Experimental Design and Bioassays as Tools to Investigate the Impact of Anodic Oxidation on Progestins Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents
2.2. Electrochemical Degradation Studies
2.3. Analytical Methods
2.4. Central Composite Design (CCD)
2.5. In Vitro Estrogenic Assay—YES
Data Analysis
2.6. Ecotoxicity Assays
3. Results and Discussion
3.1. Hormones Degradation and Response Surface Modeling
3.1.1. Effect of Operating Parameters
3.1.2. Definition of Optimum Condition
3.2. Estrogenic Activity Removal
3.3. Toxicity Effect on D. similis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Contardo-Jara, V.; Lorenz, C.; Pflugmacher, S.; Nützmann, G.; Kloas, W.; Wiegand, C. Molecular Effects and Bioaccumulation of Levonorgestrel in the Non-Target Organism Dreissena Polymorpha. Environ. Pollut. 2011, 159, 38–44. [Google Scholar] [CrossRef] [PubMed]
- Runnalls, T.J.; Beresford, N.; Kugathas, S.; Margiotta-Casaluci, L.; Scholze, M.; Scott, A.P.; Sumpter, J.P. From Single Chemicals to Mixtures-Reproductive Effects of Levonorgestrel and Ethinylestradiol on the Fathead Minnow. Aquat. Toxicol. 2015, 169, 152–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.J.; Ma, D.D.; Fang, G.Z.; Zhang, J.G.; Huang, G.Y.; Xie, L.; Chen, H.X.; Hou, L.P.; Ying, G.G. Levonorgestrel and Dydrogesterone Affect Sex Determination via Different Pathways in Zebrafish. Aquat. Toxicol. 2021, 240, 105972. [Google Scholar] [CrossRef] [PubMed]
- Contraceptive Use by Method 2019. Contracept; United Nations: New York, NY, USA, 2019. [CrossRef]
- Bahamondes, L.; Ali, M.; Monteiro, I.; Fernandes, A. Contraceptive Sales in the Setting of the Zika Virus Epidemic. Hum. Reprod. 2017, 32, 88–93. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- King, O.C.; van de Merwe, J.P.; McDonald, J.A.; Leusch, F.D.L. Concentrations of Levonorgestrel and Ethinylestradiol in Wastewater Effluents: Is the Progestin Also Cause for Concern? Environ. Toxicol. Chem. 2016, 35, 1378–1385. [Google Scholar] [CrossRef]
- Orlando, E.F.; Ellestad, L.E. Sources, Concentrations, and Exposure Effects of Environmental Gestagens on Fish and Other Aquatic Wildlife, with an Emphasis on Reproduction. Gen. Comp. Endocrinol. 2014, 203, 241–249. [Google Scholar] [CrossRef]
- Fent, K. Progestins as Endocrine Disrupters in Aquatic Ecosystems: Concentrations, Effects and Risk Assessment. Environ. Int. 2015, 84, 115–130. [Google Scholar] [CrossRef]
- Besse, J.P.; Garric, J. Progestagens for Human Use, Exposure and Hazard Assessment for the Aquatic Environment. Environ. Pollut. 2009, 157, 3485–3494. [Google Scholar] [CrossRef] [Green Version]
- Rocha, M.; Rocha, E. Synthetic Progestins in Waste and Surface Waters: Concentrations, Impacts and Ecological Risk. Toxics 2022, 10, 163. [Google Scholar] [CrossRef]
- Pal, A.; Gin, K.Y.H.; Lin, A.Y.C.; Reinhard, M. Impacts of Emerging Organic Contaminants on Freshwater Resources: Review of Recent Occurrences, Sources, Fate and Effects. Sci. Total Environ. 2010, 408, 6062–6069. [Google Scholar] [CrossRef]
- Golovko, O.; Šauer, P.; Fedorova, G.; Kroupová, H.K.; Grabic, R. Determination of Progestogens in Surface and Waste Water Using SPE Extraction and LC-APCI/APPI-HRPS. Sci. Total Environ. 2018, 621, 1066–1073. [Google Scholar] [CrossRef] [PubMed]
