Effects of Ammonium and COD on Fe and Mn Release from RBF Sediment Based on Column Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sediment Sampling and Geochemical Analysis
2.2. Column Experiment
2.3. Aqueous-Phase Analysis
2.4. Microbial Community Analysis
3. Results and Discussion
3.1. Changes of pH, DO and Eh
3.2. Changes of Fe and Mn
3.3. Response of Microbial Community
3.4. Fe and Mn Release Mechanism
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdelrady, A.; Bachwenkizi, J.; Sharma, S.; Sefelnasr, A.; Kennedy, M. The fate of heavy metals during bank filtration: Effect of dissolved organic matter. J. Water Process Eng. 2020, 38, 101563. [Google Scholar] [CrossRef]
- Liu, R.; Ma, T.; Qiu, W.; Du, Y.; Liu, Y. Effects of Fe oxides on organic carbon variation in the evolution of clayey aquitard and environmental significance. Sci. Total Environ. 2020, 701, 134776. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Amelung, W.; Xing, Y.; Bol, R.; Berns, A.E. Iron cycling and isotope fractionation in terrestrial ecosystems. Earth Sci. Rev. 2019, 190, 323–352. [Google Scholar] [CrossRef]
- Ying, S.C.; Schaefer, M.V.; Cock-Esteb, A.; Li, J.; Fendorf, S. Depth Stratification Leads to Distinct Zones of Manganese and Arsenic Contaminated Groundwater. Environ. Sci. Technol. 2017, 51, 8926–8932. [Google Scholar] [CrossRef]
- Moon, J.W.; Paradis, C.J.; Joyner, D.C.; Majumder, E.L.; Dixon, E.R.; Podar, M.; Ge, X.; Walian, P.J.; Smith, H.J. Characterization of subsurface media from locations up- and down-gradient of a uranium-contaminated aquifer. Chemosphere 2020, 255, 126951. [Google Scholar] [CrossRef]
- Wallis, I.; Prommer, H.; Berg, M.; Siade, A.J.; Sun, J.; Kipfer, R. The river-groundwater interface as a hotspot for arsenic release. Nat. Geosci. 2020, 13, 288–295. [Google Scholar] [CrossRef]
- Xia, X.L.; Teng, Y.G.; Zhai, Y.Z. Influencing factors and mechanism by which DOM in groundwater releases Fe from sediment. Chemosphere 2022, 300, 134524. [Google Scholar] [CrossRef]
- Yang, Y.; Hu, M.; Zhou, D.; Fan, W.; Wang, X.; Huo, M. Bioremoval of Cu2+ from CMP wastewater by a novel copper-resistant bacterium Cupriavidus gilardii CR3: Characteristics and mechanisms. RSC Adv. 2017, 7, 18793–18802. [Google Scholar] [CrossRef] [Green Version]
- Bryant, S.R.; Sawyer, A.H.; Briggs, M.A.; Saup, C.M.; Nelson, A.R.; Wilkins, M.J.; Christensen, J.N.; Williams, K.H. Seasonal manganese transport in the hyporheic zone of a snowmelt-dominated river (East River, Colorado, USA). Hydrogeol. J. 2020, 28, 1323–1341. [Google Scholar] [CrossRef]
- Zhai, Y.Z.; Han, Y.F.; Xia, X.L.; Li, X.D.; Lu, H.; Teng, Y.G.; Wang, J.S. Anthropogenic Organic Pollutants in Groundwater Increase Releases of Fe and Mn from Aquifer Sediments: Impacts of Pollution Degree, Mineral Content, and pH. Water 2021, 13, 1920. [Google Scholar] [CrossRef]
- Papp, D.C.; Cociuba, I.; Baciu, C.; Cozma, A. Origin and Geochemistry of Mine Water and its Impact on the Groundwater and Surface Running Water in Post-mining Environments: Zlatna Gold Mining Area (Romania). Aquat. Geochem. 2017, 23, 247–270. [Google Scholar] [CrossRef]
- Nguyen, B.T.; Nguyen, T.M.T.; Bach, Q.-V. Assessment of groundwater quality based on principal component analysis and pollution source-based examination: A case study in Ho Chi Minh City, Vietnam. Environ. Monit. Assess. 2020, 192, 395. [Google Scholar] [CrossRef] [PubMed]
- Di Curzio, D.; Rusi, S.; Signanini, P. Advanced redox zonation of the San Pedro Sula alluvial aquifer (Honduras) using data fusion and multivariate geostatistics. Sci. Total Environ. 2019, 695, 133796. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.L.; Teng, Y.G.; Zhai, Y.Z. Influence of DOM and microbes on Fe biogeochemistry at a riverbank filtration site. Environ. Res. 2022, 216, 114430. [Google Scholar] [CrossRef]
