Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Danshuei River
2.1.2. Liwu River
2.2. Sampling and Analytical Procedures
3. Results
3.1. Hydrological Parameters and Major Ion in the Dissolved Load
3.2. Temporal and Spatial Distribution of δ98/95Mo and Mo Concentration
4. Discussion
4.1. Major Elements
4.2. Behavior of Mo Isotopic Composition and Its Concentration during Weathering and Riverine Transport Processes
4.3. Characterizing the Natural and Anthropogenic Sources in the Danshuei River
5. Conclusions
- (1)
- After excluding samples influenced by seawater intrusion, the spatial variation in the δ98/95Mo signal from the upper to lower reaches in the Danshuei River displays a decreasing trend. On the contrary, in the Liwu River, the dissolved δ98/95Mo displays a clear trend with a significant increase in the δ98/95Mo signal from upstream to downstream along the river profile.
- (2)
- The Mo isotope data in the Danshuei River can be best explained as: (a) anthropogenic input-induced reductive dissolution of soluble MoO42− oxyanion from +6 to +4 oxidation state at low dissolved oxygen, which may be accompanied by Mo isotope fractionation; (b) the mixing of three end-members, such as rock weathering, anthropogenic input, and seawater, that is characterized by different chemical and isotopic signature influences the Danshuei River water chemistry. The anthropogenic input and seawater are the primary contributors governing the middle and lower reaches, while the upper reaches are primarily governed by rock weathering.
- (3)
- In the Liwu River, a negative correlation was observed between δ98/95Mo versus 1/Mo, SO42/Na ratio, and (Sr/Na) × 1000 ratio from midstream to downstream along the river profile. This supports the hypothesis that Mo isotopic fractionation in the Liwu catchment is caused by simultaneous sulfuric-acid-induced oxidative weathering of pyrites and carbonates. Furthermore, the lighter δ98/95Mo is partitioned in riverine bedload sediments, acting as a sink for light Mo isotopes.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kendall, B.; Dahl, T.W.; Anbar, A.D. The Stable Isotope Geochemistry of Molybdenum. Rev. Mineral. Geochem. 2017, 82, 683–732. [Google Scholar] [CrossRef]
- Anbar, A.D.; Rouxel, O. Metal Stable Isotopes in Paleoceanography. Annu. Rev. Earth Planet. Sci. 2007, 35, 717–746. [Google Scholar] [CrossRef]
- Gaillardet, J.; Dupré, B.; Louvat, P.; Allegre, C. Global silicate weathering and CO2 consumption rates deduced from the chemistry of large rivers. Chem. Geol. 1999, 159, 3–30. [Google Scholar] [CrossRef]
- Dalai, T.K.; Nishimura, K.; Nozaki, Y. Geochemistry of molybdenum in the Chao Phraya River estuary, Thailand: Role of suboxic diagenesis and porewater transport. Chem. Geol. 2005, 218, 189–202. [Google Scholar] [CrossRef]
- Dadson, S.J.; Hovius, N.; Chen, H.; Dade, W.B.; Hsieh, M.L.; Willett, S.D.; Hu, J.C.; Horng, M.J.; Chen, M.C.; Stark, C.P.; et al. Links between erosion, runoff variability and seismicity in the Taiwan orogen. Nature 2003, 426, 648–651. [Google Scholar] [CrossRef]
- Dupré, B.; Dessert, C.; Oliva, P.; Goddéris, Y.; Viers, J.; François, L.; Millot, R.; Gaillardet, J. Rivers, chemical weathering and Earth’s climate. Comptes Rendus Geosci. 2003, 335, 1141–1160. [Google Scholar] [CrossRef]
- Akhtar, N.; Ishak, M.I.S.; Ahmad, M.I.; Umar, K.; Md Yusuff, M.S.; Anees, M.T.; Qadir, A.; Ali Almanasir, Y.K. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Akhtar, N.; Syakir Ishak, M.I.; Bhawani, S.A.; Umar, K. Various Natural and Anthropogenic Factors Responsible for Water Quality Degradation: A Review. Water 2021, 13, 2660. [Google Scholar] [CrossRef]