- Yu, Q.; Geng, J.; Zong, X.; Zhang, Y.; Xu, K.; Hu, H.; Deng, Y.; Zhao, F.; Ren, H. Occurrence and Removal of Progestagens in Municipal Wastewater Treatment Plants from Different Regions in China. Sci. Total Environ. 2019, 668, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Nasuhoglu, D.; Berk, D.; Yargeau, V. Photocatalytic Removal of 17-Alfaethinylestradiol (EE2) and Levonorgestrel (LNG) from Contraceptive Pill Manufacturing Plant Wastewater under UVC Radiation. Chem. Eng. J. 2012, 185–186, 52–60. [Google Scholar] [CrossRef]
- de Jesus, J.M.S.; Tominaga, F.K.; dos Santos Argolo, A.; Nascimento, A.C.G.; Borrely, S.I.; Vieira, D.P.; Bila, D.M.; Costa Teixeira, A.C.S. Radiolytic Degradation of Levonorgestrel and Gestodene: Performance and Bioassays. Process Saf. Environ. Prot. 2022, 162, 520–530. [Google Scholar] [CrossRef]
- Martín de Vidales, M.J.; Sáez, C.; Cañizares, P.; Rodrigo, M.A. Electrolysis of Progesterone with Conductive-Diamond Electrodes. J. Chem. Technol. Biotechnol. 2012, 87, 1173–1178. [Google Scholar] [CrossRef]
- Brocenschi, R.F.; Rocha-Filho, R.C.; Bocchi, N.; Biaggio, S.R. Electrochemical Degradation of Estrone Using a Boron-Doped Diamond Anode in a Filter-Press Reactor. Electrochim. Acta 2016, 197, 186–193. [Google Scholar] [CrossRef]
- Frontistis, Z.; Brebou, C.; Venieri, D.; Mantzavinos, D.; Katsaounis, A. BDD Anodic Oxidation as Tertiary Wastewater Treatment for the Removal of Emerging Micro-Pollutants, Pathogens and Organic Matter. J. Chem. Technol. Biotechnol. 2011, 86, 1233–1236. [Google Scholar] [CrossRef]
- Nájera-Aguilar, H.A.; Gutiérrez-Hernández, R.F.; de Los Santos, R.G.; García-Lara, C.; Méndez-Novelo, R.; Rojas-Valencia, M.N. Degradation of Gestodene (GES) and 17α-Ethinylestradiol (EE2) by Electrochemical Oxidation. J. Water Health 2016, 14, 980–988. [Google Scholar] [CrossRef] [Green Version]
- Duarte, J.L.S.; Meili, L.; Gomes, L.M.; Melo, J.M.O.; Ferro, A.B.; Tavares, M.G.; Tonholo, J.; Zanta, C.L.P.S. Electrochemical Degradation of 17-A-Methyltestosterone over DSA® Electrodes. Chem. Eng. Process.-Process Intensif. 2019, 142, 107548. [Google Scholar] [CrossRef]
- Vieira, K.M.; Nascentes, C.C.; Motheo, A.J.; Augusti, R. Electrochemical Oxidation of Ethinylestradiol on a Commercial Ti/Ru 0.3 Ti 0.7 O 2 DSA Electrode. ISRN Environ. Chem. 2013, 2013, 354848. [Google Scholar] [CrossRef] [Green Version]
- Murugananthan, M.; Yoshihara, S.; Rakuma, T.; Uehara, N.; Shirakashi, T. Electrochemical Degradation of 17β-Estradiol (E2) at Boron-Doped Diamond (Si/BDD) Thin Film Electrode. Electrochim. Acta 2007, 52, 3242–3249. [Google Scholar] [CrossRef]
- Al-Qaim, F.F.; Mussa, Z.H.; Yuzir, A.; Latip, J.; Othman, M.R. The Fate of Prazosin and Levonorgestrel after Electrochemical Degradation Process: Monitoring by-Products Using LC-TOF/MS. J. Environamental Sci. 2018, 21, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Cięciwa, A.; Fόti, G.; Comninellis, C. Basic Principles of the Electrochemical Mineralization of Organic Pollutants for Wastewater Treatment; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9780387369228. [Google Scholar]
