Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils
Abstract
:1. Introduction
2. Methods & Materials
2.1. Site Description and Location
2.2. Methodology
2.2.1. Electrical Resistivity Tomography (ERT)
2.2.2. Spontaneous Potential (SP)
2.2.3. Apparent Resistivity Gradient
2.3. Field Work
2.3.1. Pilot Electrical Conductivity Survey
2.3.2. Geoelectrical Field Work
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abahussain, A.A.; Abdu, A.S.; Al-Zubari, W.K.; El-Deen, N.A.; Abdul-Raheem, M. Desertification in the Arab Region: Analysis of current status and trends. J. Arid. Environ. 2002, 51, 521–545. [Google Scholar] [CrossRef]
- Abo-El-Enein, S. Towards Sustainable and Improved Water Productivity in the Old Lands of the Nile Delta; International Center for Agricultural Research in the Dry Areas (ICARDA): Giza, Egypt, 2018. [Google Scholar]
- Alary, V.; Aboul-Naga, A.; Osman, M.A.; Daoud, I.; Abdelraheem, S.; Salah, E.; Juanes, X.; Bonnet, P. Desert land reclamation programs and family land dynamics in the Western Desert of the Nile Delta (Egypt), 1960–2010. World Dev. 2018, 104, 140–153. [Google Scholar] [CrossRef]
- Embabi, N.S. The Nile Delta. In Landscapes and Landforms of Egypt; Springer: Cham, Switzerland, 2018; pp. 57–68. [Google Scholar]
- Shendi, E.-A.H.; Aziz, A.M. Discovery of an ancient pharaoh’s temple on the Horus military road, Northern Sinai, Egypt. Arab. J. Geosci. 2010, 3, 249–255. [Google Scholar] [CrossRef]
- Taha, M.M.; El-Asmar, H.M. Geo-Archeoheritage Sites Are at Risk, the Manzala Lagoon, NE Nile Delta Coast, Egypt. Geoheritage 2019, 11, 441–457. [Google Scholar] [CrossRef]
- Rashed, A.; Khalifa, E.; Fahmy, H. Paddy rice cultivation in irrigated water managed saline sodic lands under reclamation, Egypt. In Proceedings of the 9th ICID International Drainage Workshop, Utrecht, Netherlands, 10–13 September 2003. [Google Scholar]
- Mohamed, E.S.; Belal, A.; Saleh, A. Assessment of land degradation east of the Nile Delta, Egypt using remote sensing and GIS techniques. Arab. J. Geosci. 2013, 6, 2843–2853. [Google Scholar] [CrossRef]
- Mohamed, E.S.; Belal, A.; Shalaby, A. Impacts of soil sealing on potential agriculture in Egypt using remote sensing and GIS techniques. Eurasian Soil Sci. 2015, 48, 1159–1169. [Google Scholar] [CrossRef]
- El-Kady, R.Y.; El-Rayes, A.E.; Sultan, Y.M.; Aziz, A.M. Mapping of soil geochemistry in Port Said Governorate, Egypt utilizing GIS and remote sensing techniques. Imp. J. Interdiscip. Res. 2017, 3, 1261–1270. [Google Scholar]
- El-Rayes, A.E.; Arnous, M.O.; Aziz, A.M. Morphotectonic controls of groundwater flow regime and relating environmental impacts in Northwest Sinai, Egypt. Arab. J. Geosci. 2017, 10, 401. [Google Scholar] [CrossRef]
- Karajeh, F.; Oweis, T.; Swelam, A.; El-Gindy, A.; El-Quosy, D.; Khalifa, H.; El-Kholy, M.; El-Hafez, S.A. Water and Agriculture in Egypt; Technical Paper Based on the Egypt-Australia-ICARDA Workshop on On-farm Water-Use Efficiency; International Center for Agricultural Research in the Dry Areas (ICARDA): Giza, Egypt, 2011. [Google Scholar]
- Satoh, M.; Aboulroos, S. Irrigated Agriculture in Egypt: Past, Present and Future; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Hoffman, G.J.; Durnford, D. Drainage design for salinity control. Agric. Drain. 1999, 38, 579–614. [Google Scholar]
- Conoco, C. Geological Map of Egypt, Scale 1: 500,000; Egyptian General Petroleum Corporation-Conoco Coral, Geological Survey: Cairo, Egypt, 1987. [Google Scholar]
- Hassan, S.; Sultan, M.; Sobh, M.; Elhebiry, M.S.; Zahran, K.; Abdeldayem, A.; Issawy, E.; Kamh, S. Crustal Structure of the Nile Delta: Interpretation of Seismic-Constrained Satellite-Based Gravity Data. Remote Sens. 2021, 13, 1934. [Google Scholar] [CrossRef]
- Allred, B.; Daniels, J.J.; Ehsani, M.R. Handbook of Agricultural Geophysics; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Cousin, I.; Besson, A.; Bourennane, H.; Pasquier, C.; Nicoullaud, B.; King, D.; Richard, G. From spatial-continuous electrical resistivity measurements to the soil hydraulic functioning at the field scale. Comptes Rendus Geosci. 2009, 341, 859–867. [Google Scholar] [CrossRef]
- Ferronsky, V. Nuclear Geophysics: Applications in Hydrology, Hydrogeology, Engineering Geology, Agriculture and Environmental Science; Springer: Moscow, Russia, 2015. [Google Scholar]