- Ekka, S.V.; Liang, Y.-H.; Huang, K.-F.; Huang, J.-C.; Lee, D.-C. Riverine molybdenum isotopic fractionation in small mountainous rivers of Taiwan: The effect of chemical weathering and lithology. Chem. Geol. 2023, 620, 121349. [Google Scholar] [CrossRef]
- Zeng, J.; Han, G.; Zhu, J.-M. Seasonal and Spatial Variation of Mo Isotope Compositions in Headwater Stream of Xijiang River Draining the Carbonate Terrain, Southwest China. Water 2019, 11, 1076. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Li, J.; Wei, G.; Chen, X.; Deng, W.; Xie, L.; Lu, W.; Zou, L. Chemical weathering controls on variations in the molybdenum isotopic composition of river water: Evidence from large rivers in China. Chem. Geol. 2015, 410, 201–212. [Google Scholar] [CrossRef]
- Horan, K.; Hilton, R.G.; McCoy-West, A.J.; Selby, D.; Tipper, E.T.; Hawley, S.; Burton, K.W. Unravelling the controls on the molybdenum isotope ratios of river waters. Geochem. Perspect. Lett. 2020, 13, 1–6. [Google Scholar] [CrossRef]
- Burkhardt, C.; Hin, R.C.; Kleine, T.; Bourdon, B. Evidence for Mo isotope fractionation in the solar nebula and during planetary differentiation. Earth Planet. Sci. Lett. 2014, 391, 201–211. [Google Scholar] [CrossRef]
- Yang, J.; Barling, J.; Siebert, C.; Fietzke, J.; Stephens, E.; Halliday, A.N. The molybdenum isotopic compositions of I-, S- and A-type granitic suites. Geochim. Cosmochim. Acta 2017, 205, 168–186. [Google Scholar] [CrossRef]
- Siebert, C.; Nägler, T.F.; von Blanckenburg, F.; Kramers, J.D. Molybdenum isotope records as a potential new proxy for paleoceanography. Earth Planet. Sci. Lett. 2003, 211, 159–171. [Google Scholar] [CrossRef]
- Archer, C.; Vance, D. The isotopic signature of the global riverine molybdenum flux and anoxia in the ancient oceans. Nat. Geosci. 2008, 1, 597–600. [Google Scholar] [CrossRef]
- Neubert, N.; Heri, A.R.; Voegelin, A.R.; Nägler, T.F.; Schlunegger, F.; Villa, I.M. The molybdenum isotopic composition in river water: Constraints from small catchments. Earth Planet. Sci. Lett. 2011, 304, 180–190. [Google Scholar] [CrossRef]
- Pearce, C.R.; Burton, K.W.; von Strandmann, P.A.E.P.; James, R.H.; Gíslason, S.R. Molybdenum isotope behaviour accompanying weathering and riverine transport in a basaltic terrain. Earth Planet. Sci. Lett. 2010, 295, 104–114. [Google Scholar] [CrossRef]
- Revels, B.N.; Rickli, J.; Moura, C.A.V.; Vance, D. The riverine flux of molybdenum and its isotopes to the ocean: Weathering processes and dissolved-particulate partitioning in the Amazon basin. Earth Planet. Sci. Lett. 2021, 559, 116773. [Google Scholar] [CrossRef]
- Siebert, C.; Pett-Ridge, J.; Opfergelt, S.; Guicharnaud, R.; Halliday, A.; Burton, K. Molybdenum isotope fractionation in soils: Influence of redox conditions, organic matter, and atmospheric inputs. Geochim. Cosmochim. Acta 2015, 162, 1–24. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, J.; Li, J.; Wei, G.; Zeng, T.; Li, L.; Zhang, L.; Deng, W.; Xie, L.; Liu, Z. Fe (hydro) oxide controls Mo isotope fractionation during the weathering of granite. Geochim. Cosmochim. Acta 2018, 226, 1–17. [Google Scholar] [CrossRef]
- Marks, J.A.; Perakis, S.S.; King, E.K.; Pett-Ridge, J. Soil organic matter regulates molybdenum storage and mobility in forests. Biogeochemistry 2015, 125, 167–183. [Google Scholar] [CrossRef]
- Voegelin, A.R.; Nägler, T.F.; Pettke, T.; Neubert, N.; Steinmann, M.; Pourret, O.; Villa, I.M. The impact of igneous bedrock weathering on the Mo isotopic composition of stream waters: Natural samples and laboratory experiments. Geochim. Cosmochim. Acta 2012, 86, 150–165. [Google Scholar] [CrossRef]