- Garcia-Segura, S.; Ocon, J.D.; Chong, M.N. Electrochemical Oxidation Remediation of Real Wastewater Effluents—A Review. Process. Saf. Environ. Prot. 2018, 113, 48–67. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and Mediated Anodic Oxidation of Organic Pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef] [PubMed]
- Torres, N.H.; de Oliveira Santiago Santos, G.; Ferreira, L.F.R.; Américo-Pinheiro, J.H.P.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Environmental Aspects of Hormones Estriol, 17β-Estradiol and 17α-Ethinylestradiol: Electrochemical Processes as next-Generation Technologies for Their Removal in Water Matrices. Chemosphere 2021, 267, 128888. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Y.; Zhao, H.; Liang, J.; Yue, L.; Li, T.; Luo, Y.; Liu, Q.; Lu, S.; Asiri, A.M.; Gong, Z.; et al. Anodic Oxidation for the Degradation of Organic Pollutants: Anode Materials, Operating Conditions and Mechanisms. A Mini Review. Electrochem. commun. 2021, 123, 106912. [Google Scholar] [CrossRef]
- Khan, S.; Sayed, M.; Sohail, M.; Shah, L.A.; Raja, M.A. Advanced Oxidation and Reduction Processes; Elsevier Inc.: Amsterdam, The Netherlands, 2019; ISBN 9780128147900. [Google Scholar]
- Lozano, I.; Pérez-Guzmán, C.J.; Mora, A.; Mahlknecht, J.; Aguilar, C.L.; Cervantes-Avilés, P. Pharmaceuticals and Personal Care Products in Water Streams: Occurrence, Detection, and Removal by Electrochemical Advanced Oxidation Processes. Sci. Total Environ. 2022, 827, 154348. [Google Scholar] [CrossRef]
- Nabgan, W.; Saeed, M.; Jalil, A.A.; Nabgan, B.; Gambo, Y.; Ali, M.W.; Ikram, M.; Fauzi, A.A.; Owgi, A.H.K.; Hussain, I.; et al. A State of the Art Review on Electrochemical Technique for the Remediation of Pharmaceuticals Containing Wastewater. Environ. Res. 2022, 210, 112975. [Google Scholar] [CrossRef]
- Santos, M.C.; Antonin, V.S.; Souza, F.M.; Aveiro, L.R.; Pinheiro, V.S.; Gentil, T.C.; Lima, T.S.; Moura, J.P.C.; Silva, C.R.; Lucchetti, L.E.B.; et al. Decontamination of Wastewater Containing Contaminants of Emerging Concern by Electrooxidation and Fenton-Based Processes–A Review on the Relevance of Materials and Methods. Chemosphere 2022, 307, 603. [Google Scholar] [CrossRef]
- Pillai, I.M.S.; Gupta, A.K. Batch and Continuous Flow Anodic Oxidation of 2,4-Dinitrophenol: Modeling, Degradation Pathway and Toxicity. J. Electroanal. Chem. 2015, 756, 108–117. [Google Scholar] [CrossRef]
- Lin, H.; Zhang, H.; Wang, X.; Wang, L.; Wu, J. Electro-Fenton Removal of Orange II in a Divided Cell: Reaction Mechanism, Degradation Pathway and Toxicity Evolution. Sep. Purif. Technol. 2014, 122, 533–540. [Google Scholar] [CrossRef]
- Wu, J.; Zhang, H.; Oturan, N.; Wang, Y.; Chen, L.; Oturan, M.A. Application of Response Surface Methodology to the Removal of the Antibiotic Tetracycline by Electrochemical Process Using Carbon-Felt Cathode and DSA (Ti/RuO2-IrO2) Anode. Chemosphere 2012, 87, 614–620. [Google Scholar] [CrossRef] [PubMed]
- Bistan, M.; Podgorelec, M.; Logar, R.M.; Tišler, T. Yeast Estrogen Screen Assay as a Tool for Detecting Estrogenic Activity in Water Bodies. Food Technol. Biotechnol. 2012, 50, 427–433. [Google Scholar]
- Arnold, S.F.; Robinson, M.K.; Notides, A.C.; Guillette, L.J.; McLachan, J.A. A Yeast Estrogen Screen for Examining the Relative Exposure of Cells to Natural and Xenoestrogens. Environ. Health Perspect. 1996, 104, 544–548. [Google Scholar] [CrossRef] [PubMed]