- Pasquier, C.; Bourennane, H.; Cousin, I.; Séger, M.; Dabas, M.; Thiesson, J.; Tabbagh, J. Comparison between thermal airborne remote sensing, multi-depth electrical resistivity profiling, and soil mapping: An example from Beauce (Loiret, France). Near Surf. Geophys. 2016, 14, 345–356. [Google Scholar] [CrossRef]
- Coulouma, G.; Lagacherie, P.; Samyn, K.; Grandjean, G. Comparisons of dry ERT, diachronic ERT and the spectral analysis of surface waves for estimating bedrock depth in various Mediterranean landscapes. Geoderma 2013, 199, 128–134. [Google Scholar] [CrossRef]
- Michot, D.; Benderitter, Y.; Dorigny, A.; Nicoullaud, B.; King, D.; Tabbagh, A. Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research 2003, 39. [Google Scholar] [CrossRef]
- Soupios, P.; Papadopoulos, N.; Papadopoulos, I.; Kouli, M.; Vallianatos, F.; Sarris, A.; Manios, T. Application of integrated methods in mapping waste disposal areas. Environ. Geol. 2007, 53, 661. [Google Scholar] [CrossRef]
- Jeřábek, J.; Zumr, D.; Dostál, T. Identifying the plough pan position on cultivated soils by measurements of electrical resistivity and penetration resistance. Soil Tillage Res. 2017, 174, 231–240. [Google Scholar] [CrossRef]
- Mathis, I.; Tucker-Kulesza, S.; Sassenrath, G. Electrical Resistivity Tomography of Claypan Soils in Southeastern Kansas. Kans. Agric. Exp. Stn. Res. Rep. 2018, 4, 13. [Google Scholar] [CrossRef] [Green Version]
- Pezdir, V.; Čeru, T.; Horn, B.; Gosar, M. Investigating peatland stratigraphy and development of the Šijec bog (Slovenia) using near-surface geophysical methods. CATENA 2021, 206, 105484. [Google Scholar] [CrossRef]
- Attia al Hagrey, S. Geophysical imaging of root-zone, trunk, and moisture heterogeneity. J. Exp. Bot. 2007, 58, 839–854. [Google Scholar] [CrossRef] [Green Version]
- Carminati, A.; Vetterlein, D.; Weller, U.; Vogel, H.-J.; Oswald, S.E. When roots lose contact. Vadose Zone J. 2009, 8, 805–809. [Google Scholar] [CrossRef]
- Furman, A.; Arnon-Zur, A.; Assouline, S. Electrical resistivity tomography of the root zone. Soil–Water–Root Process. Adv. Tomogr. Imaging 2013, 61, 223–245. [Google Scholar]
- Xu, S.; Sirieix, C.; Riss, J.; Malaurent, P. A clustering approach applied to time-lapse ERT interpretation—Case study of Lascaux cave. J. Appl. Geophys. 2017, 144, 115–124. [Google Scholar] [CrossRef]
- Zhao, P.-F.; Wang, Y.-Q.; Yan, S.-X.; Fan, L.-F.; Wang, Z.-Y.; Zhou, Q.; Yao, J.-P.; Cheng, Q.; Wang, Z.-Y.; Huang, L. Electrical imaging of plant root zone: A review. Comput. Electron. Agric. 2019, 167, 105058. [Google Scholar] [CrossRef]
- Gallas, J.D.F.; Taioli, F.; Malagutti Filho, W. Induced polarization, resistivity, and self-potential: A case history of contamination evaluation due to landfill leakage. Environ. Earth Sci. 2011, 63, 251–261. [Google Scholar] [CrossRef]
- Patra, H.; Adhikari, S.K.; Kunar, S. Groundwater Prospecting and Management; Springer: Singapore, 2016. [Google Scholar]
- Olatinsu, O.; Oyedele, K.; Ige-Adeyeye, A. Electrical resistivity mapping as a tool for post-reclamation assessment of subsurface condition at a sand-filled site in Lagos, southwest Nigeria. SN Appl. Sci. 2019, 1, 24. [Google Scholar] [CrossRef] [Green Version]
- Hossain, S.; Kibria, G.; Khan, S. Site Investigation using Resistivity Imaging; CRC Press: Boca Raton, FL, USA, 2018. [Google Scholar]
- Soupios, P.; Georgakopoulos, P.; Papadopoulos, N.; Saltas, V.; Andreadakis, A.; Vallianatos, F.; Sarris, A.; Makris, J. Use of engineering geophysics to investigate a site for a building foundation. J. Geophys. Eng. 2007, 4, 94–103. [Google Scholar] [CrossRef]
- Chrétien, M.; Lataste, J.; Fabre, R.; Denis, A. Electrical resistivity tomography to understand clay behavior during seasonal water content variations. Eng. Geol. 2014, 169, 112–123. [Google Scholar] [CrossRef]
- Genelle, F.; Sirieix, C.; Riss, J.; Naudet, V. Monitoring landfill cover by electrical resistivity tomography on an experimental site. Eng. Geol. 2012, 145–146, 18–29. [Google Scholar] [CrossRef] [Green Version]
- Butler, D.K. Near-Surface Geophysics; Society of Exploration Geophysicists: Houston, TX, USA, 2005. [Google Scholar]
- Loke, M.H. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software. 2004. Available online: https://sites.ualberta.ca/~{}unsworth/UA-classes/223/loke_course_notes.pdf (accessed on 8 August 2022).
