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Abstract: Many urban areas in tropical Southeast Asia, e.g., Bangkok in Thailand, have recently
been experiencing unprecedentedly intense flash floods due to climate change. The rapid flood
inundation has caused extremely severe damage to urban residents and social infrastructures. In
addition, urban Southeast Asia usually has inadequate capacities in drainage systems, complicated
land use patterns, and a large vulnerable population in limited urban areas. To reduce the urban flood
risk and enhance the resilience of vulnerable urban communities, it has been of essential importance
to develop real-time urban flood forecasting systems for flood disaster prevention authorities and the
urban public. This paper reviewed the state-of-the-art models of real-time forecasting systems for
urban flash floods. The real-time system basically consists of the following subsystems, i.e., rainfall
forecasting, drainage system modelling, and inundation area mapping. This paper summarized
the recent radar data utilization methods for rainfall forecasting, physical-process-based hydraulic
models for flood inundation prediction, and data-driven artificial intelligence (AI) models for the
real-time forecasting system. This paper also dealt with available technologies for modelling, e.g.,
digital surface models (DSMs) for the finer urban terrain of drainage systems. The review indicated
that an obstacle to using process-based hydraulic models was the limited computational resources
and shorter lead time for real-time forecasting in many urban areas in tropical Southeast Asia. The
review further discussed the prospects of data-driven AI models for real-time forecasting systems.

Keywords: urban floods; real-time forecasting; methodology; physical-process-based models;
artificial-intelligence-based models; regional implementation

1. Introduction

Urban areas in Southeast Asia have been expanding and changing more rapidly
than constructing and maintaining their storm drainage systems. If adequate flood risk
management is not carried out, threats from climate change, growing urbanization, and de-
teriorated drainage infrastructure could increase flood disasters. Urban flood management
has significantly benefited from the hydroinformatics tools such as rainfall predictions
and flood modelling. However, data availability is one of the primary limitations of using
hydroinformatics tools. In addition, various variables can affect the choice of rainfall pre-
diction methods and flood modelling tools, resulting in a potential limitation for real-time
flood forecasting. In most urban areas in Southeast Asia, gathering information and creating
weather forecasts could be more feasible than making significant adjustments to drainage
network infrastructures. Consequently, having a real-time flood forecast available with
sound weather forecasts would be a great way to deal with the uncertainties associated
with the increasing frequency of flood disasters under current climate change.

Procedures for simulating urban flood dynamics that can mitigate flood risks have
been well established for urban areas in the Global North [1–3]. However, for urban areas
in the Global South, including Southeast Asia, there are still many obstacles and gaps in
our understanding of urban floods [4–9], although there has been growing expertise in
urban flood modelling and simulation. The Global South differs significantly from the
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Global North, where the modelling technique has been well established, including drainage
systems, data availability, design, maintenance, and land use patterns [10]. Moreover, there
are significant differences in the hydrologic cycle and rainfall/runoff processes between
tropical climates in the Global South and temperate temperatures typical of the Global
North [11–15]. Therefore, it is essential to investigate how well current modelling techniques
can adequately capture urban flood situations in the urban areas of the Global South.

Real-time forecasting of hydro-meteorological systems can improve urban resilience in
two crucial viewpoints, i.e., the issues of real-time control and alert for urban floods [16–20].
Urban drainage systems’ real-time management has been studied during the past few decades,
focusing mainly on combined sewer systems to reduce overflows in wet weather [21]. The
real-time control regulates the discharge, filling, and emptying rate and the available
capacity of the conveyance and storage components in the system based on previously
defined rules for meteorological, hydrologic, and hydraulic conditions [22]. Therefore,
accurate forecasting of meteorological, hydrologic, and hydraulic variables could be a
crucial part of the real-time forecasting system, initiating an automated response for flow
diversion or storage strategies.

As for urban flood simulations, there is a wide range of modelling techniques. In
general, physical-process-based models can simulate accurate flood forecasts, so they
have been giving us useful methodologies for urban flood applications [23]. However,
compared to fluvial flooding with a typical open dendritic structure, urban pluvial flooding
necessitates distinct modelling of small-scale structures in urban environments, e.g., streets
and buildings. In addition, urban drainage systems have intricate matrix architecture and
a wide variety of flood control devices, i.e., pumps, weirs, gates, and retarding storages.
Therefore, a finer spatial resolution is required to represent urban terrain characteristics with
social infrastructure. Moreover, in urban areas of Southeast Asia, a few drainage networks
have been under construction, and their infrastructure data archives and maps have barely
been updated. Under these circumstances, simulating urban pluvial flooding needs a longer
computational time. On the other hand, a shorter computation time for real-time urban
flood forecasting systems is be essential because it gives the system controls and flood
alerts a longer lead time. In this sense, empirical models, including data-driven artificial
intelligence (AI), have an advantage over traditional physical-process-based models [24].