- Caschetto, M.; Barbieri, M.; Galassi, D.M.; Mastrorillo, L.; Rusi, S.; Stoch, F.; Petitta, M. Human alteration of groundwater–surface water interactions (Sagittario River, Central Italy): Implication for flow regime, contaminant fate and invertebrate response. Environs. Earth Sci. 2014, 71, 1791–1807. [Google Scholar] [CrossRef]
- Di Curzio, D.; Palmucci, W.; Rusi, S.; Signanini, P. Multidisciplinary approach to assess the seasonal effect on redoc processes occurring in a tropical alluvial aquifer. In Proceedings of the 3rd National Meeting on Hydrogeology, Cagliari, Italy, 14–16 June 2017; pp. 11790–11805. [Google Scholar] [CrossRef]
- Xiu, W.; Lloyd, J.; Guo, H.; Dai, W.; Nixon, S.; Bassil, N.M.; Ren, C.; Zhang, C.; Ke, T.; Polya, D. Linking microbial community composition to hydrogeochemistry in the western Hetao Basin: Potential importance of ammonium as an electron donor during arsenic mobilization. Environ. Int. 2020, 136, 105489. [Google Scholar] [CrossRef]
- Yang, L.; Li, X.K.; Chu, Z.R.; Ren, Y.H.; Zhang, J. Distribution and genetic diversity of the microbe in the biofilter for the simultaneous removal of arsenic, iron and manganese from simulated groundwater. Bioresour. Technol. 2014, 156, 384–388. [Google Scholar] [CrossRef]
- Yamamura, S.; Kurasawa, H.; Kashiwabara, Y.; Hori, T.; Aoyagi, T.; Nakajima, N.; Amachi, S. Soil microbial communities involved in reductive dissolution of arsenic from arsenate–laden minerals with different carbon sources. Environ. Sci. Technol. 2019, 53, 12398–12406. [Google Scholar] [CrossRef]
- Ibekwe, A.; Ma, J.; Murinda, S. Bacterial community composition and structure in an urban river impacted by different contaminant sources. Sci. Total Environ. 2016, 566–567, 1176–1185. [Google Scholar] [CrossRef]
- Tong, M.; Yuan, S.; Wang, Z.; Luo, M.; Wang, Y. Electrochemically induced oxidative removal of As (III) from groundwater in a dual-anode sand column. J. Hazard. Mater. 2016, 305, 41–50. [Google Scholar] [CrossRef]
- Xie, S.; Yuan, S.; Liao, P.; Tong, M.; Gan, Y.; Wang, Y. Iron-anode enhanced sand filter for arsenic removal from tube well water. Environ. Sci. Technol. 2017, 51, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Su, X.; Wang, J.; Lyu, H.; Gao, R.; Lu, S. Multi–isotope constraints on biogeochemical processes during bank filtration: A case study of the Liao River. Northeast China. Appl. Geochem. 2020, 122, 104762. [Google Scholar] [CrossRef]
- Peter, B.M.; Kenneth, B.; James, E.R.; Tyler, D.J. Elevated manganese concentrations in united states groundwater, role of land surface-soil-aquifer connections. Environ. Sci. Technol. 2019, 53, 29–38. [Google Scholar] [CrossRef]
- Gao, Z.P.; Jia, Y.F.; Guo, H.M.; Zhang, D.; Zhao, B. Quantifying geochemical processes of arsenic mobility in groundwater from an inland basin using a reactive transport model. Water Resour. Res. 2020, 56, e2019WR025492. [Google Scholar] [CrossRef]
- Xin, J.; Liu, Y.; Chen, F.; Duan, Y.; Wei, G.; Zheng, X.; Li, M. The missing nitrogen pieces: A critical review on the distribution, transformation, and budget of nitrogen in the vadose zone-groundwater system. Water Res. 2019, 165, 114977. [Google Scholar] [CrossRef]
- Robertson, W.D.; Moore, T.A.; Spoelstra, J.; Li, L.; Elgood, R.J.; Clark, I.D.; Schiff, S.L.; Aravena, R.; Neufeld, J.D. Natural attenuation of septic system nitrogen by anammox. Groundwater 2012, 50, 541–553. [Google Scholar] [CrossRef]
- Rivett, M.O.; Buss, S.R.; Morgan, P.; Smith, J.W.N.; Bemment, C.D. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water Res. 2008, 42, 4215–4232. [Google Scholar] [CrossRef]