- Argolo, A.D.S.; Gomes, G.; Bila, D.M. Insights into Total Estrogenic Activity in a Sewage-Impacted Urban Stream Assessed via ER Transcriptional Activation Assay: Distribution between Particulate and Dissolved Phases. Ecotoxicol. Environ. Saf. 2021, 208, 111574. [Google Scholar] [CrossRef]
- Tominaga, F.K.; Silva, T.T.; Boiani, N.F.; de Jesus, J.M.S.; Teixeira, A.C.S.C.; Borrely, S.I. Is Ionizing Radiation Effective in Removing Pharmaceuticals from Wastewater? Environ. Sci. Pollut. Res. 2021, 28, 23975–23983. [Google Scholar] [CrossRef]
- Fernandes, A.; Pastorinho, M.R.; Sousa, A.C.; Silva, W.; Silva, R.; Nunes, M.J.; Rodrigues, A.S.; Pacheco, M.J.; Ciríaco, L.; Lopes, A. Ecotoxicological Evaluation of Electrochemical Oxidation for the Treatment of Sanitary Landfill Leachates. Environ. Sci. Pollut. Res. 2019, 26, 24–33. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Adil, M.; Ehtisham-ul-Haque, S.; Munir, B.; Yameen, M.; Ghaffar, A.; Shar, G.A.; Asif Tahir, M.; Iqbal, M. Vibrio Fischeri Bioluminescence Inhibition Assay for Ecotoxicity Assessment: A Review. Sci. Total Environ. 2018, 626, 1295–1309. [Google Scholar] [CrossRef]
- Christen, V.; Hickmann, S.; Rechenberg, B.; Fent, K. Highly Active Human Pharmaceuticals in Aquatic Systems: A Concept for Their Identification Based on Their Mode of Action. Aquat. Toxicol. 2010, 96, 167–181. [Google Scholar] [CrossRef]
- Persoone, G.; Marsalek, B.; Blinova, I.; Törökne, A.; Zarina, D.; Manusadzianas, L.; Nalecz-Jawecki, G.; Tofan, L.; Stepanova, N.; Tothova, L.; et al. A Practical and User-Friendly Toxicity Classification System with Microbiotests for Natural Waters and Wastewaters. Environ. Toxicol. 2003, 18, 395–402. [Google Scholar] [CrossRef]
- Le, G.T.; Ta, N.T.; Pham, T.Q.; Dao, Y.H. Response Surface Analysis of Fenobucarb Removal by Electrochemically Generated Chlorine. Water 2019, 11, 899. [Google Scholar] [CrossRef] [Green Version]
- Leili, M.; Shirmohammadi Khorram, N.; Godini, K.; Azarian, G.; Moussavi, R.; Peykhoshian, A. Application of Central Composite Design (CCD) for Optimization of Cephalexin Antibiotic Removal Using Electro-Oxidation Process. J. Mol. Liq. 2020, 313, 113556. [Google Scholar] [CrossRef]
- Li, M.; Xu, B.; Liungai, Z.; Hu, H.Y.; Chen, C.; Qiao, J.; Lu, Y. The Removal of Estrogenic Activity with UV/Chlorine Technology and Identification of Novel Estrogenic Disinfection by-Products. J. Hazard. Mater. 2016, 307, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Aquino, J.M.; Rocha-Filho, R.C.; Bocchi, N.; Biaggio, S.R. Electrochemical Degradation of the Reactive Red 141 Dye on a β-PbO2 Anode Assessed by the Response Surface Methodology. J. Braz. Chem. Soc. 2010, 21, 324–330. [Google Scholar] [CrossRef] [Green Version]
- Routledge, E.J.; Sumpter, J.P. Estrogenic Activity of Surfactants and Some of Their Degradation Products Assessed Using a Recombinant Yeast Screen. Environ. Toxicol. Chem. 1996, 15, 241–248. [Google Scholar] [CrossRef]
- ABNT-NBR 12713; Ecotoxicologia aquática—toxicidade aguda—método de ensaio com Daphnia spp (crustacea, Cladocera). Associação Brasileira de Normas Técnicas: Rio de Janeiro, Brasil, 2012.