This study tried to provide readers with a state-of-the-art review of current devel-
opment for real-time urban flood forecasting systems. It includes the above-mentioned
hydroinformatics tools, i.e., rainfall forecasting and pluvial flood modelling, as shown in
Figure 1. Currently available approaches used for rainfall forecasting and pluvial flood
modelling were listed and discussed regarding their advantages and limitations for urban
areas in Southeast Asia. Then, their standard architecture was featured for constituting real-
time urban flood forecasting systems. Moreover, this paper also tried to discuss further recent
research trends of data-driven AI approaches for real-time urban flood forecasting systems.
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2. Rainfall Information for Real-Time Urban Flood Forecasting Systems
2.1. Rainfall Data Sources

Precipitation is the primary input for real-time urban flood forecasting systems. How-
ever, it is challenging to quantify it precisely due to its discontinuous behavior, spatiotem-
poral unpredictability, and susceptibility to climatic variables [25]. Rain gauges are the most
popular in situ tool when measuring precipitation intensity and duration using telemetry.
Rain gauges’ continual recording of rainfall is crucial from a hydrological perspective.
However, the sparse distribution of rain gauges, particularly in areas with high spatial
variability such as mountain ranges, results in poor areal rainfall estimates.

Weather radars are remote sensing devices frequently used in hydrological fields to
estimate areal precipitation with high spatial and temporal resolution. The spatial and
temporal characteristics of a particular storm event—particularly its velocity and temporal
changeability—and the catchment extent reveal the minimal resolutions of rainfall data
for the given storm cell. When radar reflectivity data predict precipitation, it can instantly
deliver the precipitation information with excellent temporal resolution. The highest
temporal resolution for short-range local radars, employed particularly in cities, is one
minute with a streamlined scanning technique constrained to the lowest elevation angles.
The considerable variability of temporal precipitation, particularly for brief rainfall episodes,
is frequently ignored when calculating precipitation intensity from weather radar data
using a standard scan approach (typically with a temporal resolution of roughly 5 min).

As for spatial resolution, weather radars scan the atmosphere over a volume with a
projected area of about 1 km2 for a typical C-band radar. On the other hand, rain gauges
measure rainwater at ground level over a circular region with a diameter of 20 cm. The
spatial scales of the two devices are very different from each other. Consequently, it is not
easy to compare the results of a rain gauge with those of weather radar [26]. Numerous
studies have combined radar precipitation estimates with rain gauge data, either for quality
control of weather radar data or to produce high-resolution merged products with greater
accuracy than either rain gauge data or weather radar data alone [27–30]. However,
the geographical and temporal inconsistency between radar estimations and rain gauge
measurements continues to pose challenges to accurately determining real rainfall [31].

2.2. Nowcasting Techniques in Radar Rainfalls

Flash floods are brought on by intense convective storms and severe precipitation, re-
sulting in considerable economic losses and, in some circumstances, fatalities. Furthermore,
heavy rains are extremely challenging to predict since they change quickly and influence a
small area. Although predictions, in general, are often successful in predicting favorable
atmospheric conditions for severe storms, we are currently unable to accurately predict
their precise positions and occurrence time, as well as the different characteristics of specific
storms, e.g., heavy rains, downbursts, and lightning. As the primary factor could be due to
their rapid development, storms are only detected by weather radar a few tens of minutes
before they have a catastrophic appearance. Convection spots could be detected earlier
when using satellite data. However, it would still be challenging to predict whether the
convection produces a storm with a dangerous impact.

Nowcasting techniques for radar rainfall are categorized into a few groups. Extrapola-
tion techniques are the first group, which calculates motion vectors and their extrapolated
ones along the Lagrangian trajectories based on the current atmospheric conditions. They
use only radar data without numerical weather prediction (NWP) models. The primary
drawback of extrapolation techniques is that they cannot be extrapolated from the exist-
ing atmospheric conditions if any further atmospheric development occurs. The second
group refers to blending techniques, which combine the extrapolation techniques with the
NWP model results. The third group is artificial-intelligence-based models. They do not
explicitly employ extrapolation along Lagrangian trajectories, in contrast to extrapolation
approaches. Examples of nowcasting techniques were thoroughly examined in Sydney and
Beijing [28,29].
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2.3. Forecasting Techniques in Radar Rainfalls

Forecasting techniques for radar rainfalls are classified into several groups, i.e., mo-
tion field predictions, deterministic, ensemble, and probabilistic forecasting methods, and
conceptual methods. The motion field required for forecasting is predicted from the series
of radar reflectivity data. Then, weather radar data forecasts the deterministic, probabilis-
tic, and ensemble predictions of precipitation [32]. Different forecasting techniques have
been developed with variations in the motion field calculations and Lagrangian trajectory
utilization. The evolution of areal echoes in the radar reflectivity yields the motion fields.
The optical flow method (OFM) is most frequently used to calculate the motion fields [33].
In addition, there are prediction techniques, e.g., the Storm Cell Identification and Tracking
(SCIT) algorithms [34] and the Thunderstorm Identification Tracking Analysis and Now-
casting (TITAN), to monitor the development of individual storms [35]. A finer estimate is
required for motion fields to improve the efficiency of algorithms. Currently, the forward-
in-time technique is preferably used when forecasting individual storm movements. Most
motion field predictions employ a regular grid point to calculate the motion fields and
forecast the rainfall.

