Urban Flood Loss Estimation and Evacuation Design Based on a 500-Year Extreme Flood Event in Syracuse City
Abstract
:1. Introduction
2. Study Area and Historical Flood Events
3. Methods
3.1. Data Collection
3.2. Flood Simulation
3.3. Approaches to Flood Damage Estimation
3.3.1. Buildings Damage Estimation
3.3.2. Population Damage Estimation
3.4. Framework of Flood Evacuation Design
3.4.1. Spatial Distribution Analysis of Shelter Demand and Evacuation Resources
3.4.2. Spatial Accessibility Estimation of Evacuation Shelters
4. Results
4.1. Flood Inundation Mapping
4.2. Loss of Buildings in a 500-Year Flood Event
4.3. Loss of Population in a 500-Year Flood Event
4.4. Identification of Flood Shelters
4.5. Determination of Flood Evacuation Routes
5. Discussion
5.1. Urban Pluvial Flooding
5.2. Flood Damage Estimation
5.3. Flood Evacuation Design
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Supplementary Data
References
- Betancourt-Suárez, V.; García-Botella, E.; Ramon-Morte, A. Flood mapping proposal in small watersheds: A case study of the Rebollos and Miranda Ephemeral Streams (Cartagena, Spain). Water 2021, 13, 102. [Google Scholar] [CrossRef]
- Borzi, G.; Roig, A.; Tanjal, C.; Santucci, L.; Tejada, M.; Carol, E. Flood hazard assessment in large plain basins with a scarce slope in the Pampean Plain, Argentina. Environ. Monit. Assess. 2021, 193, 177. [Google Scholar] [CrossRef] [PubMed]
- Rojas, R.; Feyen, L.; Watkiss, P. Climate change and river floods in the European Union: Socio-economic consequences and the costs and benefits of adaptation. Glob. Environ. Chang. 2013, 23, 1737–1751. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2021: The Physical Science Basis Contribution of Working Group I of to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Pean, C., Chen, Y., Berger, S., Yu, R., Zhou, B., Caud, N., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar]
- Darabi, H.; Choubin, B.; Rahmati, O.; Haghighi, A.T.; Pradhan, B.; Kløve, B. Urban flood risk mapping using the GARP and QUEST models: A comparative study of machine learning techniques. J. Hydrol. 2019, 569, 142–154. [Google Scholar] [CrossRef]
- Papilloud, T.; Röthlisberger, V.; Loreti, S.; Keiler, M. Flood exposure analysis of road infrastructure—Comparison of different methods at national level. Int. J. Disaster Risk Reduct. 2020, 47, 101548. [Google Scholar] [CrossRef]
- Stefanidis, S.; Alexandridis, V.; Theodoridou, T. Flood exposure of residential areas and infrastructure in Greece. Hydrology 2022, 9, 145. [Google Scholar] [CrossRef]
- Dano, U.; Balogun, A.L.; Matori, A.N.; Yusouf, K.W.; Abubakar, I.; Mohamed, M.S.; Aina, Y.; Pradhan, B. Flood susceptibility mapping using GIS-based analytic network process: A case study of Perlis, Malaysia. Water 2019, 11, 615. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, B.B.; Kawasaki, A.; Zin, W.W. Development of flood damage assessment method for residential areas considering various house types for Bago Region of Myanmar. Int. J. Disaster Risk Reduct. 2021, 66, 102602. [Google Scholar] [CrossRef]
- Skilodimou, H.D.; Bathrellos, G.D.; Alexakis, D.E. Flood hazard assessment mapping in burned and urban areas. Sustainability 2021, 13, 4455. [Google Scholar] [CrossRef]
- Molinari, D.; Ballio, F.; Handmer, J.; Menoni, S. On the modeling of significance for flood damage assessment. Int. J. Disaster Risk Reduct. 2014, 10, 381–391. [Google Scholar] [CrossRef]
- Velascoa, M.; Àngels, C.; Russo, B. Flood damage assessment in urban areas. Application to the Raval district of Barcelona using synthetic depth damage curves. Urban Water J. 2016, 13, 426–440. [Google Scholar] [CrossRef]