- Dahlin, T.; Zhou, B. A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys. Prospect. 2004, 52, 379–398. [Google Scholar] [CrossRef] [Green Version]
- Edwards, L. A modified pseudosection for resistivity and IP. Geophysics 1977, 42, 1020–1036. [Google Scholar] [CrossRef]
- Loke, M. Rapid 2-D Resistivity & IP Inversion Using the Least-Squares Method; RES2DINV ver. 3.55; Geotomo Software: Penang, Malaysia, 2006; Volume 139. [Google Scholar]
- Loke, M.; Barker, R. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method 1. Geophys. Prospect. 1996, 44, 131–152. [Google Scholar] [CrossRef]
- Loke, M. Tutorial: 2-D and 3-D Electrical Imaging Surveys; Geotomo Software SdnBhd: Penang, Malaysia, 2018. [Google Scholar]
- Loke, M.H.; Acworth, I.; Dahlin, T. A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor. Geophys. 2003, 34, 182–187. [Google Scholar] [CrossRef] [Green Version]
- Sheets, K.R.; Hendrickx, J.M. Noninvasive soil water content measurement using electromagnetic induction. Water Resour. Res. 1995, 31, 2401–2409. [Google Scholar] [CrossRef]
- Campbell, R.; Bower, C.; Richards, L. Change of electrical conductivity with temperature and the relation of osmotic pressure to electrical conductivity and ion concentration for soil extracts. Soil Sci. Soc. Am. J. 1949, 13, 66–69. [Google Scholar] [CrossRef]
- Corwin, D.L.; Lesch, S.M. Apparent soil electrical conductivity measurements in agriculture. Comput. Electron. Agric. 2005, 46, 11–43. [Google Scholar] [CrossRef]
- Samouëlian, A.; Cousin, I.; Tabbagh, A.; Bruand, A.; Richard, G. Electrical resistivity survey in soil science: A review. Soil Tillage Res. 2005, 83, 173–193. [Google Scholar] [CrossRef] [Green Version]
- Corwin, R.F. The self-potential method for environmental and engineering applications. In Geotechnical an Environmental Geophysics: Volume I: Review and Tutorial; Society of Exploration Geophysicists: Houston, TX, USA, 1990; pp. 127–146. [Google Scholar]
- Fensom, D. The bio-electric potentials of plants and their functional significance: I. An electrokinetic theory of transport. Can. J. Bot. 1957, 35, 573–582. [Google Scholar] [CrossRef]
- Lénat, J.-F. Retrieving self-potential anomalies in a complex volcanic environment: An SP/elevation gradient approach. Near Surf. Geophys. 2007, 5, 161–170. [Google Scholar] [CrossRef]
- Naudet, V.; Revil, A.; Bottero, J.Y.; Bégassat, P. Relationship between self-potential (SP) signals and redox conditions in contaminated groundwater. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Revil, A.; Fernandez, P.; Mao, D.; French, H.K.; Bloem, E.; Binley, A. Self-potential monitoring of the enhanced biodegradation of an organic contaminant using a bioelectrochemical cell. Lead. Edge 2015, 34, 198–202. [Google Scholar] [CrossRef]
- Dentith, M.; Mudge, S.T. Geophysics for the Mineral Exploration Geoscientist; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Skianis, G.A. The Self-Potential Anomaly Produced by a Subsurface Flow at the Contact of Two Horizontal Layers and Its Quantitative Interpretation. Int. J. Geophys. 2012, 2012, 483590. [Google Scholar] [CrossRef] [Green Version]
- Eppelbaum, L.V. Review of Processing and Interpretation of Self-Potential Anomalies: Transfer of Methodologies Developed in Magnetic Prospecting. Geosciences 2021, 11, 194. [Google Scholar] [CrossRef]
- Bhattacharya, B.; Dutta, I. Depth of investigation studies for gradient arrays over homogeneous isotropic half-space. Geophysics 1982, 47, 1198–1203. [Google Scholar] [CrossRef]