- Harkness, J.S.; Darrah, T.H.; Moore, M.T.; Whyte, C.J.; Mathewson, P.D.; Cook, T.; Vengosh, A. Naturally Occurring versus Anthropogenic Sources of Elevated Molybdenum in Groundwater: Evidence for Geogenic Contamination from Southeast Wisconsin, United States. Environ. Sci. Technol. 2017, 51, 12190–12199. [Google Scholar] [CrossRef]
- Skierszkan, E.K.; Robertson, J.M.; Lindsay, M.B.J.; Stockwell, J.S.; Dockrey, J.W.; Das, S.; Weis, D.; Beckie, R.D.; Mayer, K.U. Tracing Molybdenum Attenuation in Mining Environments Using Molybdenum Stable Isotopes. Environ. Sci. Technol. 2019, 53, 5678–5686. [Google Scholar] [CrossRef]
- Skierszkan, E.K.; Stockwell, J.S.; Dockrey, J.W.; Weis, D.; Beckie, R.D.; Mayer, K.U. Molybdenum (Mo) stable isotopic variations as indicators of Mo attenuation in mine waste-rock drainage. Appl. Geochem. 2017, 87, 71–83. [Google Scholar] [CrossRef]
- Putri, M.; Lou, C.-H.; Syai’in, M.; Ou, S.-H.; Wang, Y.-C. Long-Term River Water Quality Trends and Pollution Source Apportionment in Taiwan. Water 2018, 10, 1394. [Google Scholar] [CrossRef]
- Jiann, K.-T.; Wen, L.-S. Intra-annual variability of distribution patterns and fluxes of dissolved trace metals in a subtropical estuary (Danshuei River, Taiwan). J. Mar. Syst. 2009, 75, 87–99. [Google Scholar] [CrossRef]
- Wen, L.-S.; Jiann, K.-T.; Liu, K.-K. Seasonal variation and flux of dissolved nutrients in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river. Estuar. Coast. Shelf Sci. 2008, 78, 694–704. [Google Scholar] [CrossRef]
- Wang, Y.B.; Liu, C.W.; Liao, P.Y.; Lee, J.J. Spatial pattern assessment of river water quality: Implications of reducing the number of monitoring stations and chemical parameters. Env. Monit Assess 2014, 186, 1781–1792. [Google Scholar] [CrossRef]
- Chen, S.K.; Jang, C.S.; Chou, C.Y. Assessment of spatiotemporal variations in river water quality for sustainable environmental and recreational management in the highly urbanized Danshui River basin. Environ. Monit. Assess. 2019, 191, 100. [Google Scholar] [CrossRef] [PubMed]
- Calmels, D.; Galy, A.; Hovius, N.; Bickle, M.; West, A.J.; Chen, M.-C.; Chapman, H. Contribution of deep groundwater to the weathering budget in a rapidly eroding mountain belt, Taiwan. Earth Planet. Sci. Lett. 2011, 303, 48–58. [Google Scholar] [CrossRef]
- Lee, T.Y.; Shih, Y.T.; Huang, J.C.; Kao, S.J.; Shiah, F.K.; Liu, K.K. Speciation and dynamics of dissolved inorganic nitrogen export in the Danshui River, Taiwan. Biogeosciences 2014, 11, 5307–5321. [Google Scholar] [CrossRef]
- Liu, W.-C.; Hsu, M.-H.; Kuo, A.Y. Modelling of hydrodynamics and cohesive sediment transport in Tanshui River estuarine system, Taiwan. Mar. Pollut. Bull. 2002, 44, 1076–1088. [Google Scholar] [CrossRef] [PubMed]
- Chu, H.-Y.; You, C.-F. Dissolved constituents and Sr isotopes in river waters from a mountainous island – The Danshuei drainage system in northern Taiwan. Appl. Geochem. 2007, 22, 1701–1714. [Google Scholar] [CrossRef]
- Water Resource Agency Hydrological Yearbook, 2003. E-book, Water Resource Agency, Ministry of Economic Affair, Taiwan, ROC. Available online: https://eng.wra.gov.tw/ (accessed on 25 January 2022).
- Ho, C. An Introduction to the Geology of Taiwan; Ministry of Economic Affairs Taiwan, Central Geological Survey: Taipei City, Taiwan, 1988. [Google Scholar]
- Lan, C.Y.; Lee, T.; Mertzman, S.A.; Wu, T.W.; Jahn, B.M.; Yui, T.F.; Shen, J.J. Geochemical and isotopic study of gneiss-associated metabasites at the Central Range, Taiwan. Proc. Geol. Sot. China 1991, 34, 233–266. [Google Scholar]