- Periyasamy, S.; Muthuchamy, M. Electrochemical Oxidation of Paracetamol in Water by Graphite Anode: Effect of PH, Electrolyte Concentration and Current Density. J. Environ. Chem. Eng. 2018, 6, 7358–7367. [Google Scholar] [CrossRef]
- Khan, A.H.; Khan, N.A.; Ahmed, S.; Dhingra, A.; Singh, C.P.; Khan, S.U.; Mohammadi, A.A.; Changani, F.; Yousefi, M.; Alam, S.; et al. Application of Advanced Oxidation Processes Followed by Different Treatment Technologies for Hospital Wastewater Treatment. J. Clean. Prod. 2020, 269, 122411. [Google Scholar] [CrossRef]
- Patel, S.; Majumder, S.K.; Mondal, S.; Das, P.; Ghosh, P. Treatment of a Pharmaceutical Industrial Effluent by a Hybrid Process of Advanced Oxidation and Adsorption. ACS Omega 2020, 5, 32305–32317. [Google Scholar] [CrossRef]
- Amor, C.; Fernandes, J.R.; Lucas, M.S.; Peres, J.A. Hydroxyl and Sulfate Radical Advanced Oxidation Processes: Application to an Agro-Industrial Wastewater. Environ. Technol. Innov. 2021, 21, 101183. [Google Scholar] [CrossRef]
- Saggioro, E.M.; Chaves, F.P.; Felix, L.C.; Gomes, G.; Bila, D.M. Endocrine Disruptor Degradation by UV/Chlorine and the Impact of Their Removal on Estrogenic Activity and Toxicity. Int. J. Photoenergy 2019, 2019, 7408763. [Google Scholar] [CrossRef]
- Cunha, G.D.S.; de Souza-Chaves, B.M.; Bila, D.M.; Bassin, J.P.; Vecitis, C.D.; Dezotti, M. Insights into Estrogenic Activity Removal Using Carbon Nanotube Electrochemical Filter. Sci. Total Environ. 2019, 678, 448–456. [Google Scholar] [CrossRef] [PubMed]
Matrices | Progestin | References | |
---|---|---|---|
Levonorgestrel (LNG) | Gestodene (GES) | ||
Surface water | 5.3–7.0 | 5.03 | [8,9,11] |
Wastewater treatment plants (WWTPs) | <0.2–16.1 (influent) <0.5–4.0 (effluent) | 0.44 (influent) 0.19 (effluent) | [8,11,12,13] |
Pharmaceutical wastewater | 4–5 × 106 (total concentration) 0.8–0.16 × 105 (aqueous concentration) | 0.66 × 105 | [14,15] |
Hormone | Concentration | Matrices | Electrodes | Support Electrolyte | Current Density | Reference |
---|---|---|---|---|---|---|
Progesterone | 0.1 to 100 mg L−1 | Milli-Q water | BDD (anode)/SS (cathode) | 0.035 mol L−1 Na2SO4 or NaCl | 15–100 mA | [16] |
Estrone | 230, 410, and, 570 µg L−1 | Milli-Q water | BDD (anode)/SS (cathode) | 0.36 mol L−1 NaCl | 5, 10, and, 25 mA cm−2 | [17] |
Estradiol (E2) and Ethyniletradiol (EE2) | 1 mg L−1 | Milli-Q water and WWTP | BDD (anode)/zirconium (cathode) | 0.1 mol L−1 Na2SO4 or NaCl | 0.9–2.6 mA cm−2 | [18] |
