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Abstract: Freshwater gastropods play key roles in shallow aquatic ecosystems, with a central position
in the periphyton–gastropod–fish trophic pathway, as they feed on periphyton and are preyed on by
animals of higher trophic levels. Thus, it is of great interest to explore how climate change impacts
the gastropod community and the trophic cascading effects on periphyton. Here, we constructed a
simplified, shallow lake food web in 24 large mesocosm tanks to simulate warming (+4.5 ◦C) on the
population responses of two common snails (Bellamya aeruginosa and Radix swinhoei) in two different
systems (without/with common carp Cyprinus carpio) over 200 days. We found that warming lowered
the biomass and density of R. swinhoei by 16.8% and 41.6%, respectively, and accelerated the average
time of density peak of R. swinhoei by 21.5 days in the common carp-absent system. The density
of B. aeruginosa in the warming with common carp group was lowered by 79.8% more than in the
warming group without common carp. The averaged biomass and density of R. swinhoei in the fish-
present system significantly lowered by 64.4% and 92.5%, respectively, compared to the fish-absent
system. Cascading effects were also observed, as the snail communities declined under warming, that
is, the grazing pressure on periphyton was less, resulting in its higher biomass. In conclusion, in the
fish-absent system, warming decreased the biomass and density of the R. swinhoei, and in both snail
populations, the biomass and density were much higher than those in the fish-present system. Due to
the different phenology of snail species and species-specific predation, future stronger predation in a
continuous warming condition might undermine the diversity of the gastropods, thereby changing
food web structures in shallow freshwater ecosystems.

Keywords: aquatic gastropod; climate change; phenological mismatch; predator; trophic cascading;
timing

1. Introduction

Freshwater gastropods can be found in nearly all aquatic habitats, where they play
key roles in shallow freshwater systems [1,2]. They feed on detritus, periphyton, and even
phytoplankton and macrophytes, and are, in turn, preyed on by fish and other animals,
thus significantly contributing to nutrient cycling, energy transfer and the structure of
aquatic food webs [3,4]. Through mixing surface sediments, breaking down organic de-
tritus and feeding on periphyton, snails can enhance the microbial growth and alter the
composition of primary producers [5,6]. Branchiate snails can increase water clarity and
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reduce nutrients in the water by filtering phytoplankton [4,7], and other snails can decrease
shading through grazing periphyton, thus indirectly enhancing the growth of submerged
macrophytes [8–12]. In addition, freshwater snails are often used for biomonitoring and
assessment of metal pollution [13–15]. As one of the most diverse groups of freshwater
animals, freshwater snails contribute substantially to the biodiversity of macroinverte-
brates [16,17]. The composition of freshwater gastropods is also related to public health,
as they are intermediate hosts of many trematode parasites [18]. However, because our
planet has been experiencing unprecedented changes due to anthropogenic activities [19],
freshwater gastropods are considered to be highly threatened around the world [1,17].

Fish–snail–periphyton interactions comprise a common benthic trophic pathway in
aquatic ecosystems where snails are present [20,21], and benthic pathways can contribute
substantially to aquatic food webs in shallow ecosystems [22]. Previous studies showed that
in the absence of molluscivorous or benthivorous fish, snail biomass increased, reducing
periphyton biomass [11,23]. This suggests that fish predation can significantly affect the
abundance of aquatic snails, whose effects can vary significantly among prey species [24,25].
As different species might show differential vulnerability to predators [26], how predation
affects snail populations by top-down control remains a knowledge gap.

Previous studies have demonstrated that warming will alter species phenology [27],
distribution patterns [28], species interactions [29,30] and food web structure [31]. Habi-
tat temperature plays a key role in regulating the metabolic rates of individuals, and
species usually have limited thermal tolerance [32,33]. Warming can affect the timing of
reproduction and the fecundity of invertebrates [34,35]. Warming might induce shrink-
ing body size of snails, as small-sized specimens are more efficient at meeting the higher
metabolic demands in a warming environment [36–38]. Moreover, warming could increase
the strength of consumer–resource interactions, such as the top-down control of snails
on periphyton [30,39]. However, warming will also elevate the metabolic demands of
predators, which might strengthen the predator–prey interactions [40,41], and warming
can enhance the competition between ectothermic herbivores that share the same resources
by phenological mismatch and basal resources [42]. To our knowledge, there has been little
published about the snail community response in a warming environment with the absence
or presence of a predator.