- Chen, C.H.; Chung, S.H.; Huang, S.T. Carbonate minerals from the Central Range of Taiwan. Spec. Publ. Cent. Geol. Surv. MOEA 1993, 7, 51–77. [Google Scholar]
- Hartshorn, K.; Hovius, N.; Dade, W.B.; Slingerland, R.L. Climate-driven bedrock incision in an active mountain belt. Science 2002, 297, 2036–2038. [Google Scholar] [CrossRef]
- Deng, K.; Wittmann, H.; Yang, S.; von Blanckenburg, F. The Upper Limit of Denudation Rate Measurement From Cosmogenic 10Be(Meteoric)/9Be Ratios in Taiwan. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006221. [Google Scholar] [CrossRef]
- Anbar, A.D.; Knab, K.A.; Barling, J. Precise determination of mass-dependent variations in the isotopic composition of molybdenum using MC-ICPMS. Anal Chem 2001, 73, 1425–1431. [Google Scholar] [CrossRef]
- Siebert, C.; Nägler, T.F.; Kramers, J.D. Determination of molybdenum isotope fractionation by double-spike multicollector inductively coupled plasma mass spectrometry. Geochem. Geophys. Geosystems 2001, 2. [Google Scholar] [CrossRef]
- Liang, Y.-H.; Halliday, A.N.; Siebert, C.; Fitton, J.G.; Burton, K.W.; Wang, K.-L.; Harvey, J. Molybdenum isotope fractionation in the mantle. Geochim. Cosmochim. Acta 2017, 199, 91–111. [Google Scholar] [CrossRef]
- Goldberg, T.; Gordon, G.; Izon, G.; Archer, C.; Pearce, C.R.; McManus, J.; Anbar, A.D.; Rehkämper, M. Resolution of inter-laboratory discrepancies in Mo isotope data: An intercalibration. J. Anal. At. Spectrom. 2013, 28. [Google Scholar] [CrossRef]
- Nägler, T.F.; Anbar, A.D.; Archer, C.; Goldberg, T.; Gordon, G.W.; Greber, N.D.; Siebert, C.; Sohrin, Y.; Vance, D. Proposal for an international molybdenum isotope measurement standard and data representation. Geostand. Geoanalytical Res. 2014, 38, 149–151. [Google Scholar] [CrossRef]
- Greber, N.D.; Siebert, C.; Nägler, T.F.; Pettke, T. δ98/95Mo values and Molybdenum Concentration Data for NIST SRM 610, 612 and 3134: Towards a Common Protocol for Reporting Mo Data. Geostand. Geoanalytical Res. 2012, 36, 291–300. [Google Scholar] [CrossRef]
- Li, J.; Zhu, X.-k.; Tang, S.-h.; Zhang, K. High-Precision Measurement of Molybdenum Isotopic Compositions of Selected Geochemical Reference Materials. Geostand. Geoanalytical Res. 2016, 40, 405–415. [Google Scholar] [CrossRef]
- Gaschnig, R.M.; Reinhard, C.T.; Planavsky, N.J.; Wang, X.; Asael, D.; Jackson, M.G. The impact of primary processes and secondary alteration on the stable isotope composition of ocean island basalts. Chem. Geol. 2021, 581, 120416. [Google Scholar] [CrossRef]
- Greber, N.D.; Puchtel, I.S.; Nägler, T.F.; Mezger, K. Komatiites constrain molybdenum isotope composition of the Earth’s mantle. Earth Planet. Sci. Lett. 2015, 421, 129–138. [Google Scholar] [CrossRef]
- Miller, C.A.; Peucker-Ehrenbrink, B.; Walker, B.D.; Marcantonio, F. Re-assessing the surface cycling of molybdenum and rhenium. Geochim. Cosmochim. Acta 2011, 75, 7146–7179. [Google Scholar] [CrossRef]
- Li, Y.-H.; Chen, C.; Hung, J.-J. Aquatic chemistry of lakes and reservoirs in Taiwan. TAO 1997, 8, 405. [Google Scholar] [CrossRef]
- White, A.F.; Bullen, T.D.; Vivit, D.V.; Schulz, M.S.; Clow, D.W. The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim. Cosmochim. Acta 1999, 63, 1939–1953. [Google Scholar] [CrossRef]
- Beyssac, O.; Simoes, M.; Avouac, J.P.; Farley, K.A.; Chen, Y.-G.; Chan, Y.-C.; Goffé, B. Late Cenozoic metamorphic evolution and exhumation of Taiwan. Tectonics 2007, 26, n. [Google Scholar] [CrossRef]
- Su, N.; Yang, S.; Deng, K.; Chang, Y.-P.; Xu, J.; Wu, Z. Radiogenic and stable Sr isotopes constrain weathering processes in rapidly eroding Taiwan catchments. Earth Planet. Sci. Lett. 2021, 576. [Google Scholar] [CrossRef]
