. In this study, to ensure that all input data were
stationary, a process by Yang et al. [48] called differentiation was used.

When applied recursively to each successive observation in the series, each new
predicted value is calculated as the weighted average of the current observation and the
previously predicted observation; the previously predicted observation was calculated
from the observed (previous) value and the predicted value before that (previous) value,
and so on.

The objective of the modeling is to determine how many autoregressive parameters (p)
and moving averages (q) are needed to obtain an effective model. In practice, the number
of parameters, p or q, very rarely exceeds two.

These steps were performed individually for each well. Then, this methodology was
validated manually using the observed groundwater level measurements.

3. Results and Discussion
3.1. Data Processing and Quality Control

This essential step aims to identify and verify abnormal samples that risk distorting
the calculation of spatial continuity, and apply the interpolation that can be the most
representative of the phenomenon studied.

Table 1 gathers the summary statistics of the measurements of the groundwater
level of the Saïss aquifer for February 2005 and February 2020. The analysis of the shape
parameters, namely, the kurtosis and the skewness, provides information on the distribution
of the studied variable. The kurtosis (K = 1.7) being less than 3 highlights a less pointed
distribution than the normal law. The skewness (S = 0.22) being greater than 0 indicates an
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asymmetry in the data distribution. The median (M = 528) and the mean (m = 517) have
close values. This proves that the data are substantially close to a normal distribution.

Table 1. Summary statistics of measurements of the groundwater level of the Saïss aquifer for 2005
and 2020.

Date Min Max Average Median Standard
Deviation Skewness Kurtosis 1st

Quartile
3rd

Quartile

2005 373 762 528 517 122 0.22 1.7 406 621
2020 380 787 536 528 119 0.23 1.8 419 627

The map of measurement points (Figure 5) served as the basis for this exploratory
analysis. It provides information on the continuity and spatial correlation of the variable,
and, in addition, makes it possible to identify the existence of trends. In this sense, Figure 6
demonstrates that the studied variable (groundwater level) has a certain spatial continuity
(autocorrelation). Indeed, the low values are in the northeast of the study area and the high
values in the southwest of it. This observation highlights the existence of a decreasing SW
to NE trend.
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represented on the x axis.

This remark is confirmed through the trend analysis tool (Figure 6a). Indeed, it uses a
three-dimensional reference to represent the measured values, where these are projected
onto the XZ and YZ planes. At this stage, the line covering the optimal area from the
projected points demonstrates the existence of specific trends [49]. When this line is flat,
there is no trend. In our case, Figure 6a, representing the February 2020 groundwater
level trend tool, reveals the presence of a drift that can be approximated with a polynomial
function. This trend is marked in the N45 direction, which corresponds to the main direction
of groundwater flow in this study area.

Moreover, the analysis of the experimental variogram, represented in the form of a
variographic surface (Figure 6b), makes it possible to qualify the model as isotropic or
anisotropic [48]. The surface represents an isotropic pattern when the variability is the
same in all directions. In the present case, Figure 6b presents an anisotropic behavior with
large variability in the 45◦ direction. This is unlike the perpendicular directions, where the
variability is constant.

In addition, the variographic cloud tool (Figure 6c) shows the calculated values of
the variance γ(h) for all pairs of the samples plotted on the y axis against the distance h
separating the two locations, which is represented on the x axis. This tool is used to examine
the spatial autocorrelation of the observed phenomenon and to detect anomalous values.
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Indeed, neighboring points (close to zero on the distance axis) had to be more similar (close
to zero on the variance axis). Therefore, close samples with large variances may reveal that
the data are inaccurate. The analysis of Figure 6c makes it possible to deduce the spatial
correlation and the nonexistence of abnormal values in the sample.

Finally, the analysis of the quality of the data showed the following:

- The existence of a spatial autocorrelation;
- A distribution of values approaching the normal distribution;
- The presence of a drift;
- Anisotropic behavior;
- The absence of abnormal values.

3.2. Identification of the Optimal Spatial Interpolation Method

After data analysis and processing, the next step is to identify the optimal interpolation
method to generate the most accurate regionalized map. Indeed, the literature offers several
interpolation methods adapted to various types of data. These methods make it possible to
respond in a specific way to the characteristics of these data.