- Wang, G.; Liu, Y.; Hu, Z.; Zhang, G.; Liu, J.; Lyu, Y.; Gu, Y.; Huang, X.; Zhang, Q.; Liu, L. Flood risk assessment of subway systems in metropolitan areas under land subsidence scenario: A case study of Beijing. Remote Sens. 2021, 13, 637. [Google Scholar] [CrossRef]
- Kreibich, H.; Seifert, I.; Merz, B.; Thieken, A.H. Development of FLEMOcs—A new model for the estimation of flood losses in the commercial sector. Hydrol. Sci. J. 2010, 55, 1302–1314. [Google Scholar] [CrossRef]
- Merz, B.; Kreibich, H.; Schwarze, R.; Thieken, A. Assessment of economic flood damage. Nat. Hazards Earth Syst. Sci. 2010, 10, 1697–1724. [Google Scholar] [CrossRef]
- Nascimento, N.; Machado, M.L.; Baptista, M.; De Paula, E.; Silva, A. The assessment of damage caused by floods in the Brazilian context. Urban Water J. 2007, 4, 195–210. [Google Scholar] [CrossRef]
- Komolafe, A.A.; Herath, S.; Avtar, R. Methodology to assess potential flood damages in urban areas under the influence of climate change. Nat. Hazards Rev. 2018, 19, 05018001. [Google Scholar] [CrossRef]
- Roccati, A.; Luino, F.; Turconi, L.; Piana, P.; Watkins, C.; Faccini, F. Historical geomorphological research of a Ligurian Coastal Floodplain (Italy) and its value for management of flood risk and environmental sustainability. Sustainability 2018, 10, 3727. [Google Scholar] [CrossRef] [Green Version]
- Masuya, A.; Dewan, A.; Corner, R.J. Population evacuation: Evaluating spatial distribution of flood shelters and vulnerable residential units in Dhaka with geographic information systems. Nat. Hazards 2015, 78, 1859–1882. [Google Scholar] [CrossRef]
- Zhou, Q.; Su, J.; Arnbjerg-Nielsen, K.; Ren, Y.; Luo, J.; Ye, Z.; Feng, J. A GIS-based hydrological modeling approach for rapid urban flood hazard assessment. Water 2021, 13, 1483. [Google Scholar] [CrossRef]
- Lim, H., Jr.; Lim, M.B.; Piantanakulchai, M. A review of recent studies on flood evacuation planning. J. East. Asia Soc. Transp. Stud. 2013, 10, 147–162. [Google Scholar]
- Alaeddine, H.; Serrhini, K.; Maizia, M.; Néron, E. A spatiotemporal optimization model for the evacuation of the population exposed to flood hazard. Nat. Hazards Earth Syst. Sci. 2015, 15, 687–701. [Google Scholar] [CrossRef]
- Liu, X.; Lim, S. Integration of spatial analysis and an agent-based model into evacuation management for shelter assignment and routing. J. Spat. Sci. 2016, 61, 283–298. [Google Scholar] [CrossRef]
- Arabani, A.B.; Farahani, R.Z. Facility location dynamics: An overview of classifications and applications. Comput. Ind. Eng. 2012, 62, 408–420. [Google Scholar] [CrossRef]
- Gong, J.; Liu, Y.L.; Liu, Y.F.; Huang, P.J.; Li, J.W. Evaluating the evacuation and rescue capabilities of urban open space from a land use perspective: A case study in Wuhan, China. ISPRS Int. J. Geo-Inf. 2017, 6, 227. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Uyttenhove, P.; Van Eetvelde, V. Planning green infrastructure to mitigate urban surface water flooding risk—A methodology to identify priority areas applied in the city of Ghent. Landsc. Urban Plan. 2020, 194, 103703. [Google Scholar] [CrossRef]
- Liu, N.; Shao, X.; Qi, M. A bi-objective evacuation routing engineering model with secondary evacuation expected costs. Syst. Eng. Procedia 2012, 5, 1–7. [Google Scholar]
- Lee, Y.H.; Kim, H.; Han, K.Y.; Hong, W.H. Flood evacuation routes based on spatiotemporal inundation risk assessment. Water 2020, 12, 2271. [Google Scholar] [CrossRef]
- NPCC. Climate Risk Information 2013: Observations, Climate Change Projections, and Maps; NPCC: New York, NY, USA, 2013. [Google Scholar]
- National Oceanic and Atmospheric Administration (NOAA). 2010. Available online: https://www.noaa.gov/weather (accessed on 1 July 2020).