Here, we conducted a mesocosm study to explore the response of two common
freshwater snail species and periphyton to warming in two different systems (without/with
fish). We tested the predictions that (1) warming in a fish-absent system alters the phenology
and decreases the abundance of snails through enhancing competition, and increases the
biomass of periphyton; (2) fish presence alone reduces the abundance of snails due to
selective feeding and increases the biomass of periphyton; (3) warming in a fish-present
system enhances the top-down control of fish predators on snails and increase the biomass
of periphyton.

2. Materials and Methods
2.1. Study Species

The targeted two gastropod species, Bellamya aeruginosa and Radix swinhoei, are
widespread in China, and they commonly coexist in shallow aquatic ecosystems [43].
B. aeruginosa is a branchiate gastropod consumed by humans [44,45], which feeds on sedi-
ment organic detritus, algae and bacteria [46], providing food for common carp [47]. The
species is gonochoristic and ovoviviparous and has a minimum reproductive temperature
of 16 to 18 ◦C, but optimally about 26 ◦C [48]. Adult females gestate throughout the year,
breeding for about 6 months and releasing offspring continuously, each producing about
50 offspring per year [45].

R. swinhoei is a common pulmonated gastropod, which mostly lives among macrophytes
and feeds on detritus, macrophytes, algae and dead animals [49,50]. It is hermaphrodite and
allogamous, and it can breed multiple times a year [49]. Members of its genus are generally
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cold-adapted gastropods [51], including R. balthica, which prefer an optimum temperature
of 16–20 ◦C and fail to reproduce over 24 ◦C [52,53], living on average 30 weeks [54].

2.2. Experiment Set-Up

A total of 24 insulated, cylindrical, polyethylene mesocosms (each 2500 L in volume,
1.5 m diameter, 1.4 m high) were placed outdoors at Huazhong Agricultural University,
Wuhan, China, and were used to simulate shallow lake ecosystems. Top layer sediment
was collected from Lake Liangzi (N 30◦11′3”, E 114◦37′59”), which is a mesotrophic lake,
with TN and TP in the water column there averaging 0.43 mg L−1 and 0.023 mg L−1,
respectively. The location is rich in macrophytes, including Potamogeton crispus, Hydrilla
verticillata, Ceratophyllum demersum and Trapa sp. All mesocosms were filled with 10 cm
of homogenized sediment on the bottom, and tap water was filled to 1 m depth. Both
snail species were recovered from the collected sediment, and no differences in the initial
biomass (10.19 ± 4.55 g/m2) and density (6.49 ± 1.75 ind/m2) were found for the snails in
the different treatments. The experiment ran from February 2, 2015, to November 18, 2015,
with the first month being acclimation without treatments.

There were two treatments without fish, one at environmental temperature (C) and
one at increased (+4.5 ◦C) temperature (W), and two treatments where fish (one 60 g
common carp Cyprinus carpio, length about 15 cm, age < 1 year) were added [55], one
at environmental temperature (F) and one at increased (+4.5 ◦C) temperature (WF) [56].
The temperature increase of +4.5 ◦C was chosen to simulate the possible warming that
could happen in this region at the end of this century [57], and the temperature was
manipulated automatically using two temperature sensors and a heating element controlled
by a computer [58]. Common carps are a common omnivorous species that coexist with the
two snails in water bodies in China, and the biomass of the carps in the mesocosms (equal
to 340 kg ha−1) was within the range found in the lakes of this region [55,59]. Carps of
this size consume these juvenile snails. All carps were commercially obtained from a local
aquarium shop. Carps were temporarily raised in an environment without food for 24 h
prior to the experiment. There were 6 replicates for each treatment, and all 4 treatments
were randomly assigned to 24 mesocosms.