Quantitative precipitation forecasts attempt to predict the precipitation intensity in a
target location at a time or the accumulated precipitation in a specific time interval. The
abovementioned extrapolation techniques compute the location and time deterministically
by transferring the existing precipitation field along the Lagrangian trajectories. They
assume precipitation does not change along the storm courses [36–42]. This assumption
might be acceptable for forecasts for stratiform precipitation with lead times of several
hours. However, rainfall often changes significantly along the trajectories for convective
precipitation. Moreover, the forecasting improvements are debatable if they have reduced
accurate predictions for longer lead times by filtering smaller storms out from forecasting
due to a radar’s coarse spatial resolution. In general, it is impossible to quantify the precipi-
tation fields ranging from large objects to small features because their spatial dimensions
vary widely depending on meteorological situations and the resolution and quality of
radar data.

Ensemble and probabilistic forecasts are closely related because the ensemble members
can yield a probabilistic forecast. Ensemble forecasts can often assess potential economic
losses due to forecasting uncertainties. At the same time, probabilistic forecasts can provide
the precipitation occurrence likelihood with an arbitrary threshold being exceeded. A
basic technique of probabilistic forecasts considers forecasted values in the vicinity of
a point as a possible future for computation [43]. Precipitation forecasts can also be
performed using conceptual models describing precipitation developments. The automated
forecasting system of convective precipitation GANDOLF [44] is a well-known example of
this approach, attempting to simulate storm developments. GANDOLF includes a process
of convective cloud life cycles. It identifies and forecasts convective cells using satellite and
radar data, and forecasting values with NWP models. Other examples of conceptual model
applications can be found in [45,46], which has been used in AutoNowCaster [47,48].

2.4. Forecasting Application and Its Future Perspective in Southeast Asia

Radar rainfall measurements have already been of great importance in improving
basic knowledge of flash flood occurrence, providing critical information for flood risk
management for social infrastructure and the public. However, pluvial flood risk manage-
ment for urban cities needs finer spatial and temporal resolutions than fluvial flood risk
management, e.g., up to 1 km in spatial resolution with time series of 5 min in temporal
resolution. On the other hand, existing rainfall forecasting research has provided credible
estimates for a lead time of up to 2 h with a 10 min interval. Nowcasting has provided a
reasonable forecast for 10 to 20 min in convective precipitation. Therefore, radar rainfall
data for urban flash flood modelling should be expanded through tactics integrating expert
knowledge with hydrological models. As for real-time forecasting applications, the uti-
lization of weather radar data has a quality constraint. The rainfall forecasting techniques
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should process radar data using statistical and/or artificial intelligence approaches, reduc-
ing the high PC time consumption of sophisticated mathematical models used for usual
weather forecasts.

Most cities in Southeast Asia have a radar rainfall measurement system. It has a
different main purpose for each city using the radar system. For example, in Bangkok, the
Department of Drainage and Sewerage (DDS) of the Bangkok Metropolitan Administration
(BMA) has a radar station operating to monitor and track storms [49]. The rainfall forecast-
ing system provided by the Thai Meteorological Department uses the weather research and
forecasting (WRF) model to forecast hourly and one-day-ahead weather predictions [50].
In Singapore, the Meteorological Service Singapore (MSS), Singapore’s national authority
on the weather and climate, operates a radar rainfall measurement system with 2 h and
one-day weather forecasting [51]. Other countries also provide radar rainfall measurements
and weather forecasting data, e.g., Malaysia [52]. Consequently, most Southeast Asian
countries, especially in urban cities, operate a radar rainfall measurement system and
provide weather and rainfall forecasting data. However, the radar rainfall forecasting data
are still limited to the one-sided purpose of weather monitoring and tracking. Therefore,
their applications to real-time urban flood forecasting systems, based on physical-process-
based/data-driven artificial-intelligence-based models discussed in this paper, have not
yet been fully developed and will be a future challenge for urban cities in Southeast Asia.