- Reynolds, J.M. An Introduction to Applied and Environmental Geophysics; John Wiley & Sons: Hoboken, NJ, USA, 2011. [Google Scholar]
- Schulz, R. Interpretation and depth of investigation of gradient measurements in direct current geoelectrics. Geophys. Prospect. 1985, 33, 1240–1253. [Google Scholar] [CrossRef]
- Ibraheem, I.M.; Tezkan, B.; Bergers, R. Integrated Interpretation of Magnetic and ERT Data to Characterize a Landfill in the North-West of Cologne, Germany. Pure Appl. Geophys. 2021, 178, 2127–2148. [Google Scholar] [CrossRef]
- Fujii, K.; Ohmiya, T. Ion solubilization in surface soil layers of montane region with heavy snowfall. CATENA 2021, 206, 105490. [Google Scholar] [CrossRef]
- Throner, R.H. Engineering Geology Field Manual; U.S. Department of the Interior, Bureau of Reclamation: Washington, DC, USA, 2001; Volume II. [Google Scholar]
- Ellis, D.V.; Singer, J.M. Well Logging for Earth Scientists; Springer: Dordrecht, The Netherlands, 2007. [Google Scholar]
- Liu, H. Principles and Applications of Well Logging; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Gallas, J.D.F. Self-potential (SP) generated by electrokinesis—Efficiency and low cost dam safety. J. Appl. Geophys. 2020, 180, 104122. [Google Scholar] [CrossRef]
- Sharma, P.V. Environmental and Engineering Geophysics; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Nawaz, M.F.; Bourrié, G.; Trolard, F. Soil compaction impact and modelling. A review. Agron. Sustain. Dev. 2013, 33, 291–309. [Google Scholar] [CrossRef] [Green Version]
- El-Ramady, H.; Alshaal, T.; Yousef, S.; Elmahdy, S.; Faizy, S.E.-D.; Amer, M.; Shams El-Din, H.; El-Ghamry, A.M.; Mousa, A.A.; Prokisch, J.; et al. Soil Fertility and Its Security. In The Soils of Egypt; El-Ramady, H., Alshaal, T., Bakr, N., Elbana, T., Mohamed, E., Belal, A.-A., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 137–157. [Google Scholar] [CrossRef]
- Singh, A. Soil salinization and waterlogging: A threat to environment and agricultural sustainability. Ecol. Indic. 2015, 57, 128–130. [Google Scholar] [CrossRef]
Location | Depth (cm) | Sand (%) | Silt (%) | Clay (%) | Bulk Density (g·cm−3) |
---|---|---|---|---|---|
Farm A | 0–10 | 3.7 | 25.8 | 70.5 | 1.8 |
10–20 | 3.5 | 30.0 | 66.5 | 1.9 | |
20–40 | 2.1 | 32.1 | 65.8 | 1.8 | |
40–60 | 2.9 | 29.0 | 68.1 | 1.9 | |
Farm B | 0–10 | 4.0 | 30.8 | 65.2 | 1.8 |
10–20 | 4.0 | 28.5 | 67.6 | 1.9 | |
20–40 | 2.4 | 31.1 | 66.5 | 1.7 | |
40–60 | 3.5 | 23.6 | 72.9 | 1.7 | |
Farm C | 0–10 | 3.2 | 32.7 | 64.1 | 1.9 |
10–20 | 2.9 | 33.0 | 64.1 | 1.7 | |
20–40 | 5.6 | 25.8 | 66.6 | 1.9 | |
40–60 | 4.8 | 29.2 | 66.9 | 1.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aziz, A.; Berndtsson, R.; Attia, T.; Hamed, Y.; Selim, T. Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils. Water 2023, 15, 110. https://doi.org/10.3390/w15010110
Aziz A, Berndtsson R, Attia T, Hamed Y, Selim T. Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils. Water. 2023; 15(1):110. https://doi.org/10.3390/w15010110
Chicago/Turabian StyleAziz, Akram, Ronny Berndtsson, Tamer Attia, Yasser Hamed, and Tarek Selim. 2023. "Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils" Water 15, no. 1: 110. https://doi.org/10.3390/w15010110
APA StyleAziz, A., Berndtsson, R., Attia, T., Hamed, Y., & Selim, T. (2023). Noninvasive Monitoring of Subsurface Soil Conditions to Evaluate the Efficacy of Mole Drain in Heavy Clay Soils. Water, 15(1), 110. https://doi.org/10.3390/w15010110