To indicate how the treatments affect the water quality during the experiment, water
samples were collected once a week to analyze total nitrogen (TN), total phosphorus (TP),
chlorophyll a (Chl-a) and turbidity. TN and TP were first digested by alkaline potassium
persulfate in an autoclave (120 ◦C, 1.1 kg cm−2) for 30 min. TN was analyzed by UV
spectrophotometry (UV-2800, Unico, China, GB 11894-89) and TP with the ammonium
molybdate spectrophotometric method (GB 11893-89). Chl-a was determined by filtering
water in Whatman GF/C filters, and spectrophotometric analysis was performed after
acetone extraction (HJ 897-2017). Turbidity was measured with a portable WGZ-2B turbidity
meter (Xinrui, Shanghai, China). Periphyton Chl-a was measured by attaching an unglazed
ceramic tile (10 * 10 cm2) vertically to the middle of each mesocosm wall. It was removed
weekly, and the algae were brushed off and extracted in acetone solution for 24 h, then
analyzed by spectrophotometry. The biomass of the periphyton was expressed as the
concentration of Chl-a per square meter area.

The density and biomass of snails were monitored once a week from 14 March 2015, to
25 October 2015. Snails were collected by vertically placing a tube (1.5 m in height, 4.5 cm
in outside diameter, a total surface area of 0.1413 m2) attached to the wall of the mesocosm,
and the bottom of the tube was inserted into the sediment. The tube was removed once a
week, and all snails were collected, blotted dry, counted and weighted to 0.0001 g, and then
released back into the mesocosms.
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2.3. Analyses

All statistics were performed in R version 4.1.2 [60]. To analyze the effects of warming
on snail biomass, water quality, Chl-a and periphyton concentrations in the two sys-
tems (without fish and with fish), multiple linear mixed-effects models (LME) were used,
with the sampling date and mesocosm ID as random factors. These dependent variables
were log-transformed to increase the normality of the distribution. The normality and
homoscedasticity of the dependent variables were assessed visually by plotting model
residuals versus fitted values in quantile-quantile plots of the model residuals. As the
densities of both snails were count data, a Poisson link function was applied to the general-
ized linear mixed-effects model (GLMM). The analysis of variance parameters for the fixed
factors of the mixed-effects models were then calculated using Type II Wald χ2 tests. All
linear mixed models were performed using the lme4 package [61]. Differences among the
four treatments were compared using the emmeans package after the linear model test.

To assess the distribution patterns of the biomass and density of the snails over time,
data from each mesocosm were fitted with six parameters of the Weibull function using the
candidates package, which is designed for peak curve fitting. Not all peak curve fittings
were trustable. Only the results of the biomass and density of R. swinhoei, as well as some
of the B. aeruginosa in the control (C) and warming treatments (W) without fish present, had
good fit, as the rest did not correspond to any trends (Table S2). The heights and timing of
peaks between the control (C) and warming treatments (W) for R. swinhoei were compared
using independent t-tests. Normality and homogeneity of variance were checked using a
Shapiro test and an F-test, respectively. To evaluate possible differences between the two
snail species in all treatments, normalized data (data were divided by the maximum value
of each snail in each mesocosm to diminish their different scales) from the two species were
plotted together.

To evaluate the possible effects of warming with fish present on the respective biomass
of the two snail species and periphyton directly and indirectly, a mixed-effects structural
equation model was constructed using lme4 and the piecewiseSEM package, with sampling
date and mesocosm ID as random factors. In the model, warming and fish were categorical
external predictors, and snails and periphyton biomasses were continuous response vari-
ables. The final model with the lowest Akaike Information Criterion (AIC) value included
only significant paths, and we assessed model fit using Fisher’s C [62].