- Rahaman, W.; Goswami, V.; Singh, S.K.; Rai, V.K. Molybdenum isotopes in two Indian estuaries: Mixing characteristics and input to oceans. Geochim. Cosmochim. Acta 2014, 141, 407–422. [Google Scholar] [CrossRef]
- King, E.K.; Thompson, A.; Hodges, C.; Pett-Ridge, J.C. Towards Understanding Temporal and Spatial Patterns of Molybdenum in the Critical Zone. Procedia Earth Planet. Sci. 2014, 10, 56–62. [Google Scholar] [CrossRef]
- Yui, T.-F. Isotopic Composition of Carbonaceous Material in Metamorphic Rocks from the Mountain Belt of Taiwan. Int. Geol. Rev. 2005, 47, 310–325. [Google Scholar] [CrossRef]
- Jacobson, A.D.; Blum, J.D.; Chamberlain, C.P.; Craw, D.; Koons, P.O. Climatic and tectonic controls on chemical weathering in the New Zealand Southern Alps. Geochim. Cosmochim. Acta 2003, 67, 29–46. [Google Scholar] [CrossRef]
- Voegelin, A.R.; Nägler, T.F.; Samankassou, E.; Villa, I.M. Molybdenum isotopic composition of modern and Carboniferous carbonates. Chem. Geol. 2009, 265, 488–498. [Google Scholar] [CrossRef]
- Huang, X.; Sillanpää, M.; Gjessing, E.T.; Vogt, R.D. Water quality in the Tibetan Plateau: Major ions and trace elements in the headwaters of four major Asian rivers. Sci Total Env. 2009, 407, 6242–6254. [Google Scholar] [CrossRef]
- Yoshimura, K.; Nakao, S.; Noto, M.; Inokura, Y.; Urata, K.; Chen, M.; Lin, P.W. Geochemical and stable isotope studies on natural water in the Taroko Gorge karst area, Taiwan—Chemical weathering of carbonate rocks by deep source CO2 and sulfuric acid. Chem. Geol. 2001, 177, 415–430. [Google Scholar] [CrossRef]
- Vorlicek, T.P.; Kahn, M.D.; Kasuya, Y.; Helz, G.R. Capture of molybdenum in pyrite-forming sediments: Role of ligand-induced reduction by polysulfides 1 1Associate editor: M. Goldhaber. Geochim. Cosmochim. Acta 2004, 68, 547–556. [Google Scholar] [CrossRef]
- Torres, M.A.; West, A.J.; Li, G. Sulphide oxidation and carbonate dissolution as a source of CO2 over geological timescales. Nature 2014, 507, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Meyer, K.J.; Carey, A.E.; You, C.-F. Typhoon impacts on chemical weathering source provenance of a High Standing Island watershed, Taiwan. Geochim. Cosmochim. Acta 2017, 215, 404–420. [Google Scholar] [CrossRef]
- Blattmann, T.M.; Wang, S.L.; Lupker, M.; Märki, L.; Haghipour, N.; Wacker, L.; Chung, L.H.; Bernasconi, S.M.; Plötze, M.; Eglinton, T.I. Sulphuric acid-mediated weathering on Taiwan buffers geological atmospheric carbon sinks. Sci. Rep. 2019, 9, 2945. [Google Scholar] [CrossRef]
- Das, A.; Chung, C.-H.; You, C.-F. Disproportionately high rates of sulfide oxidation from mountainous river basins of Taiwan orogeny: Sulfur isotope evidence. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- King, E.K.; Thompson, A.; Chadwick, O.A.; Pett-Ridge, J.C. Molybdenum sources and isotopic composition during early stages of pedogenesis along a basaltic climate transect. Chem. Geol. 2016, 445, 54–67. [Google Scholar] [CrossRef]
- Lin, H.J.; Shao, K.T.; Jan, R.Q.; Hsieh, H.L.; Chen, C.P.; Hsieh, L.Y.; Hsiao, Y.T. A trophic model for the Danshuei River Estuary, a hypoxic estuary in northern Taiwan. Mar Pollut Bull 2007, 54, 1789–1800. [Google Scholar] [CrossRef] [PubMed]
- Jiann, K.-T.; Wen, L.-S.; Santschi, P.H. Trace metal (Cd, Cu, Ni and Pb) partitioning, affinities and removal in the Danshuei River estuary, a macro-tidal, temporally anoxic estuary in Taiwan. Mar. Chem. 2005, 96, 293–313. [Google Scholar] [CrossRef]