In this context, the purpose of this section is to demonstrate the absence of a universal
rule for choosing the optimal method through data analysis and also to show the importance
of comparing interpolation methods. In addition, several authors have directly used
universal kriging given the nonstationarity of the variable studied, such as [34,50], contrary
to Lahlou et al. [21], who considered the variable studied to be locally stationary. In
this case, ordinary kriging was used instead of universal kriging. It is in this sense that
this comparative study between different mathematical models was carried out. The
methodology followed is illustrated in Figure 4. Several unit tests are necessary in order
to identify the optimal method to be used in the interpolation of the groundwater level.
Indeed, several parameters and mathematical functions were adjusted and tested for each
interpolation method. The methods studied are as follows: deterministic methods (inverse
distance weighting (IDW), radial basis functions (RBF), and local polynomial interpolation
(LPI)), monovariable probabilistic methods (ordinary kriging (OK), universal kriging (UK),
and empirical Bayesian kriging (EBK)), and multivariate probabilistic methods (ordinary
cokriging (OCK) and universal cokriging (UCK)).

Multivariate “cokriging” methods take into consideration other variables that are
well correlated with the first variable in the interpolation of the studied phenomenon.
In this case, the topographic elevation was used as additional data, since it has a good
correlation with the groundwater level. Indeed, the two variables are 99% correlated
(Figure 7a). In addition, the second advantage of using topographic elevation is that it has
good spatial coverage.

Cross-validation played an important role in variographic modeling and in determin-
ing the optimal interpolation models. The table below makes it possible to compare the
results for each method based on the quality indicators: the root-mean-square error (RMSE),
mean error (ME), and the coefficient of determination (R2).

According to the table above, ordinary cokriging (OCK) is the best modeling of reality
in this study area with this dataset, since it presents the best quality indicators. Indeed, the
OCK has the minimum RMSE and the maximum R2 coefficient. The ranking of the optimal
interpolation methods from the most accurate (OCK) to the least accurate (IDW) is given
in Table 2.
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Table 2. Comparison between optimal models of spatial interpolation.

2020 RMSE R2 ME

OCK 13.25 0.987 −0.49
UCK 13.28 0.984 −0.48
EBK 13.77 0.979 0.19
OK 16.04 0.978 −0.86
UK 16.14 0.977 0.97
LPI 17.71 0.910 −0.94
RBF 37.12 0.900 −1.51
IDW 45.65 0.860 −9.8
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The assessment of the accuracy of the chosen method is based on the study of the
degree of correlation between the measured values and the estimated values. This is
performed through cross-validation and statistical indicators. Figure 7b illustrates the
linear regression plot of the measured values and those obtained by ordinary cokriging
with the optimal model selected in addition to the regression line. The coefficient of
determination R2 = 0.987 demonstrates the existence of a strong correlation between the
observed values and those predicted.

In addition, Delbari et al. [8] compared mono- and multivariate interpolation methods
for estimating the groundwater level using a sample of 260 measurements. The second
variable used in its calculation is topographic elevation. In this case, the multivariate
methods were more accurate than the monovariate methods.

Figure 8 represents the regionalized maps of the water table depth of the Saïss plain
estimated by the optimal methods OCK, OK, and EBK. The analysis of this shows that the
flow of groundwater takes place globally along the axis from the southwest to the northeast.
Indeed, the high values are found in the southwest (787 m), while the low values (380 m)
converge towards the northeast of the aquifer near Fez. In addition, this map provides
overall information on the flow velocity. It is high in the NE of the aquifer and moderate in
the SW.
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The spatial distribution of the uncertainty for the OCK, OK, and EBK interpolations
is illustrated in Figure 9. These maps demonstrate the reliability of the predictions in the
zones neighboring the samples and make it possible to detect the zones where additional
wells will have to be added in order to reach a precise regionalized piezometric map.
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Indeed, the estimation error varies between 1 and 5 m for the OK, between 2 and 6 m for
the OCK, and between 6 and 12 m for the EBK around the measured points, while this
error is greater than 10 m in areas devoid of real observations. Therefore, it appears that
even the optimal method suitable for the input measurements did not make it possible to
interpolate the groundwater level with precision over the entire region.
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Finally, the results showed that with the 39 measurements in 2005 and 45 measure-
ments in 2020 used as input, ordinary kriging made it possible to generate the regionalized
map of the groundwater level. In the context of the present study, cokriging certainly made
it possible to have a good prediction from the point of view of the correlation coefficients
R2; nevertheless, ordinary kriging is more precise than cokriging from the point of view of
the spatial distribution of uncertainty.