3. Physical-Process-Based Hydraulic Models for Real-Time Urban Flood
Forecasting Systems
3.1. Overview

Many urban storm management models, such as SWMM (Storm Water Management
Model), InfoWorks ICM, and MIKE MOUSE, have been developed and applied to urban
areas over the last several decades [53]. Because of its ability to completely simulate the
urban drainage process, the open-source SWMM model is widely used for urban pluvial
flood modelling and urban drainage planning. Commercial software has also been used,
such as InfoSWMM and MIKE MOUSE [54]. These urban storm management models
simulate the rainfall-runoff process, pipe flows in urban drainage networks, and overflow
phenomena over pipe nodes [55]. Computational urban drainage models are beneficial to
direct efforts to reduce disaster risk. They allow for the reproduction of historical events for
which validation data are available, as well as the simulation of expected changes in climate
and land usage while considering possibilities for varying return periods. There are several
reviews of urban flood modeling [10,56,57] that include access to input data (such as sewage
systems, building locations, topography from GIS databases, and precipitation data), data
processing (such as building treatment methods), coupling techniques with overland flow
models (such as sewer pipe systems, groundwater models, and green infrastructure), access
to validation data for historical occurrences (such as in situ measurements, crowdsourcing,
and flow characteristics), and more [58]. Recently, research has emphasized improving the
accuracy of urban flood models, and urban flood models’ computing time is being reduced.
Several techniques are used for improving model accuracy, including topographic data
improvements, 1D–2D model connections, and validation data collection.

3.1.1. Model Improvement—Topographic Data Treatment

Several studies have focused on the use of a 2D shallow water model. Mustafa and
Szydłowski [59] evaluated building resistance models for predicting water level time
series in a diminished experiment with a possible network of buildings in a flood. They
confirmed the superiority of the building resistance for simulating flow fields in an urban
area. Bermúdez et al. [60] conducted a similar comparison on damage estimation at the
micro-scale building level. Arrighi et al. [61] compared flood extents, flow depths, and
building damage estimations for a small urban area in Italy using four DEMs from a LiDAR
survey. Local differences between the DEMs and the field measurements were generally
small, ranging from 0.26 to 2.5 m. Given the great importance of topographic data and its
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uncertainty analyses, these recent studies have emphasized the importance of combining
multiple data sources.

Regarding the topographic data resampling approach, used to shorten the calculation
time, the findings typically showed blurry representations of small-scale urban topography
features, such as narrow paths between buildings. To emulate the flow patterns of a high-
resolution model, Ramsauer et al. [62] solved this problem by implementing virtual surface
linkages between structures. The virtual surface linkages greatly enhanced the model’s
performance when used in a case study including synthetic rainfall. The size, density, and
arrangement of the structures in each floodplain continued to determine the improvement.

One study from De Almeida et al. [63] showed that changes in street elevation on the
decimetre scale might produce striking variation in anticipated flow statistics. In a UK
urban flood, they employed extremely fine-resolution topographical data with a 10 cm
precision. Due to the excessively high computing costs and rarity of such small-scale
topographic data for practical engineering research, this hampers urban flood modelling.
On the other hand, little topographic alterations in carefully selected areas were enough to
guide flows to low-impact zones, such as parks. This might create opportunities for flood
mitigation; however, as suggested by Yalcin et al. [64], who explored results that differed
from those of [63], such conclusions are heavily dependent on the analyzed events and the
morphology of the floodplain.

As for 3D modelling approaches, Rong et al. [63] demonstrate the power of 3D com-
putational fluid dynamics compared to traditional 2Ds. When the 3D flow model and a
regular DEM were merged, especially in the presence of small streets and intricate terrain
features, digital aerial photogrammetry was able to recreate realistic flow patterns in a
coastal flood caused by storm surges. Furthermore, using a building information model
(BIM) in conjunction with 3D computational fluid dynamics allows the flood simulation to
be extended inside buildings.

Using high-resolution GIS terrain data representing finer urban surfaces has enhanced
the usefulness of 2D flood inundation models [65]. The high-resolution raster data in GIS
(Geographic Information System) successfully replicate micro-scale urban flood character-
istics with building and roadway topographic aspects. Therefore, topographic data have
been recognized as one of the key contributors to flood simulation accuracy among the
different sources of uncertainty in model structure and model parameters [66–68]. A flood
inundation region is often defined using topographic data given by a DEM (digital eleva-
tion model). The properties of DEM have significant impacts on model performance [68].
Advances in high-resolution data from LiDAR (Light Detection And Ranging) technology
have expanded the widespread use of DEM products with various resolutions and vertical
precision for numerical flooding modelling [69]. For example, Annis et al. [69] created a
new DEM product used as a geospatial tool to define a floodplain extent.