- Northwest Alliance for Computational Science & Engineering. PRISM Climate Data. 2020. Available online: http://prism.oregonstate.edu/explorer/ (accessed on 1 July 2020).
- Squier-Babcock, M.; Davidson, C.I. Hydrologic performance of an extensive green roof in Syracuse, NY. Water 2020, 12, 1535. [Google Scholar] [CrossRef]
- Northeast Regional Climate Center (NRCC). 2021. Available online: http://www.nrcc.cornell.edu/ (accessed on 1 July 2020).
- Patrick, L.; Solecki, W.; Jacob, K.H.; Kunreuther, H.; Nordenson, G. New York City panel on climate change 2015 report chapter 3: Static coastal flood mapping. Ann. N. Y. Acad. Sci. 2015, 1336, 45–55. [Google Scholar] [CrossRef] [Green Version]
- US Geological Survey. StreamStats. 2020. Available online: https://streamstats.usgs.gov/ss/ (accessed on 1 July 2020).
- Dormitory Authority of the State of New York. Onondaga Creek Flood and Sediment Study; Department of Environmental Conservation: New York, NY, USA, 2016. [Google Scholar]
- Federal Emergency Management Agency (FEMA). Risk Mapping, Assessment and Planning (Risk MAP). 2017. Available online: https://www.fema.gov/risk-mapping-assessment-and-planning-risk-map (accessed on 1 July 2020).
- Gao, P.; Gao, W.; Ke, N. Assessing the impact of flood inundation dynamics on an urban environment. Nat. Hazards 2021, 109, 1047–1072. [Google Scholar] [CrossRef]
- Blessing, R.; Sebastian, A.; Brody, S.D. Flood risk delineation in the United States: How much loss are we capturing? Nat. Hazards Rev. 2017, 18, 1–10. [Google Scholar] [CrossRef]
- DeGaetano, A.T.; Castellano, C.M. Future projections of extreme precipitation intensity-duration-frequency curves for climate adaptation planning in New York State. Clim. Serv. 2017, 5, 23–35. [Google Scholar] [CrossRef]
- Saksena, S.; Dey, S.; Merwade, V.; Singhofen, P.J. A computationally efficient and physically based approach for urban flood modeling using a flexible spatiotemporal structure. Water Resour. Res. 2019, 56, e2019WR025769. [Google Scholar] [CrossRef] [Green Version]
- Seenu, P.Z.; Venkata, R.E.; Jayakumar, K.V. Visualisation of urban flood inundation using SWMM and 4D GIS. Spat. Inf. Res. 2020, 28, 459–467. [Google Scholar] [CrossRef]
- Ghimire, E.; Sharma, S. Flood damage assessment in HAZUS using various resolution of data and one-dimensional and two-dimensional HEC-RAS depth grids. Nat. Hazards Rev. 2021, 22, 04020054. [Google Scholar] [CrossRef]
- Lindenschmidt, K.E.; Herrmann, U.; Pech, I.; Suhr, U.; Apel, H.; Thieken, A. Risk assessment and mapping of extreme floods in non-Dyked communities along the Elbe and Mulde Rivers. Adv. Geosci. 2006, 9, 15–23. [Google Scholar] [CrossRef] [Green Version]
- Karamouz, M.; Fereshtehpour, M.; Ahmadvand, F.; Zahmatkesh, Z. Coastal flood damage estimator: An alternative to FEMA’s HAZUS platform. J. Irrig. Drain. Eng. 2016, 142, 04016016. [Google Scholar] [CrossRef]
- Boyd, E.; Levitan, M.; van Heerden, I. Further Specification of the Dose-Response Relationship for Flood Fatality Estimation. In Proceedings of the US-Bangladesh Workshop on Innovation in Windstorm/Storm Surge Mitigation Construction, National Science Foundation and Ministry of Disaster & Relief, Government of Bangladesh, Dhaka, Bangladesh, 20–21 December 2005. [Google Scholar]