This optimal geostatistical method, in conjunction with mapping tools, made it possi-
ble to generate piezometric level maps and standard prediction error maps associated with
the kriged one. The maps presented in Figure 9 show that the high interpolation errors are
located at the extremities of the plain (mainly in the north, northeast, and south). Therefore,
new wells can be implanted in those areas that do not experience excessive exploitation
and can be monitored with a reduced temporal frequency.

Therefore, the results of the present comparative study prove, on one hand, the
importance of comparing methods to identify the optimal interpolation model. On the
other hand, they show the importance of optimizing the piezometric monitoring network of
the ABHS in order to have optimal coverage of the Saïss plain. This will allow the smooth
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running of hydrogeological studies, decision-making, and development, with the ultimate
goal of sustainable and integrated groundwater resources management.

3.3. Temporal Groundwater Level Modeling

Time series of groundwater levels often have missing values that need to be considered
before using them for hydrogeological analysis, especially for numerical groundwater flow
modeling applications. It is more important to ensure sufficient and continuous time series.

Temporal groundwater level simulations were applied using the ARIMA model.
An ARIMA model tries to statistically model the time series by considering the average
groundwater level as a time series. The applicability of this model was proven in previous
research [37,42,51,52].

Reconstruction of Time Series

In this section, we first present the dataset we used, as well as the preprocessing that
was carried out. We compiled a dataset corresponding to the period from January 2000
to December 2015 for the piezometers of the region, presenting monthly time series of
the groundwater level for which there are more than 10% missing data. Among these
piezometers, we can distinguish a group of nine which have more than 10% of missing data.
The following table lists the data statistics for each well with a time series with missing
data and indicates the number of gaps in their data series (Table 3).

Table 3. Piezometers with gaps in their time series of groundwater level.

Piezometer Valid Measurements Missing Data %

237/15 106 86 44.8
787/21 114 78 40.6
566/21 116 76 39.6

1309/22 117 75 39.1
2813/15 121 71 37.0
2366/15 152 40 20.8
2792/15 156 36 18.8
2604/15 158 34 17.7
290/22 172 20 10.4

This analysis involved 45 wells that make up the piezometric network for monthly
monitoring of the Saïss aquifer. The first step is to complete the time series of the groundwa-
ter level over the period from January 2005 to January 2020 using the ARIMA model [35,43].
This period contains several gaps (i.e., 29.7% of missing values). The periods with missing
data differ for each piezometer. Figure 10a shows the time series of the groundwater level
of the wells with more than 10% of missing data in order to illustrate their imputations.

As indicated in the presentation of the ARIMA model, all data must be stationary
in the simulations using this model. The differencing method was applied to make all
data stationary. After obtaining a stationary time series, different structures of ARIMA
models were obtained through a process of test and error. Finally, ARIMA (1,1,1) was
selected for the simulation of the groundwater level in the Saïss plain. The entire statistical
calculation was applied by the XLSTAT 2022 software. The simulated groundwater levels
by the ARIMA model are shown in Figure 10b.

The applicability of the ARIMA model in groundwater resources simulation, based on
the determination coefficient (R2), is illustrated in Figure 11. The results demonstrate that
the model produces acceptable performance in simulating groundwater levels.
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Figure 11. Scatterplot of predicted vs. observed values of groundwater level in six selected piezomet-
ric stations.

To assess the consistency between the measured piezometric values and those simu-
lated by the ARIMA model, they were represented graphically. Figure 12 illustrates the
observed and the imputation of missing data by the ARIMA model of the groundwater
level time series. This figure presents the curves of the observed values and the curves of
the simulated values by the ARIMA model.