3. Results
3.1. Treatment Manipulation

Daily mean temperature was 4.25 ± 0.42 (n = 223, total number of days, mean ± sd)
higher in the warmed mesocosms (Figure 1a). In the treatments without fish, warming
(W) significantly increased Chl-a concentration in periphyton samples (Tables 1 and S1).
In the treatments with fish, warming (WF) significantly increased turbidity and Chl-a
concentration in periphyton samples (Table 1 and Figure 1b,d). Adding a carp predator to
mesocosm tanks system (F) significantly increased turbidity and concentrations of Chl-a in
the water column and periphyton, compared to the control (C) group (Figure 1b–d). Data
for TN and TP can be found in Figure S1. There was no significant change in carp biomass
at the end of the experiment for any treatment.
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Table 1. Effects of warming on the measured response variables and snail biomass and density in
two systems (without/with fish). Water turbidity, Chl-a concentration of the water column and
periphyton, and snail biomass were analyzed using linear mixed-effects models, and snail densities
were analyzed with generalized linear mixed-effects models and a Poisson link function. Bold number
indicates significance < 0.05.

Without Fish With Fish

Parameters F/χ2 p F/χ2 p

Measured response variables Log (Turbidity + 1) 0.195 0.668 13.119 0.005

Log (Chl a + 1) 1.289 0.283 4.840 0.053

Log (Periphyton + 1) 27.593 <0.001 14.597 0.003

B. aeruginosa Log (Biomass + 0.01) 2.029 0.185 3.725 0.082

Density 2.007 0.157 3.692 0.054

R. swinhoei Log (Biomass + 0.01) 5.910 0.035 0.112 0.745

Density 4.269 0.039 0.201 0.654

Figure 1. Daily average temperature (a), water turbidity (b), and Chl-a concentration in the water
column (c) and periphyton (d) changed over time in different treatments. In panel (a), the horizontal
dotted and dashed lines indicate temperatures of 16 ◦C and 24 ◦C, respectively. When the average
temperature started to go above 24 ◦C, the days were 113 and 134 for the warming and ambient
treatments, and these are indicated by vertical red and blue lines, respectively. The curves were fitted
from the LOESS model in R package ggplot2. Panels (b–d) share the same legend. Vertical bars
are standard errors. Small letters indicate significant difference between the four treatments. C for
control, W for warming without fish, F for fish present alone and WF for warming with fish.

3.2. Snail Species Responses

In all treatments, snail biomass was dominated by B. aeruginosa (89.01% on average).
Snail density was dominated by R. swinhoei (82.16% on average), but only when without
carp (C and W) (Table S1, Figure 2). In both different systems (without and with fish), the
biomass and the density of B. aeruginosa did no differ between temperatures (C and W, F
and WF separately), but warming with fish (WF) significantly reduced the biomass (26.7%)
and density (84.9%) of B. aeruginosa, compared to the control (C) group, and significantly
reduced the density (79.8%) of B. aeruginosa, compared to the warming without fish (W)
treatments (Tables 1 and S1 and Figure 2a,b). In the fish-absent system (C and W), warming
(W) resulted in a significantly lower biomass and density of R. swinhoei by 16.8% and 41.6%,
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respectively (Table S1). The biomass and density of R. swinhoei did not differ between
warming with fish (WF) treatments and fish alone (F) treatments, and the average biomass
and density of R. swinhoei in the fish-present system (F and WF) significantly lowered
by 64.4% and 92.5%, compared to the fish-absent system (C and W) (Tables 1 and S1 and
Figure 2c,d).

Figure 2. Biomass and density of populations of the two snail species changed over time in different
treatments. Biomass (a) and density (b) of B. aeruginosa, and biomass (c) and density (d) of R. swinhoei.
The curves were fitted from the LOESS model in R package ggplot2. Vertical bars are standard errors.
The vertical lines in panel (d) indicate the time of the peak density extracted from the fitted Weibull
functions, and the time of peak density for the warming with fish (W) treatment was 21 days earlier
than the control (C). The curves were fitted using the LOESS model in the R package ggplot2. Small
letters indicate significant difference between the four treatments. C for control, W for warming
without fish, F for fish present alone and WF for warming with fish. Please note that the y-axis has a
different scale for each species.