Furthermore, quantitative comparisons revealed that DEMs obtained from data col-
lected using UAVs (unmanned aerial vehicles) could be a suitable alternative to LiDAR-
derived products for small-scale flood mapping [70]. High-resolution DEM data are thought
to be more accurate in defining the underlying surface and recreating small-scale flow
channels, resulting in lower error and uncertainty in simulation results [66,71,72]. Previous
research that investigated the variation in flood simulation performance between DEM data
products and sources found that the quality and accuracy of the DEM were more important
than the DEM resolution [73,74]. Furthermore, fine-resolution models are susceptible to
vertical inaccuracies in DEM data, although this sensitivity decreases with resolution [73].
Given the financial problems of manufacturing high-resolution DEMs with a broad spatial
extent, particularly in developing countries, e.g., in Southeast Asia, much research has
looked into how to identify the best resolution for a given size and processing cost [75].
Prior research, for example, examined the trade-off connection between DEM resolution,
vertical accuracy, and simulation error in a wide floodplain [76]. Previous research proved
that a 5 m resolution DEM was adequate to offer satisfactory performance for numerical
simulation of urban floods on a modest scale, as shown in Figure 2 [77–80].
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Previous research on the influence of DEM resolution on surface flood modelling
has mostly focused on two types of flood events and scales: urban flash flooding and
fluvial overbank flood modelling. Several building treatment approaches have been pre-
sented for flood modelling in urban environments, including techniques for increasing
resistance, blocks, holes, and porosity [81–84]. Schubert et al. [85,86] summarize a complete
comparison of the simulation results obtained for each building treatment approach at
different DEM resolutions. As the grid resolution coarsens, the sensitivity of the building
block approach increases, resulting in a more extensive underestimated range. As a result,
the computational cell size and DEM resolution must be lower than the building scale to
effectively describe flood behaviour between buildings and roadways [78]. Chen et al. [87]
proposed a unique building feature layer that uses an area/width-reduction factor ap-
proach to assess the impact of building storage and resistance, which has been proven to
produce an acceptable performance at coarse resolutions.

Surface flooding behaviour has an inverse relationship with DEM resolution, i.e., peak
flow becomes lower with a coarser resolution for larger storms but higher for smaller
storms depending on the DEM resolution in the sub-catchments [88,89]. Even for the same
inundation indicators, studies have found a difference in model performance with coarser
DEM resolution. According to Muthusamy et al. [75], inundation depth rises with DEM
resolution ranging from 1 to 50 m. However, in the field of 0.1–1 m, Ozdemir et al. [90]
discovered that inundation depth decreases with DEM resolution.

The numerical models available to simulate surcharging sewer networks and overland
surface flows are listed in [10,57]. Hossain et al. [91] discovered that whether or not
stormwater infrastructures were included in the modelling for a pluvial flooding event in
the United States changed flood volumes by factors of eight to 20, depending on the return
period. The spatial explicitness of soil input data was also a factor in the flood simulations
(pervious vs. impervious). The scarcity of data on the location and characteristics of
stormwater infrastructures remains a significant challenge for such urban flood simulations.

3.1.2. Accuracy Improvement—Model Validation Data

Another major impediment to flood modelling and management model development
is a lack of data for model elaboration, calibration, and validation [92]. Significant efforts
were made to retrieve valuable data from unusual sources, such as crowdsourced data to
address this issue. Macchione et al. [93] combined amateur videos, photographs, traditional
topographic surveys, and news reports, among other sources, to reconstruct hydraulic
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data from an urban flood event in Italy. They proposed a method of combining various
conventional and unconventional information sources. Scotti et al. [94] presented another
integrated approach for reconstructing temporal and spatial patterns of flood events. They
combined satellite images and markers from social media to effectively calibrate and
validate the outcomes of their hydraulic model in the case of Hurricane Harvey in Houston,
Texas, in 2017. The authors demonstrated that combining multiple data sources could aid
in dealing with the high uncertainties associated with each source of information. Molinari
et al. [92] used existing surveillance cameras to gain insights into flood-level evolution.
Their image-processing method was based on a deep convolutional neural network trained
using over 12,000 flooding images. The method was deemed inexpensive, versatile, scalable,
and portable to other sites.

3.1.3. Computational Time Improvement

Improvement of the computational performance is one of the most important issues
for real-time urban flood modelling [92]. It helps with larger computational domains,
higher spatial resolution, and/or longer time horizons. Moreover, because model outputs
should be in real-time, it is especially important in the planning and the forecasting and
crisis management phases. Several strategies have currently been investigated to accelerate
urban flood calculations. A massive parallelization, an adaptative mesh, a porosity model,
and a machine learning application were all presented in recent research.

One method for speeding up urban flood calculations is to use massive parallelization
techniques. The use of Graphic Processing Units (GPU) is exceptionally efficient because
it allows for the benefit of thousands of processors within a single device. Fernández
et al. [95] presented the first GPU implementation of a coupled dual drainage model that
included the overland and sewer fullwidth, their exchanges, and pollutant transports. In
general, when GPU was introduced to real-world modelling scenarios, it could result in a
speed-up factor of several hundred compared to a standard CPU computation.