- Mogollón, J.M.; Mewes, K.; Kasten, S. Quantifying manganese and nitrogen cycle coupling in manganese-rich, organic carbon-starved marine sediments: Examples from the clarion-clipperton fracture zone. Geophys. Res. Lett. 2016, 43, 7114–7123. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.W.; Teng, Y.G.; Zhang, C.X.; Liao, X.P.; Zhai, Y.Z.; Zuo, R. Activation of manganese dioxide with bisulfite for enhanced abiotic degradation of typical organophosphorus pesticides: Kinetics and transformation pathway. Chemosphere 2019, 226, 858–864. [Google Scholar] [CrossRef]
- Liu, W.; Wang, Y.; Li, J.; Qian, K.; Xie, X. Indices of the dual roles of OM as electron donor and complexing compound involved in As and Fe mobilization in aquifer systems of the Datong Basin. Environ. Pollut. 2020, 262, 114305. [Google Scholar] [CrossRef]
- Amarathunga, U.; Diyabalanage, S.; Bandara, U.G.C.; Chandrajith, R. Environmental factors controlling arsenic mobilization from sandy shallow coastal aquifer sediments in the Mannar Island, Sri Lanka. Appl. Geochem. 2019, 100, 152–159. [Google Scholar] [CrossRef]
- Liu, S.; Chui, T. Numerical modelling to evaluate the nitrogen removal rate in hyporheic zone and its implications for stream management. Hydrol. Process. 2019, 33, 3084–3097. [Google Scholar] [CrossRef]
- Wu, J.; Gu, L.; Hua, Z.; Liang, Z.; Chu, K.; He, X. Per-, poly-fluoroalkyl substances (PFASs) pollution in benthic riverine ecosystem: Integrating microbial community coalescence and biogeochemistry with sediment distribution. Chemosphere 2021, 281, 130977. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ji, G.; Wang, R. Functional gene groups controlling nitrogen transformation rates in a groundwater–restoring denitrification biofilter under hydraulic retention time constraints. Ecol. Eng. 2016, 87, 45–52. [Google Scholar] [CrossRef]
- Lyu, H.; Su, X.; Wang, Y.; Dai, Z.; Liu, M. Effectiveness and mechanism of natural attenuation at a petroleum-hydrocarbon contaminated site. Chemosphere 2018, 206, 293–301. [Google Scholar] [CrossRef]
- Xia, X.; Zhai, Y.; Teng, Y. Microbial response to biogeochemical profile in a perpendicular riverbank filtration site. Ecotoxicol. Environ. Saf. 2022, 244, 114070. [Google Scholar] [CrossRef]
- Lu, S.; Yang, Y.M.; Yin, H.L.; Su, X.S.; Yu, K.N.; Sun, C. Microbial community structure of arsenic-bearing groundwater environment in the riverbank filtration zone. Water 2022, 14, 1548. [Google Scholar] [CrossRef]
Sampling Site (m) | Depth * (m) | Sediment Texture | pH | Fe (g/Kg) | Mn (g/Kg) | TOC (%) | NH4+ (mg/kg) |
---|---|---|---|---|---|---|---|
0–2 | 1–2 | Clay | 5.25 | 7.36 | 0.42 | 21 | 1.5 |
5–6 | 5–6 | Clay | 7.87 | 15.40 | 0.38 | 52 | 1.3 |
10–11 | 10–11 | Clay and sand | 7.86 | 9.6 | 0.29 | 12 | 0.9 |
15–16 | 15–16 | Sand | 6.3 | 12.8 | 0.20 | 8 | 1.3 |
20–21 | 20–21 | Clay and sand | 6.61 | 5.40 | 0.18 | 7 | 1.2 |
Item (Unit) | Detection Method | Detectable Limit |
---|---|---|
pH (/) | Glass electrode method | – |
NH4+ (mg/L) | Gas phase molecular absorption spectrometry | 0.15 mg/kg |
TOC (mg/L) | Combustion method | – |
Fe (mg/L) | ICP-AES (PerkinElmer Optima 8000) | 0.06 mg/kg |
Mn (mg/L) | ICP-AES (PerkinElmer Optima 8000) | 0.02 mg/kg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xia, X.; Teng, Y.; Zhai, Y. Effects of Ammonium and COD on Fe and Mn Release from RBF Sediment Based on Column Experiment. Water 2023, 15, 120. https://doi.org/10.3390/w15010120
Xia X, Teng Y, Zhai Y. Effects of Ammonium and COD on Fe and Mn Release from RBF Sediment Based on Column Experiment. Water. 2023; 15(1):120. https://doi.org/10.3390/w15010120
Chicago/Turabian StyleXia, Xuelian, Yanguo Teng, and Yuanzheng Zhai. 2023. "Effects of Ammonium and COD on Fe and Mn Release from RBF Sediment Based on Column Experiment" Water 15, no. 1: 120. https://doi.org/10.3390/w15010120
APA StyleXia, X., Teng, Y., & Zhai, Y. (2023). Effects of Ammonium and COD on Fe and Mn Release from RBF Sediment Based on Column Experiment. Water, 15(1), 120. https://doi.org/10.3390/w15010120