- Kablan, M.K.A.; Dongo, K.; Coulibaly, M. Assessment of social vulnerability to flood in urban Côte d’Ivoire using the MOVE framework. Water 2017, 9, 292. [Google Scholar] [CrossRef] [Green Version]
- Feng, B.; Wang, J.; Zhang, Y.; Hall, B.; Zeng, C. Urban flood hazard mapping using a hydraulic–GIS combined model. Nat. Hazards 2020, 100, 1089–1104. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Huang, J.; Wang, H.M.; Kang, J.L.; Cao, W.W. Analysis of flood evacuation process in vulnerable community with mutual aid mechanism: An agent-based simulation framework. Int. J. Environ. Res. Public Health 2020, 17, 560. [Google Scholar] [CrossRef] [Green Version]
- Sanyal, J.; Lu, X.X. Ideal location for flood shelter: A geographic information system approach. J. Flood Risk Manag. 2009, 2, 262–271. [Google Scholar] [CrossRef]
- Mohamed, S.A. Development of a GIS-based alert system to mitigate flash flood impacts in Asyut governorate, Egypt. Nat. Hazards 2021, 108, 2739–2763. [Google Scholar] [CrossRef]
- Trindade, A.; Teves-Costa, P.; Catita, C. A GIS-based analysis of constraints on pedestrian tsunami evacuation routes: Cascais case study (Portugal). Nat. Hazards 2018, 93, 169–185. [Google Scholar] [CrossRef]
- Misra, J. A walk over the shortest path: Dijkstra’s Algorithm viewed as fixed-point computation. Inf. Process. Lett. 2001, 77, 197–200. [Google Scholar] [CrossRef]
- Deng, Y.; Chen, Y.X.; Zhang, Y.J.; Mahadevan, S. Fuzzy Dijkstra algorithm for shortest path problem under uncertain environment. Appl. Soft Comput. 2012, 12, 1231–1237. [Google Scholar] [CrossRef]
- Pralle, S. Drawing lines: FEMA and the politics of mapping flood zones. Clim. Chang. 2019, 152, 227–237. [Google Scholar] [CrossRef]
- Zhou, Q.; Mikkelsen, P.S.; Halsnæs, K.; Arnbjerg-Nielsen, K. Framework for economic pluvial flood risk assessment considering climate change effects and adaptation benefits. J. Hydrol. 2012, 414, 539–549. [Google Scholar] [CrossRef]
- Guerreiro, S.B.; Glenis, V.; Dawson, R.J.; Kilsby, C. Pluvial flooding in European cities—A continental approach to urban flood modelling. Water 2017, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Rosenzweig, B.R.; McPhillips, L.; Chang, H.; Cheng, C.W.; Welty, C.; Matsler, M.; Iwaniec, D.; Davidson, C.I. Pluvial flood risk and opportunities for resilience. WIREs Water 2018, 5, e1302. [Google Scholar] [CrossRef]
- Moftakhari, H.R.; AghaKouchak, A.; Sanders, B.F.; Matthew, R.A. Cumulative hazard: The case of nuisance flooding. Earths Future 2017, 5, 214–223. [Google Scholar] [CrossRef]
- Tanaka, T.; Kiyohara, K.; Tachikawa, Y. Comparison of fluvial and pluvial flood risk curves in urban cities derived from a large ensemble climate simulation dataset: A case study in Nagoya. J. Hydrol. 2020, 584, 124706. [Google Scholar] [CrossRef]
- Huang, H.; Chen, X.; Wang, X.; Wang, X.; Liu, L. A depression-based index to represent topographic control in urban pluvial flooding. Water 2019, 11, 2115. [Google Scholar] [CrossRef]