Gestodene (GES) and Ethyniletradiol (EE2) | 625 µg L−1 of GES and 250 µg L−1 of EE2 | Milli-Q water | BDD as anode and cathode | 0.02, 0.05 and 0.1 mol L−1 Na2SO4 | 12, 32 and, 48 mA cm−2 | [19] |
17-α-Methyltestosterone | 5.0 mg L−1 | Milli-Q water | DSA as anode and cathode | 0.5 mol L−1 Na2SO4 or NaCl | 15, 30, and 45 mA cm−2 | [20] |
Ethyniletradiol (EE2) | 100 mg L−1 | Water/methanol 7: 3 v/v | DSA (anode)/ SS (cathode) | 0.004 mol L−1 NaCl | 40 mA cm−2 | [21] |
Estradiol (E2) | 250–750 µg dm−3 | Water | BDD-WE Hg/Hg2Cl2·KCl (sat.) (SCE)-RE Pt-CE | 0.1 mol L−1 Na2SO4, NaNO3, and NaCl | 25 mA cm−2 | [22] |
Levonorgestrel (LNG) | 2.5 mg L−1 | Milli-Q water and pharmaceutical wastewater | PVC-graphite (anode)/platinium (cathode) | 0.05, 0.1, and 0.2 g NaCl | 3, 6, and 8 V | [23] |
Independent Variables | Symbol | Coded Levels | ||||
---|---|---|---|---|---|---|
−2 | −1 | 0 | +1 | +2 | ||
Uncoded Values | ||||||
[GES]0 (mg L−1) | X1 | 0.0 | 0.5 | 1.0 | 1.5 | 2.0 |
[LNG]0 (mg L−1) | X2 | 0.0 | 0.5 | 1.0 | 1.5 | 2.0 |
j (mA cm−2) | X3 | 7.5 | 20.0 | 32.5 | 45.0 | 57.5 |
[NaCl]0 (mol L−1) | X4 | 0.01 | 0.04 | 0.07 | 0.10 | 0.13 |
Run | Coded Levels | Experimental Variable Levels | Response | Removal Efficiency (%) | kobs (min−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
X1 | X2 | X3 | X4 | [GES]0 (mg L−1) | [LNG]0 (mg L−1) | j (mA cm−2) | [NaCl]0 (mol L−1) | SEC (kWh g−1) | LNG | GES | LNG | R2 | GES | R2 | |
1 | −1 | −1 | −1 | −1 | 0.5 | 0.5 | 20 | 0.04 | 1.3 | 84.2 | 100.0 | 0.2673 | 0.9427 | 0.7374 | 0.8403 |
2 | +1 | −1 | −1 | −1 | 1.5 | 0.5 | 20 | 0.04 | 2.1 | 47.6 | 86.4 | 0.0874 | 0.9122 | 0.2856 | 0.9360 |
3 | −1 | +1 | −1 | −1 | 0.5 | 1.5 | 20 | 0.04 | 10.1 | 41.1 | 80.2 | 0.0761 | 0.8989 | 0.2717 | 0.9999 |
4 | +1 | +1 | −1 | −1 | 1.5 | 1.5 | 20 | 0.04 | 6.4 | 35.2 | 34.3 | 0.0746 | 0.9934 | 0.0672 | 0.9965 |
5 | −1 | −1 | +1 | −1 | 0.5 | 0.5 | 45 | 0.04 | 1.8 | 46.9 | 79.9 | 0.1242 | 0.9442 | 0.2421 | 0.9796 |
6 | +1 | −1 | +1 | −1 | 1.5 | 0.5 | 45 | 0.04 | 0.9 | 56.1 | 81.1 | 0.1219 | 0.9703 | 0.2992 | 0.9273 |
7 | −1 | +1 | +1 | −1 | 0.5 | 1.5 | 45 | 0.04 | 4.4 | 73.5 | 100.0 | 0.2192 | 0.9997 | 0.1798 | 0.9921 |
8 | +1 | +1 | +1 | −1 | 1.5 | 1.5 | 45 | 0.04 | 6.2 | 83.6 | 36.7 | 0.1850 | 0.9388 | 0.0594 | 0.8617 |
9 | −1 | −1 | −1 | +1 | 0.5 | 0.5 | 20 | 0.10 | 0.9 | 58.5 | 50.3 | 0.2688 | 0.9717 | 0.0964 | 0.9032 |