An alternative for accelerating urban flood computation is a dynamic adaptive mesh-
ing technique, allowing the mesh’s capacity to adjust flows to evolve in space and time.
Hu et al. [96] used the Gmsh algorithm to adjust the mesh every ten time steps using
the Hessian matrix of the flow depth and velocity [97]. The technique produced accurate
results for a case study while shortening the computation time by a factor of two. Porosity
models employed sub-grid modelling to accelerate overland flow simulations. They are
classified into “single-” or “dual-porosity” based on the porosity parameters considered, as
well as their mathematical representation into “differential” or “integral.” These models
have shown significant advancements in recent years [98]. In addition, many studies have
investigated machine learning approaches to accelerate urban flood computations. A recent
review of machine-learning-based urban drainage models [99] highlights the widespread
use of data-driven models to improve their performance and efficiency. Machine learning
models, in general, are trained using detailed hydrodynamic data, primarily water depths
and velocities. The trained models can then predict large-scale flow patterns for situa-
tions that differ slightly from the configurations used for training. Two machine learning
approaches are based on the origin of the data used to train the model. The first type con-
siders the results of physical-process-based numerical calculations performed for various
input conditions such as topography and boundary settings. The second category focuses
on data collected on-site and from historical events but does not include any hydraulic
calculations [100–102].

3.2. Current Model Applicability and Its Future Perspective

Real-time urban flood forecasting systems can provide lifesaving information to res-
idents and emergency services and are valuable for mitigating the devastation of flash
flood disasters. Understanding high-risk areas allows emergency responders to prioritize
evacuations, being best at the onset of an extreme event [61]. Moreover, climate change
accelerates the demand for modelling suitable for real-time applications with advances in
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high-resolution numerical weather predictions against the increasing frequency of heavy
rainfall events. As mentioned above, several approaches have already been proposed to
improve computational time so that physical-process-based models can simulate real-time
flood forecasting [100]. GPU has also been successfully used to shorten the computation
time for both 1D and 2D models [103,104]. Alternative approaches for real-time flood fore-
casting have been proposed to overcome the difficulties of physical-process-based models,
such as simplifying the 2D shallow water equations by omitting inertia terms [105], using
cellular automata approaches [106], using simplified, non-physical-based methods [3], and
applying empirical/data-driven surrogate models [107]. Furthermore, parallel computing,
including cloud servers and code parallelization, has further been used [100]. Despite
advances in computer capability and computational efficiency of hydrodynamic models,
using these methods for real-time urban flood forecasting remains challenging [3].

Another challenge in developing a real-time urban flood forecasting system is the
high-resolution data requirements and the associated setup costs for 1D–2D physical-
process-based models. Required data, such as detailed sewer drainage system properties,
are frequently unavailable in urban areas in Southeast Asia. A measuring campaign is
required before the models are prepared for development. The expensive cost of modelling
and computation makes it difficult to establish physical-process-based models with fine-
enough spatial and temporal resolutions for real-time urban flood forecasting in many
cities in Southeast Asia.

The recent studies on physical-process-based hydraulic models for a real-time flood
forecasting system are summarized in Table 1. Existing research on urban hydraulic
drainage models may be divided into several categories, including realistic modelling,
accuracy improvement, and computation time. Adding new topographic data improved
the accuracy of small-scale areas in urban hydraulic drainage models. It retained impact
and significance with high-resolution topographic data in 1D and 2D modelling. Exist-
ing research on real-time urban flood forecasting using hydraulic models has indicated
significant efforts for real-time rainfall data from multiple sources, such as rain gauges,
radar, and satellites. The 1D and 2D models are generally connected using the integration
of independent software. The most severe barrier to employing physical-process-based
models for a real-time flood forecasting system is computation time constraints. They
usually give a short lead time, not enough for real-time systems. Several enhancements
resulted in a reduced computation time, increased output frequency, and longer lead time.

Table 1. Recent research on physical-process-based models for real-time urban flood forecasting
systems.

Country Area (km2) Hydraulic Modelling Method References

Germany 1.68 SWMM [108]
France 0.3 SWMM [109]

Australia 45 MIKE urban [110]
USA 696.7 SWMM [111]

Denmark 1.48 MIKE urban [112]
Brazil 0.11 SWMM [113]
China 0.017 SWMM, MIKE 21 [114]
USA 0.11 RBC SWMM [115]

China 141.09 SWMM [116]
UK N/A Shetran [117]

Nepal 51.94 PCSWMM [118]
Thailand 11 PCSWMM [80]

4. Data-Driven Artificial Intelligence (AI) Models for Real-Time Urban Flood
Forecasting Systems
4.1. The Limitation of the Existing Modelling Approach