- Wu, Q.; Lane, C.R.; Wang, L.; Vanderhoof, M.K.; Christensen, J.R.; Liu, H. Efficient delineation of nested depression hierarchy in digital elevation models for hydrological analysis using level-set method. J. Am. Water Resour. Assoc. 2018, 55, 354–368. [Google Scholar] [CrossRef] [PubMed]
- Samela, C.; Persiano, S.; Bagli, S.; Luzzi, V.; Mazzoli, P.; Humer, G.; Reithofer, A.; Essenfelder, A.H.; Amadio, M.; Mysiak, J.; et al. Safer_RAIN: A DEM-Based hierarchical filling-&-spilling algorithm for pluvial flood hazard assessment and mapping across large urban areas. Water 2020, 12, 1514. [Google Scholar] [CrossRef]
- Downton, M.W.; Pielke, R.A. How accurate are disaster loss data? The case of U.S. flood damage. Nat. Hazards 2005, 35, 211–228. [Google Scholar] [CrossRef] [Green Version]
- Jonkman, S.N. Global perspectives on loss of human life caused by floods. Nat. Hazards 2005, 34, 151–175. [Google Scholar] [CrossRef]
- Kebede, A.S.; Nicholls, R.J. Exposure and vulnerability to climate extremes: Population and asset exposure to coastal flooding in Dar es Salaam, Tanzania. Reg. Environ. Chang. 2012, 12, 81–94. [Google Scholar] [CrossRef]
- Lim, J.; Lee, K. Flood mapping using multi-source remotely sensed data and logistic regression in the heterogeneous mountainous regions in North Korea. Remote Sens. 2018, 10, 1036. [Google Scholar] [CrossRef] [Green Version]
- Jato-Espino, D.; Sillanpää, N.; Andrés-Doménech, I.; Rodriguez-Hernandez, J. Flood risk assessment in urban catchments using multiple regression analysis. J. Water Resour. Plan. Manag. 2018, 144, 04017085. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.B. Critical flow centrality measures on interdependent networks with time-varying demands. Int. J. Crit. Infrastruct. Prot. 2021, 35, 100462. [Google Scholar] [CrossRef]
Data Category | Data Type | Resolution/Scale | Year | Source |
---|---|---|---|---|
DEM | Raster | 0.3 m | 2010 | USGS |
Landsat-8 Remote sensing image | Raster | 30 m | 2015 | USGS |
Census | Vector | Household-level | 2010 | U.S. Census Bureau |
Land use | Vector | Household-level | 2015 | SOCPA |
Building footprint | Vector | Household-level | 2015 | SOCPA |
Hydrological data | Numeric | Daily | 1970–2020 | USGS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Si, Y.; Li, J.; Si, Y. Urban Flood Loss Estimation and Evacuation Design Based on a 500-Year Extreme Flood Event in Syracuse City. Water 2023, 15, 3. https://doi.org/10.3390/w15010003
Si Y, Li J, Si Y. Urban Flood Loss Estimation and Evacuation Design Based on a 500-Year Extreme Flood Event in Syracuse City. Water. 2023; 15(1):3. https://doi.org/10.3390/w15010003
Chicago/Turabian StyleSi, Yunrui, Junli Li, and Youbin Si. 2023. "Urban Flood Loss Estimation and Evacuation Design Based on a 500-Year Extreme Flood Event in Syracuse City" Water 15, no. 1: 3. https://doi.org/10.3390/w15010003
APA StyleSi, Y., Li, J., & Si, Y. (2023). Urban Flood Loss Estimation and Evacuation Design Based on a 500-Year Extreme Flood Event in Syracuse City. Water, 15(1), 3. https://doi.org/10.3390/w15010003