10 | +1 | −1 | −1 | +1 | 1.5 | 0.5 | 20 | 0.10 | 0.9 | 60.6 | 76.1 | 0.1757 | 0.8838 | 0.1993 | 0.9349 |
11 | −1 | +1 | −1 | +1 | 0.5 | 1.5 | 20 | 0.10 | 3.8 | 79.8 | 96.6 | 0.3204 | 0.9600 | 0.5381 | 0.9692 |
12 | +1 | +1 | −1 | +1 | 1.5 | 1.5 | 20 | 0.10 | 2.9 | 47.5 | 39.5 | 0.1209 | 0.9772 | 0.0719 | 0.9429 |
13 | −1 | −1 | +1 | +1 | 0.5 | 0.5 | 45 | 0.10 | 2.2 | 79.2 | 69.6 | 0.2180 | 0.9247 | 0.1776 | 0.9650 |
14 | +1 | −1 | +1 | +1 | 1.5 | 0.5 | 45 | 0.10 | 1.0 | 55.3 | 91.5 | 0.1447 | 0.9896 | 0.4209 | 0.9660 |
15 | −1 | +1 | +1 | +1 | 0.5 | 1.5 | 45 | 0.10 | 5.1 | 29.0 | 90.8 | 0.0548 | 0.9815 | 0.3586 | 0.9691 |
16 | +1 | +1 | +1 | +1 | 1.5 | 1.5 | 45 | 0.10 | 2.7 | 54.4 | 55.3 | 0.1100 | 0.9322 | 0.1616 | 0.9373 |
17 | −2 | 0 | 0 | 0 | 0.0 | 1.0 | 32.5 | 0.07 | 4.5 | 78.1 | - | 0.2124 | 0.9389 | 0.0000 | 0.0000 |
18 | +2 | 0 | 0 | 0 | 2.0 | 1.0 | 32.5 | 0.07 | 2.0 | 75.0 | 50.3 | 0.2681 | 0.9671 | 0.0940 | 0.9053 |
19 | 0 | −2 | 0 | 0 | 1.0 | 0.0 | 32.5 | 0.07 | 0.4 | - | 96.4 | 0.0000 | 0.0000 | 0.4931 | 0.9366 |
20 | 0 | +2 | 0 | 0 | 1.0 | 2.0 | 32.5 | 0.07 | 7.0 | 45.4 | 87.7 | 0.1017 | 0.9962 | 0.3325 | 0.9830 |
21 | 0 | 0 | −2 | 0 | 1.0 | 1.0 | 7.5 | 0.07 | 5.8 | 39.4 | 42.5 | 0.0806 | 0.9975 | 0.0891 | 0.9981 |
22 | 0 | 0 | +2 | 0 | 1.0 | 1.0 | 57.5 | 0.07 | 1.8 | 37.7 | 89.5 | 0.0771 | 0.9986 | 0.4221 | 0.9975 |
23 | 0 | 0 | 0 | −2 | 1.0 | 1.0 | 32.5 | 0.01 | 7.5 | 51.7 | 66.6 | 0.1041 | 0.7694 | 0.1297 | 0.7667 |
24 | 0 | 0 | 0 | +2 | 1.0 | 1.0 | 32.5 | 0.13 | 2.7 | 42.6 | 49.9 | 0.0891 | 0.9974 | 0.1134 | 0.9981 |
25 | 0 | 0 | 0 | 0 | 1.0 | 1.0 | 32.5 | 0.07 | 2.0 | 90.4 | 83.6 | 0.3456 | 0.9456 | 0.2862 | 0.8021 |
26 | 0 | 0 | 0 | 0 | 1.0 | 1.0 | 32.5 | 0.07 | 1.8 | 87.1 | 73.2 | 0.2516 | 0.8125 | 0.2796 | 0.8570 |
27 | 0 | 0 | 0 | 0 | 1.0 | 1.0 | 32.5 | 0.07 | 2.1 | 86.2 | 87.5 | 0.3454 | 0.9256 | 0.3608 | 0.9870 |
28 | 0 | 0 | 0 | 0 | 1.0 | 1.0 | 32.5 | 0.07 | 1.6 | 68.6 | 63.0 | 0.2566 | 0.9477 | 0.1344 | 0.9000 |
29 | 0 | 0 | 0 | 0 | 1.0 | 1.0 | 32.5 | 0.07 | 2.2 | 81.0 | 67.6 | 0.2244 | 0.9092 | 0.1899 | 0.9950 |
30 | 0 | 0 | 0 | 0 | 1.0 | 1.0 | 32.5 | 0.07 | 1.7 | 80.4 | 72.9 | 0.2250 | 0.9270 | 0.2160 | 0.9977 |
31 | 0 | 0 | 0 | 0 | 1.0 | 1.0 | 32.5 | 0.07 | 2.0 | 79.5 | 76.4 | 0.2422 | 0.9849 | 0.2250 | 0.9916 |
Source | Sum of Squares | Degree of Freedom | Mean Square | F-Value | p-Value |
---|---|---|---|---|---|