Flood prediction is critical in decision-making and operational strategies, particularly
when human lives are at stake [119,120]. The biggest obstacle to building up real-time
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urban flood forecasting systems is a lead time duration influenced by the rainfall forecasting
process [120,121]. To describe the probability space of upcoming rainfall events, short-
term and detailed ensemble prediction systems are increasingly being used [122]. The
approaches for predicting the location and timing of floods in urban settings are hampered
by competing goals such as lead time, model accuracy, application of results, and computing
complexity [121]. The application of two-dimensional hydrodynamic models has a critical
bottleneck due to the computational time [123]. This issue becomes important according to
the fine-scale surface of the urban terrain [124]. Different solutions have been proposed,
such as lowering their dimensionality or ignoring the momentum equation’s inertial and
advection elements [125,126]. However, hydrodynamic models are unsuitable for wider
regions since the needed resolution is insufficient for real-time simulations [127], mainly
when linked 1D–2D models are utilized [128].

4.2. Data-Driven AI Models

Several data-driven and operational processing approaches increasingly use machine
learning [129]. Recently, flood prediction research has begun to employ machine learning
algorithms to reduce the computation time required for hydrodynamic calculation [130].
Consequently, machine learning models strive to mimic physical-process-based simulations
by learning the target systems independently with their physical links [131]. Artificial
neural networks (ANNs) have shown considerable promise in simulating flood-related
problems. They demonstrated a decent approximation of non-linear correlations [132].
Also, they provided excellent time series processing utilizing recurrent neural networks
(RNNs) [133]. Fully connected ANNs, in particular, were used to forecast flooding charac-
teristics at single coordinates using statistical and topographic inputs such as slope, aspect,
and curvatures [134,135]. Another strategy for using fully connected ANNs was proposed
by Berkhahn et al. [136]. These algorithms were used to forecast pluvial floods using
uniform rainfall occurrences as training inputs.

The basic drawback of fully connected ANNs is the exponential increase in layers
and parameters on high-resolution input, presenting severe processing challenges when
connecting millions of neighboring raster cells in large 2D simulations [137]. Against this
context, deep learning has been favored in recent years, addressing flood-related challenges.
A deep learning approach concentrating on river flooding prediction is demonstrated by
Zhou et al. [138]. They employed long-short-term memory (LSTM) architectures with a
spatial reduction strategy to model time series and eliminate information redundancy in
flood inundation data. Convolutional neural networks (CNNs) have shown promise in
this application due to their capacity to (i) interpret raw input in picture format and (ii)
minimize the number of parameters through the use of partly connected convolution layers
and weight sharing [139]. Recent research has addressed the application of CNNs for flood
area mapping using aerial or street view images [140] and flood susceptibility mapping
using changeable topographic features obtained from raw elevation data [140,141]. The
CNNs trained on the outputs of 2D hydraulic models were used by Kabir et al. [142] to
forecast the inundation depth induced by river floods.

Existing research on data-driven AI models for real-time urban flood forecasting
systems, as listed in Table 2, demonstrated significant reduction in processing time. Fore-
casting urban floods with a longer lead time offers a practical prediction for a longer time
of forecasting, and it is beneficial for operation and mitigation. In addition, geospatial
information and historical flood records are used to train the AI model, being a comprehen-
sive urban flood forecasting model. Also, the output of hydraulic models is fundamental
for AI model training because they can simulate inundation in very small sub-catchments
in metropolitan areas such as streets, buildings, and social communities. CNNs turn
high-dimensional data into low-dimensional ones, ensuring quick training procedures and
avoiding time-consuming computation modelling.



Water 2023, 15, 178 11 of 18

Table 2. Recent research on data-driven AI models for real-time urban flood forecasting systems.

Country Area (km2) Hydraulic Modelling Method Data-Driven AI Model References

France 0.3 SWMM ANN [109]
Belgium 0.3 - ANN [143]
Norway 15 - LSTM, GRU [144]

UK N/A - LASSO, ANN [145]
South Korea 6.8 - CNM [146]

Germany N/A - CNM, I-Tree
Canopy method [147]

UK 21.80 - URMOD [148]
Germany 4.0 MIKE 21 GAN [149]

4.3. Future Challenges for Urban Areas in Southeast Asia

The urban cities in Southeast Asia are facing severe flash flood inundation disasters
under climate change and the potential for social infrastructure development. Urbanization
and the future development of social infrastructure in the urban areas of Southeast Asia
require adjusting the real-time urban flood forecasting systems accordingly. However,
the data-driven AI models do not have the flexibility for these changing environments
due mainly to the lack of the physical processes of flash floods. On the other hand, the
physical-process-based hydraulic models can adjust to the changing circumstances with
appropriate topographic and rainfall information from state-of-the-art technologies in
geospatial science. In addition, it should be noted again that intense pluvial flash floods
due to climate change need real-time forecasting systems with shorter computation and
longer lead time. In this sense, the data-driven AI models show an advantage in time
management compared with physical-process-based hydraulic models. Thus, one of the
future challenges is the development of methodology-blending techniques of these two
models for real-time flash flood forecasting systems.