- Conlan, M.J.; Mayer, K.U.; Blaskovich, R.; Beckie, R.D. Solubility controls for molybdenum in neutral rock drainage. Geochem. Explor. Environ. Anal. 2012, 12, 21–32. [Google Scholar] [CrossRef]
- Goldberg, T.; Archer, C.; Vance, D.; Poulton, S.W. Mo isotope fractionation during adsorption to Fe (oxyhydr)oxides. Geochim. Cosmochim. Acta 2009, 73, 6502–6516. [Google Scholar] [CrossRef]
- Malinovsky, D.; Baxter, D.C.; Rodushkin, I. Ion-Specific Isotopic Fractionation of Molybdenum during Diffusion in Aqueous Solutions. Environ. Sci. Technol. 2007, 41, 1596–1600. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.C.; Lee, T.Y.; Kao, S.J.; Hsu, S.C.; Lin, H.J.; Peng, T.R. Land use effect and hydrological control on nitrate yield in subtropical mountainous watersheds. Hydrol. Earth Syst. Sci. 2012, 16, 699–714. [Google Scholar] [CrossRef]
- Stock, B.C.; Jackson, A.L.; Ward, E.J.; Parnell, A.C.; Phillips, D.L.; Semmens, B.X. Analyzing mixing systems using a new generation of Bayesian tracer mixing models. PeerJ 2018, 6, e5096. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Klose, M.; Wyrwoll, K.-H. Recent global dust trend and connections to climate forcing. J. Geophys. Res. Atmos. 2013, 118, 11107–111118. [Google Scholar] [CrossRef]
- Longman, J.; Struve, T.; Pahnke, K. Spatial and Temporal Trends in Mineral Dust Provenance in the South Pacific—Evidence From Mixing Models. Paleoceanogr. Paleoclimatol. 2022, 37, e2021PA004356. [Google Scholar] [CrossRef]
River | Site | Sample | Dist. | T | Sal. | pH | TDS | EC | ORP | DO | Na+ | Mg2+ | K+ | Ca2+ | Sr2+ | Si | Cl | NO3− | SO42− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
(km) | °C | (‰) | mg/L | µs/cm | mV | ppm | mM | mM | mM | mM | μM | mM | mM | mM | mM | ||||
Wet season | |||||||||||||||||||
Dahan | Yixing | D1 | 76.5 | 26.0 | 0.15 | 8.27 | 158 | 315 | 107 | 7.87 | 0.30 | 0.46 | 0.03 | 0.90 | 2.97 | 0.15 | 0.02 | 0.01 | 0.52 |
Dahan | Sanying | D2 | 38.8 | 28.6 | 0.18 | 8.33 | 191 | 383 | 76.9 | 7.01 | 0.74 | 0.42 | 0.09 | 0.98 | 2.63 | 0.21 | 0.51 | 0.01 | 0.42 |
Dahan | Ganyuang | D3 | 33.9 | 28.1 | 0.28 | 8.3 | 294 | 585 | 93.9 | 9.01 | 2.04 | 0.46 | 0.15 | 1.23 | 3.08 | 0.17 | 1.15 | 0.15 | 0.70 |
Dahan | Dahan | D4 | 21.95 | 30.4 | 1.10 | 7.5 | 1089 | 2177 | 149 | 5.74 | 13.65 | 1.63 | 0.41 | 0.95 | 4.00 | 0.19 | 13.07 | n.d | 1.47 |
Keelung | Ruifang | K1 | 63.45 | 28.3 | 0.08 | 7.98 | 86 | 172 | 145 | 8.15 | 0.65 | 0.18 | 0.04 | 0.33 | 0.91 | 0.13 | 0.28 | 0.03 | 0.23 |
Keelung | Dazhi | K2 | 20.0 | 29.9 | 0.79 | 6.81 | 796 | 1593 | 133 | 2.86 | 10.48 | 1.29 | 0.31 | 0.48 | 2.51 | 0.12 | 11.10 | 0.07 | 0.77 |
Xindian | Xiulang | X1 | 30.63 | 28.6 | 0.07 | 7.01 | 77 | 155 | 142 | 7.21 | 0.43 | 0.17 | 0.04 | 0.35 | 1.03 | 0.17 | 0.19 | 0.02 | 0.17 |
Danshuei | Zhongzing | D5 | 18.33 | 30.1 | 5.71 | 7.31 | 5105 | 10210 | 173 | 6.25 | 86.57 | 9.96 | 2.03 | 2.13 | 16.32 | 0.09 | 94.70 | n.d | 5.58 |
Dry season | |||||||||||||||||||
Dahan | Yixing | D1 | 76.5 | 16.0 | 0.14 | 8.24 | 144 | 288 | 216 | 8.58 | 0.29 | 0.42 | 0.02 | 0.80 | 2.85 | 0.14 | 0.02 | 0.01 | 0.52 |
Dahan | Sanying | D2 | 38.8 | 19.4 | 0.14 | 7.69 | 150 | 300 | 198 | 6.59 | 0.52 | 0.33 | 0.08 | 0.83 | 2.17 | 0.16 | 0.37 | 0.01 | 0.42 |
Dahan | Ganyuang | D3 | 33.9 | 20.4 | 0.26 | 7.45 | 267 | 534 | 185 | 2.26 | 1.74 | 0.42 | 0.15 | 1.05 | 2.85 | 0.16 | 1.01 | 0.15 | 0.70 |
Dahan | Dahan | D4 | 21.95 | 19.8 | 0.29 | 7.12 | 295 | 590 | 89.6 | 1.34 | 3.13 | 0.46 | 0.16 | 0.90 | 2.28 | 0.21 | 1.77 | n.d | 1.47 |
Keelung | Ruifang | K1 | 63.45 | 15.9 | 0.09 | 8.56 | 93 | 186 | 139 | 10.4 | 0.57 | 0.17 | 0.03 | 0.30 | 0.80 | 0.11 | 0.28 | 0.03 | 0.23 |