The average time of peak density in the R. swinhoei population occurred 21.5 days
earlier in the warming without fish treatment (W) than in the control (C) treatment (Welch
t-test, Table S3). However, the peak densities, peak biomass, and average time to the latter
of R. swinhoei did not differ significantly between the warming without fish treatment
(W) and the control treatment (Table S3). The timing of peak biomass and density for
B. aeruginosa varied widely within treatments, with variations increased in the warmer
conditions (without fish), compared to the control ambient conditions, with some occurring
faster (n = 4) and one slower (n = 1) (Table S2 and Figure S2). No clear peak for the two snail
species occurred in the treatments with carp.

3.3. Structural Equation Model

The structural equation model confirms that warming (standardized path coefficient,
SPC = −0.20) and carp presence (SPC = −0.24) negatively affected the biomass of B. aerugi-
nosa (overall explanation r2 = 0.18, Figure 3). Only carp presence significantly reduced the
biomass of R. swinhoei (SPC = −0.49, r2 = 0.43). Warming (SPC = 0.31) and carp presence
(SPC = 0.41) both increased the biomass of periphyton (r2 = 0.48), which was suppressed by
R. swinhoei (SPC = −0.13).
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Figure 3. Structural equation model showing the effects of warming with carp (Cyprinus carpio)
presence on biomass of the two snails (B. aeruginosa and R. swinhoei) and periphyton. The goodness-
of-fit test of the model is Fisher’s C = 8.615, p = 0.196, df = 6. Exogenous variables are indicated by
rounded rectangles, and endogenous variables are represented by ovals. Coefficients of determination
(r2) are shown for all endogenous variables. Numbers adjacent to arrows are standardized path
coefficients and indicative of the effect of the relationship. Positive and negative effects among
variables are depicted by blue and red arrows, respectively, with arrow thicknesses proportional to
the strength of the relationship. All relationships in the model are significant at p < 0.05.

4. Discussion
4.1. Warming (without Fish) Effects on Snails

In our study, warming (W) significantly advanced the reproduction peak of R. swinhoei
by 21.5 days. Prior studies have shown that warming advances the phenology of species
across different trophic levels, including plants, algae, zooplankton [63] and fish [64],
with the phenology of primary consumers generally advanced more than other trophic
levels [27]. In our study, the number of earlier reproduction days of R. swinhoei under
the warming treatment (W) matched the number of days when the temperature reached
>24 ◦C in advance. Species in the genus (Radix) are normally cold-adapted [51]; therefore,
when temperatures reached >24 ◦C, the snails did not reproduce [52,53]. In contrast, no
consistent peaks of biomass and density were detected for B. aeruginosa, which might be due
to their different life-history traits. B. aeruginosa has a much higher upper-limited thermal
tolerance, as its optimal reproduction temperature is ~26 ◦C, and the female can remain
gravid all year round and release offspring continuously [45]. Field investigations have
also found multiple different peaks of abundance and biomass for B. aeruginosa throughout
the year [65–67]. However, the time of peak biomass and density of B. aeruginosa in our
mesocosms showed differences between the ambient (C) and warming treatment (W) in the
absence of fish, which indicates that warming could alter the phenology of the snail; most
warming treatments showed advanced phenology, but several treatments showed delayed
phenology (Table S2 and Figure S2). This might indicate that the effects of warming on the
snail were different among different-aged individuals, which needs to be further explored.

Warming (W) lowered the overall biomass and density of R. swinhoei, but did not cause
differences in B. aeruginosa biomass and density, which may be linked to their phenology
and feeding rates. R. swinhoei is cold-adapted and its reproductive cycle can be completed
in 8 weeks, whereas B. aeruginosa has a much higher thermal tolerance and its reproductive
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cycle extends for about 6 months [45]. Thus, B. aeruginosa would respond slower to rising
temperatures from spring to summer, whereas R. swinhoei would stop reproduction, and
their survival rate would decline as the temperature exceeds 24 ◦C. However, in the
warming (W) treatments, the faster response of R. swinhoei reproduction could expand the
population faster and then enhance competitiveness, which may suppress the B. aeruginosa
population, as clear decreases were observed in the biomass and density of B. aeruginosa
when these peaks reached for R. swinhoei in the warming treatment (Figure S3). This might
be because R. swinhoei depleted algal food resources in the growing season (Figure 3). In our
study, the standing biomasses of periphyton were low in both the ambient (C) and warming
(W) treatment in the early growing season. These indicate a strong grazing pressure of the
snails on periphyton during this period. Furthermore, the periphyton abundance did not
increase at the same rate as the snail populations under warming [27]. Therefore, there
were fewer resources available when the snails reproduced in the warmer conditions, and
R. swinhoei may be more competitive in the reproductive season.