5. Discussion

Weather radar observations offer immense promise in hydrological applications, while
they have been underutilized in hydraulic applications. As reviewed in this paper, the cur-
rent urban real-time flood forecasting systems are implemented through hydroinformatics
input data, rainfall forecasting, physical-process-based hydraulic models, and data-driven
AI models. This paper’s primary focus is making effective use of weather radar’s high
temporal and spatial resolutions. It is assumed that the desired resolution for small urban
catchments should be up to 1 km in space and 5 min in time. Therefore, weather radar now-
casting and forecasting have a high potential capability of providing such high-resolution
rainfall input in time and space for implementing real-time flood forecasting systems.

The physical-process-based hydraulic models are essential for a flow analysis based
on the 1D drainage network. A 1D hydraulic model is an unquestionably valuable tool for
understanding and managing the operations of drainage networks, and its implementation
is quick and stable. However, the 1D model indicates its limit when the drainage network
overflows onto the urban surface. When such overflows occur, a 2D model should repre-
sent inundation flows. The 2D hydraulic models have proved effective and realistic for
representing urban floods. Moreover, a 1D–2D coupling approach is considered the most
realistic to represent the flow interactions between the drainage network and the urban
surface. Nevertheless, the intrinsic peculiarities of urban areas need high-resolution repre-
sentation, resulting in a considerable computation time unacceptable for real-time systems.
Recent research suggests promising advancements in speeding up 2D models [100,103,104],
hoping for real-time 2D model applications shortly.

Recent research shows that the finest topographic data provide high accuracy of
inundation depths and their locations in an urban area. The grid size of input data is also
a significant factor in improving forecasting accuracy. Therefore, real-time urban flood
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forecasting systems mainly recommend using a higher resolution and frequency of rainfall
input data.

The physical-process-based hydraulic models are beneficial in terms of flexibility from
future urban reconstruction, drainage infrastructure development, and land use changes.
In contrast, longer computation time and limited resources restrict the usefulness of the
physical-process-based hydraulic models. Therefore, data-driven AI models could be a
promising approach that provides a shorter computational time and requires fewer PC
resources. Moreover, the infrastructure data in urban areas of Southeast Asia have not
yet been fully available and barely updated. Therefore, data-driven AI models have an
advantage over traditional physical-process-based models.

In Southeast Asia, hydrological measurement has a high potential for rainfall fore-
casting development. On the other hand, the availability of social infrastructure data
in Southeast Asia could be challenging for developing real-time urban flood forecasting
systems. Therefore, a blended approach of a physical-process-based hydraulic model with
a data-driven AI model is recommended for real-time urban flood forecasting systems in
most of the urban cities in Southeast Asia, as shown in Figure 3.
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Figure 3. Conceptual diagram of the blended approach of a physical-process-based hydraulic model
with a data-driven AI model for real-time urban flood forecasting systems.

Moreover, the accuracy of the real-time system is influenced by two main factors: the
accuracy of rainfall forecasting and hydraulic modelling. In addition, the primary in situ
records could be beneficial, e.g., the IoT (Internet of Things) water level measurement.
Further developments using these techniques are of fundamental importance as a pivotal
future path, expecting their approaches to be utilized to a greater extent.

6. Conclusions

This study provided an overview of current cutting-edge modelling tools and their
advantages and disadvantages for real-time urban flood forecasting systems. This paper
described a standard design for real-time urban flood forecasting systems in terms of three
main categories, i.e., hydroinformatics for rainfall data and urban topographic information,
physical-process-based hydraulic models for inundation simulations, and data-driven AI
models for real-time systems. As for the input from hydroinformatics, the influence of
geospatial information and temporal rainfall resolution on the accuracy of urban flood
forecasting is highly recognized as an essential study field for urban flood modelling. The
state-of-the-art review for real-time urban flood forecasting systems shows that the model
should be chosen based on the available data, the urban flood environment, and real-time
forecasting demands. Historical statistics and basic black-box models can provide quick
and fascinating results when observational data are insufficient. Moreover, it could lead to
implementing a data-driven AI model for the future development of real-time urban flood
forecasting systems.
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In urban areas in Southeast Asia, the future development of real-time urban flood
forecasting systems is necessary due to the extreme flash flood trends under climate change
and further social infrastructure development. The physical-process-based hydraulic
models require extensive data for monitoring and operation, such as gates and pumps for
the drainage network infrastructure. Moreover, the data-driven AI models significantly
provide a faster output and a shorter computation time. Thus, the hybrid blended approach
of physical-process-based and data-driven models have a high potential for the future best
practice in developing real-time urban flood foresting systems.
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