Keelung | Dazhi | K2 | 20.0 | 18.9 | 0.15 | 7.13 | 154 | 307 | 188 | 5.52 | 0.96 | 0.23 | 0.09 | 0.43 | 1.03 | 0.10 | 0.62 | 0.07 | 0.77 |
Xindian | Xiulang | X1 | 30.63 | 19.7 | 0.06 | 7.33 | 65 | 130 | 182 | 7.74 | 0.40 | 0.16 | 0.03 | 0.33 | 0.91 | 0.17 | 0.19 | 0.02 | 0.17 |
Danshuei | Zhongzing | D5 | 18.33 | 19.2 | 0.23 | 7.09 | 239 | 478 | 176 | 2.60 | 2.22 | 0.37 | 0.12 | 0.60 | 1.60 | 0.14 | 1.63 | n.d | 5.58 |
Site | Sample | T | pH | TDS | ORP | DO | Na+ | Mg2+ | K+ | Ca2+ | Sr2+ | Si | Cl | NO3 | SO42− |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | mg/L | mV | ppm | mM | mM | mM | mM | μM | mM | mM | mM | mM | |||
Wet season | |||||||||||||||
Jinwen Bridge | L1 | 23.88 | 8.32 | 183 | 182.1 | 4.10 | 0.11 | 0.41 | 0.06 | 1.30 | 5.43 | 0.04 | 0.03 | 0.02 | 0.73 |
Pudu Bridge | L2 | 20.77 | 8.20 | 181 | 144.5 | 10.83 | 0.12 | 0.45 | 0.08 | 1.71 | 8.90 | 0.05 | 0.01 | 0.01 | 1.24 |
Dasha River | L3 | 21.67 | 8.51 | 226 | 64.2 | 7.40 | 0.12 | 0.41 | 0.09 | 1.85 | 9.41 | 0.05 | 0.01 | 0.01 | 1.32 |
Swallow Grotto Bridge | L4 | 21.87 | 8.06 | 192 | 94.2 | 7.75 | 0.11 | 0.48 | 0.06 | 1.47 | 7.10 | 0.04 | 0.01 | 0.02 | 0.91 |
Waheir River | L5 | 20.89 | 8.42 | 181 | 58.1 | 6.43 | 0.09 | 0.44 | 0.04 | 1.44 | 6.59 | 0.04 | 0.01 | 0.02 | 0.77 |
Luoshao Bridge | L8 | 18.89 | 8.38 | 149 | 117 | 9.17 | 0.09 | 0.46 | 0.04 | 1.39 | 5.13 | 0.05 | 0.02 | 0.07 | 0.60 |
Cuigu Bridge | L13 | 14.30 | 8.32 | 139 | 94 | 7.08 | 0.04 | 0.10 | 0.07 | 1.65 | 2.54 | 0.04 | 0.01 | 0.03 | 0.50 |
Yuewang Pavillion Bridge | L18 | 21.76 | 8.28 | 189 | 83.5 | 7.70 | 0.11 | 0.46 | 0.06 | 1.54 | 6.81 | 0.04 | 0.01 | 0.01 | 0.90 |
Shakadang (main) | L19 | 26.46 | 8.18 | 124 | 166 | 4.21 | 0.06 | 0.19 | 0.07 | 0.98 | 1.84 | 0.03 | 0.06 | 0.03 | 0.26 |
Ning-An Bridge | L23 | 23.41 | 8.10 | 187 | 183.1 | 4.32 | 0.12 | 0.45 | 0.06 | 1.39 | 6.06 | 0.04 | 0.03 | 0.02 | 0.79 |
Dry season | |||||||||||||||
Jinwen Bridge | L1 | 18.63 | 7.85 | 173 | 71.7 | 6.05 | 0.15 | 0.49 | 0.07 | 1.53 | 6.11 | 0.04 | 0.05 | 0.02 | 0.83 |
Pudu Bridge | L2 | 8.30 | 8.30 | 221 | 41.4 | 10.83 | 0.21 | 0.58 | 0.09 | 1.99 | 10.69 | 0.05 | 0.02 | 0.01 | 1.59 |
Shakadang (main) | L19 | 18.81 | 8.27 | 133 | 142.4 | 8.06 | 0.08 | 0.23 | 0.09 | 1.07 | 1.96 | 0.03 | 0.06 | 0.02 | 0.31 |
River | Site | Sample | δ98/95Mo | 2 SD | Mo | Fe | Zn | Cu | Ni |
---|---|---|---|---|---|---|---|---|---|
(‰) | nM | nM | nM | nM | nM | ||||
Wet season | |||||||||
Dahan | Yixing | D1 | 0.96 | 0.06 | 8.00 | 39.94 | 13.92 | 2.52 | 1.53 |
Dahan | Sanying | D2 | 0.90 | 0.06 | 12.71 | 106.91 | 0.15 | 16.05 | 7.84 |
Dahan | Ganyuang | D3 | 0.86 | 0.09 | 16.40 | 587.93 | 30.90 | 30.53 | 183.17 |
Dahan | Dahan | D4 | 0.83 | 0.06 | 26.55 | 603.51 | 199.76 | 91.44 | 455.27 |
Keelung | Ruifang | K1 | 0.93 | 0.09 | 1.20 | 398.82 | 6.58 | 8.18 | 4.09 |
Keelung | Dazhi | K2 | 1.07 | 0.06 | 11.27 | 176.40 | 15.30 | 4.41 | 25.22 |
Xindian | Xiulang | X1 | 0.88 | 0.06 | 3.34 | 378.58 | 6.58 | 8.18 | 4.09 |
Danshuei | Zhongzing | D5 | 1.50 | 0.09 | 37.77 | 448.60 | 583.05 | 12.91 | 169.39 |
Dry season | |||||||||
Dahan | Yixing | D1 | 1.05 | 0.11 | 3.19 | 22.56 | 11.17 | 1.89 | 2.22 |
Dahan | Sanying | D2 | 0.97 | 0.13 | 14.05 | 396.67 | 218.72 | 22.51 | 20.96 |
Dahan | Ganyuang | D3 | 1.00 | 0.13 | 11.72 | 464.18 | 79.99 | 44.07 | 231.21 |
Dahan | Dahan | D4 | 0.62 | 0.13 | 38.04 | 676.40 | 5676.20 | 120.87 | 785.99 |
Keelung | Ruifang | K1 | 1.25 | 0.11 | 0.49 | 402.58 | 9.94 | 5.35 | 4.43 |
Keelung | Dazhi | K2 | 0.84 | 0.11 | 8.83 | 966.51 | 23.40 | 11.80 | 31.52 |
Xindian | Xiulang | X1 | 0.99 | 0.11 | 2.35 | 367.66 | 9.94 | 5.35 | 4.43 |