4.2. Warming (with Fish) Effects on Snails

There was no direct effect of warming on the biomass and density of the two snail
species in the common carp presence system. Here, the common carp exerted stronger
pressure on R. swinhoei, the preferred food, irrespective of warming. The reason could be
that fish predation in our mesocosms was too strong (reduced the density of R. swinhoei
by 92.5%), thus overriding a possible warming effect. Warming has been shown to affect
attack rate, handling time and predation success [68]. However, in our study, the prey
is a slow-moving species, the impact of warming on predation was mainly determined
by the increased feeding rate of the carp, and the prey is unlikely to develop avoidance
mechanisms against predation in one or two generations. In a longer period, continuous
warming and strong predation might eventually affect the coexistence of the two snail
species to exclude R. swinhoei.

4.3. Predation Effects on Snails

As expected, the biomass and density of the two snails were lower in the fish-present
system than that in the fish-absent system [24,25]. The predation effects were particularly
strong on R. swinhoei and the juveniles of B. aeruginosa. This is because common carp
can only prey on snails smaller than their jaw gape; hence, they substantially eliminated
the juveniles of both snails. Moreover, the carp also may directly prey upon the eggs of
R. swinhoei, as shown for eggs of white sturgeon [69]. Furthermore, the biomass of the adult
individuals was greater in B. aeruginosa (which can reach 5.77 g) than in R. swinhoei (1.5 g or
less), and shell toughness is much greater in B. aeruginosa than in Radix spp. snails [47,70],
making the former more difficult to consume. Thus, adult B. aeruginosa dominated in the
predation treatment (Figure S4), particularly in the beginning, because R. swinhoei were
preferentially consumed by the fish. This suggests that predation increased the relative
abundance of B. aeruginosa over R. swinhoei at the early time, and the competence shifted
over time. Under stronger predation pressure, B. aeruginosa might exclude R. swinhoei by
altering the balance between the possibly competing species [71,72].

5. Conclusions

In the fish-absent system, warming decreased the biomass and density of the R. swin-
hoei, and both snail populations’ biomass and density were much higher than in the fish-
present system. Warming resulted in higher periphyton biomass in both the fish-present
and fish-absent groups (Figure 3). The trophic cascading effects could have a substantial
impact on aquatic food webs. With the decrease of gastropods, the fish population might
decrease over time [73], but periphyton growth could increase, resulting in a bottom-heavy
trophic pyramid. This might hinder the nutrient cycle and energy transfer in the aquatic
ecosystem [74]. Furthermore, stronger predation in continuous warming conditions might
undermine the coexistence of the two snails, eventually causing the local extinction of
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the less dominate species. The loss of key primary consumers might weaken the stability
of aquatic food webs and decrease biodiversity [75,76]. In addition to warming, shallow
lakes face anthropogenic problems, such as eutrophication, chemical pollution and habitat
destruction [19,77]. These might interactively alter the shallow aquatic ecosystem from a
healthy state to a nuisance state (dominated by phytoplankton or benthic algae), leading to
a loss of ecosystem functions and services [78,79].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15010153/s1, Figure S1: Concentrations of TN and TP in the
water column changed over time; Figure S2: Biomass and density of the two snails changed over time
in each mesocosm of control and warming treatment without fish present; Figure S3: Relative biomass
and density of both snails in each treatment; Figure S4: Mean size of the snails during the experiment
in each treatment; Table S1: Means of the measured response variables and snail biomass and density
during the experiment for different treatments; Table S2: Weibull fitted results for biomass and
density of each snail in each mesocosm in the control and warming treatment without fish; Table S3:
Differences of peaks of biomass and density of R. swinhoei between control and warming treatment
without fish present.
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