The ARIMA model simulates a curve of the time series of the groundwater level based
on the observed data. This simulation calculated, at the same time, the missing data of this
series. This figure shows good agreement between the observed and simulated values. It
shows trends and fluctuations in groundwater levels.
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3.4. Study of the Variation in the Groundwater Resources between 2005 and 2020

Temporal reconstruction of the chronological series of the groundwater level makes
it possible to study its variation. The comparison of the groundwater level maps of
2005 and 2020 provides information on the evolution of the water table depth of the
aquifer (Figure 13). The groundwater of the Saïss plain flows from the SW to the NE. At
the Aïn Taoujdate flexure, the groundwater flow is diverted towards Fez in the NE and
towards Meknes in the NW. The average hydraulic gradient is 5‰. For the comparison
of the water table depth between 2005 and 2020, we produced the groundwater level
difference map between 2005 and 2020. Figures 13 and 14, respectively, illustrate the map
of the wells, according to the value of the groundwater difference, and the interpolated
map of the groundwater difference values. These maps make it possible to visualize
and analyze the areas that have experienced an improvement or a deterioration in the
groundwater resources.
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Figure 14 clearly shows that the groundwater level has experienced a significant
drawdown in several regions. This phenomenon is caused by population growth, which
increased by 48% between 1994 and 2014 [28], and the decline in infiltration. Figure 15
shows a decreasing trend in precipitation between 1960 and 2021 in the study region.
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The difference in groundwater level between 2005 and 2020 is classified into three
categories (Figure 16):

- Category 1 corresponds to piezometers in which the groundwater level did not un-
dergo a significant variation. For example, for piezometer 566/21, the groundwater
level varies slightly between +/−4 m.

- Category 2 corresponds to piezometers in which the groundwater level increased by
approximately 20 m. These piezometers are mostly located in the irrigated perimeters
with surface water. The development of this perimeter made it possible, on the one
hand, to reduce the use of groundwater resources for irrigation. On the other hand, it
made it possible to have an infiltration of this surface water. At the piezometer 237/15,
the water table depth experienced significant fluctuations but with a general upward
trend of 25 m.

- Category 3 corresponds to piezometers whose groundwater levels of the aquifer
experienced a decrease of approximately 7 m (Piezometer 3362/15). This drop in
groundwater resources is due to excessive water pumping. Moreover, the majority of
these piezometers are located in agricultural areas irrigated by groundwater resources.
In addition, they are far from potential sources of recharge such as rivers.
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Figure 16. Hydrographs of the groundwater level for three borehole piezometers.

4. Conclusions

This study shows how the geostatistics can help to improve spatiotemporal variation
of groundwater levels, and evaluates the status of groundwater resources using different
geostatistical models. The results prove the inexistence of a universal rule for choosing
the optimal interpolation model based on the analysis of the values of the input sample.
Comparing methods and assessing their accuracy using cross-validation and statistical
indicators before generating the regionalized maps and evaluating their accuracy are the
best way. This finding follows the same conclusion of many authors. These tools played a
decisive role in the choice and validation of the optimal model.

The identification of the optimal spatial interpolation model is the result of the compar-
ison of different interpolation methods. Kriging made it possible to generate regionalized
water table depth maps. The results demonstrate that cokriging produces a good per-
formance in the prediction of groundwater levels (based on R2 and RMSE indicators).
However, the ordinary kriging is more accurate than the cokriging from the point of view
of the uncertainty of spatial distribution.

In 2005, the Saïss aquifer depth monitoring network managed by ABHS consisted of
39 piezometers. The current network contains 45 piezometers; unfortunately, the spatial
coverage is still not optimal. This study will contribute to designing a spatially optimized
piezometric monitoring network. In order to implement this new spatially optimal network,
the new wells can be implanted first in the extremities of the plain which are devoid
of monitoring piezometers and present high interpolation errors. These areas do not
experience excessive exploitation and can be monitored with reduced time frequency.

To overcome the problem of time series with missing data, which hinders the smooth
running of hydrogeological studies and decision-making, the present study provides a
solution based on an ARIMA model to solve this problem. It made it possible to reconstruct
the time series of the piezometric monitoring network of the ABHS.
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The analysis of the variation in the groundwater resources between 2005 and 2020
shows that, in general, the state of the aquifer decreased in certain areas; on the other
hand, it improved or remained constant in other areas. These results will enable the
ABHS to target areas suffering from lower water levels through oriented actions to con-
serve groundwater resources and strengthen the groundwater monitoring network with
additional piezometers.
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