Danshuei | Zhongzing | D5 | 0.54 | 0.13 | 25.53 | 573.96 | 463.29 | 28.01 | 158.97 |
River Water | Riverine Bedload Sediment | ||||||||
---|---|---|---|---|---|---|---|---|---|
Site Name | Sample | δ98/95Mo | 2 SD | Mo | Site Name | Sample | δ98/95Mo | 2 SD | Mo |
(‰) | nM | (‰) | ppm | ||||||
Wet season | Wet season | ||||||||
Jinwen Bridge | L1 | 1.15 | 0.07 | 53.80 | Jinwen Bridge | L1 | 0.03 | 0.08 | 0.70 |
Pudu Bridge | L2 | 0.81 | 0.07 | 34.76 | Pudu Bridge | L2 | −0.06 | 0.08 | 1.05 |
Dasha River | L3 | 0.70 | 0.08 | 31.73 | Shakadang (branch) | L21 | 0.43 | 0.07 | 0.29 |
Swallow Grotto Bridge | L4 | 1.05 | 0.07 | 49.77 | |||||
Waheir River | L5 | 0.78 | 0.05 | 22.72 | |||||
Luoshao Bridge | L8 | 0.54 | 0.08 | 39.74 | |||||
Cuigu Bridge | L13 | 0.74 | 0.11 | 57.17 | |||||
Yuewang Pavillion Bridge | L18 | 0.86 | 0.05 | 31.48 | |||||
Shakadang (main) | L19 | 1.18 | 0.08 | 24.17 | |||||
Ning-An Bridge | L23 | 1.14 | 0.11 | 55.16 | |||||
Dry season | Dry season | ||||||||
Jinwen Bridge | L1 | 1.25 | 0.04 | 65.17 | Pudu Bridge | L2 | 0.05 | 0.06 | 0.78 |
Pudu Bridge | L2 | 0.99 | 0.08 | 40.13 | Shakadang (branch) | L21 | 0.33 | 0.06 | 0.35 |
Shakadang (main) | L19 | 1.30 | 0.08 | 29.94 |
Wet Season | ||||
---|---|---|---|---|
End-Member | δ98/95Mo | 1 SD | 1/Mo | 1 SD |
(‰) | (nM−1) | |||
A (Rock weathering) | 0.93 | 0.21 | 0.83 | 0.08 |
B (Anthropogenic) | 0.7 | 0.11 | 0.003 | 0.0003 |
C (Seawater) | 2.3 | 0.05 | 0.01 | 0.0005 |
Dry Season | ||||
End-Member | δ98/95Mo (‰) | 1 SD | 1/Mo (nM−1) | 1 SD |
A (Rock weathering) | 1.25 | 0.21 | 2.04 | 0.2 |
B (Anthropogenic) | 0.7 | 0.11 | 0.0025 | 0.0003 |
C (Seawater) | 2.3 | 0.05 | 0.01 | 0.0005 |
% Contribution from Three End-Member Sources | ||||||||
---|---|---|---|---|---|---|---|---|
River | Site | Sample | EM-A (Weathering) | SD | EM-B (Anthropogenic) | SD | EM-C (Seawater) | SD |
Wet season | ||||||||
Dahan | Yixing | D1 | 18% | 11% | 73% | 11% | 9% | 5% |
Dahan | Sanying | D2 | 11% | 7% | 82% | 8% | 7% | 5% |
Dahan | Ganyuang | D3 | 9% | 6% | 86% | 7% | 5% | 4% |
Dahan | Dahan | D4 | 6% | 5% | 90% | 6% | 4% | 4% |
Keelung | Ruifang | K1 | 78% | 13% | 18% | 12% | 4% | 4% |
Keelung | Dazhi | K2 | 13% | 9% | 73% | 10% | 14% | 6% |
Xindian | Xiulang | X1 | 38% | 13% | 57% | 14% | 5% | 5% |
Danshuei | Zhongzing | D5 | 5% | 6% | 57% | 10% | 39% | 9% |
Dry season | ||||||||
Dahan | Yixing | D1 | 15% | 1% | 78% | 7% | 7% | 7% |
Dahan | Sanying | D2 | 3% | 0% | 92% | 6% | 5% | 6% |
Dahan | Ganyuang | D3 | 4% | 0% | 90% | 7% | 6% | 7% |
Dahan | Dahan | D4 | 1% | 0% | 98% | 2% | 1% | 2% |
Keelung | Ruifang | K1 | 98% | 2% | 2% | 2% | 1% | 1% |
Keelung | Dazhi | K2 | 5% | 0% | 92% | 4% | 3% | 4% |
Xindian | Xiulang | X1 | 21% | 1% | 75% | 6% | 5% | 6% |
Danshuei | Zhongzing | D5 | 2% | 0% | 97% | 2% | 1% | 2% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ekka, S.V.; Liang, Y.-H.; Huang, K.-F.; Lee, D.-C. Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources. Water 2023, 15, 1873. https://doi.org/10.3390/w15101873
Ekka SV, Liang Y-H, Huang K-F, Lee D-C. Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources. Water. 2023; 15(10):1873. https://doi.org/10.3390/w15101873
Chicago/Turabian StyleEkka, Shail Vijeta, Yu-Hsuan Liang, Kuo-Fang Huang, and Der-Chuen Lee. 2023. "Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources" Water 15, no. 10: 1873. https://doi.org/10.3390/w15101873
APA StyleEkka, S. V., Liang, Y. -H., Huang, K. -F., & Lee, D. -C. (2023). Molybdenum Isotopic Fingerprints in Taiwan Rivers: Natural versus Anthropogenic Sources. Water, 15(10), 1873. https://doi.org/10.3390/w15101873