Regression | 146.99 | 14 | 10.50 | 188.493 | 0.004 a |
First-order effects | 114.60 | 4 | 28.65 | 2057.37 | 0.0001 a |
Second-order effects | 15.90 | 4 | 3.97 | 285.60 | 0.0207 a |
Residual | 16.93 | 16 | 1.05 | ||
Interactions | |||||
[GES]0 × [LNG]0 | 0.92 | 1 | 0.92 | 16.63 | 0.006 a |
[GES]0 × [NaCl]0 | 0.42 | 1 | 0.42 | 7.674 | 0.032 a |
[LNG]0 × j | 1.77 | 1 | 1.77 | 31.82 | 0.0013 a |
[LNG]0 × [NaCl]0 | 8.22 | 1 | 8.22 | 147.65 | 0.00001 a |
Lack of fit | 16.59 | 10 | 1.66 | 29.78 | 0.0002 a |
Pure error | 0.33 | 6 | 0.05 | ||
Total | 163.92 | 30 |
Run | j (mA cm−2) | [NaCl]0 (mol L−1) | Cl− Consumption (%) |
---|---|---|---|
1 | 20 | 0.04 | 100 |
7 | 45 | 0.04 | 61.9 |
11 | 20 | 0.10 | 16.3 |
15 | 45 | 0.10 | 28.1 |
17 | 32.5 | 0.01 | 49.4 |
18 | 32.5 | 0.13 | 22.3 |
19 | 7.5 | 0.07 | 100 |
20 | 57.5 | 0.07 | 6.5 |
27 | 32.5 | 0.07 | 20.6 |
28 | 32.5 | 0.07 | 19.2 |
Variable | Optimum Point (coded) | Optimum Point (actual) | Central Point |
---|---|---|---|
[GES]0 (mg L−1) | 3.944 a | 2.97 | 1.0 |
[LNG]0 (mg L−1) | 0.623 | 1.31 | 1.0 |
j (mA cm−2) | −1.432 | 14.6 | 32.5 |
[NaCl]0 (mol L−1) | 2.356 a | 0.14 | 0.07 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
de Jesus, J.M.S.; Argolo, A.d.S.; Tominaga, F.K.; Taqueda, M.E.; Bila, D.M.; Borrely, S.I.; Teixeira, A.C.S.C. Experimental Design and Bioassays as Tools to Investigate the Impact of Anodic Oxidation on Progestins Degradation. Water 2023, 15, 61. https://doi.org/10.3390/w15010061
de Jesus JMS, Argolo AdS, Tominaga FK, Taqueda ME, Bila DM, Borrely SI, Teixeira ACSC. Experimental Design and Bioassays as Tools to Investigate the Impact of Anodic Oxidation on Progestins Degradation. Water. 2023; 15(1):61. https://doi.org/10.3390/w15010061
Chicago/Turabian Stylede Jesus, Juliana Mendonça Silva, Allan dos Santos Argolo, Flávio Kiyoshi Tominaga, Maria Elena Taqueda, Daniele Maia Bila, Sueli Ivone Borrely, and Antonio Carlos Silva Costa Teixeira. 2023. "Experimental Design and Bioassays as Tools to Investigate the Impact of Anodic Oxidation on Progestins Degradation" Water 15, no. 1: 61. https://doi.org/10.3390/w15010061
APA Stylede Jesus, J. M. S., Argolo, A. d. S., Tominaga, F. K., Taqueda, M. E., Bila, D. M., Borrely, S. I., & Teixeira, A. C. S. C. (2023). Experimental Design and Bioassays as Tools to Investigate the Impact of Anodic Oxidation on Progestins Degradation. Water, 15(1), 61. https://doi.org/10.3390/w15010061