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Abstract: Excessive population growth and high water demands have significantly increased water
extractions from deep and semi-deep wells in the arid regions of Iran. This has negatively affected
water quality in different areas. The Water Quality Index (WQI) is a suitable tool to assess such
impacts. This study used WQI and the fuzzy hierarchical analysis process of the water quality index
(FAHP-WQI) to investigate the water quality status of 96 deep agricultural wells in the Yazd-Ardakan
Plain, Iran. Calculating the WQI is time-consuming, but estimating WQI is inevitable for water
resources management. For this purpose, three Machine Learning (ML) algorithms, namely, Gene
Expression Programming (GEP), M5P Model tree, and Multivariate Adaptive Regression Splines
(MARS), were employed to predict WQI. Using Wilcox and Schoeller charts, water quality was
also investigated for agricultural and drinking purposes. The results demonstrated that 75% and
33% of the study area have good quality, based on the WQI and FAHP-WQI methods, respectively.
According to the results of the Wilcox chart, around 37.25% of the wells are in the C3S2 and C3S1
classes, which indicate poor water quality. Schoeller’s diagram placed the drinking water quality
of the Yazd-Ardakan plain in acceptable, inadequate, and inappropriate categories. Afterwards,
WQI, predicted by means of ML models, were compared on several statistical criteria. Finally,
the comparative analysis revealed that MARS is slightly more accurate than the M5P model for
estimating WQI.

Keywords: water quality index; machine learning; fuzzy-AHP; gene expression programming;
M5P; MARS

1. Introduction

Water plays a vital role in agriculture and food production in many arid and semi-
arid regions of Iran. A large number of studies in the field of water resources have
been devoted to addressing the issues related to limited water resources, climate change,
drought, groundwater discharge, and declining quality of surface water and groundwater
in Iran [1–3]. Water supply issues in developing countries is not merely due to the scarcity
of water resources, but also because of the lack of appropriate technologies for water supply,
improper treatment and distribution network, insufficient use of national or international
financial resources, and lack of implementation of necessary strategies in accordance with
national, regional, and local conditions. Considering groundwater pollution in Iran, which
has become a challenge in the past years, it is necessary to adopt a practical and adequate
drinking water quality assessment framework for decision making. The water quality
index (WQI), first proposed by Horton [4], is widely used to classify quality of surface
water and groundwater. In this method, the most important parameters are first selected
by professional experts, and then, the indices with the highest quality are calculated, based
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on the standard value or the expected limit for each parameter. A proper weight is then
assigned to each parameter, relative to its impact on health or other aspects of concern.
Finally, water quality is interpreted as values in the range of good to bad [5]. The lower the
WQI values, the better the water quality conditions.

The Wilcox method is used in agriculture to classify water quality [6]. In this clas-
sification method, two parameters of EC and SAR are used. The value of EC correlates
with salinity and determines the risk of sodium in terms of SAR [6]. Studies have also
been conducted on the quality of drinking water. Healthy drinking water must have good
quality indicators (including physical and chemical characteristics). The World Health
Organization (WHO), the Ministry of Energy, and the Iranian Institute of Standards and
Industrial Research, have provided standards for soluble salts and different pollutants in
drinking water [7,8]. One of the methods to evaluate water quality in terms of drinkability
is to use the Schoeller diagram. This diagram shows the relevant concentration of different
parameters and enables a comparison [9–11]. Over the past two decades, fuzzy logic has
been commonly used in most research fields and readily accepted by researchers and deci-
sion makers. The idea of fuzzy logic was propounded in Ref. [12]. It is especially popular
in earth sciences, water resources and water quality management due to its capability in
controlling uncertainties Thus, much attention has been granted to the development of
environmental indicators using fuzzy logic [13].

Water quality assessment includes collecting samples, testing in the laboratory, and
applying data, which are mainly long, time-consuming and expensive processes. In some
countries, there is no opportunity to take samples and conduct tests due to poor economic
conditions. Therefore, using a cost-effective tool to evaluate water quality faster and more
accurately would be very useful. In this regard, artificial intelligence (AI) models are a
suitable alternative to reduce costs and save time and can significantly help. Artificial
intelligence technology is a powerful and potentially multifunctional tool in water science-
related fields [14].

The concept of the water quality index is relatively new, and, in the last few decades,
many researchers have utilized the WQI method worldwide. Furthermore, many studies
have been conducted to predict WQI by evaluating the performance of different artificial
intelligence models. Palani, et al. [15] used an artificial neural network model to predict and
evaluate temperature, salinity, DO, and Chl-a in the Johor River on the coast of Singapore.
In this research, artificial neural network models were used to predict the quantitative
properties of water. The simulation accuracy measured in Nash—Sutcliffe ranged from
0.8 to 0.9 for training and testing data. Bashi-Azghadi, et al. [16] identified a source of
contamination in a groundwater resource system using PSVM and PNN. The amount of
leakage was estimated through the observed concentration of the quality index. It was
concluded that the proposed methods were very effective in determining the source of
pollution. Lumb, et al. [17], conducted a comprehensive review study on the emergence
and evolution of the water quality index over the years, and proposed directions for future
studies. They also outlined the major limitations of the index development process and
made recommendations to overcome the problems. Gazzaz, et al. [18], in a study on the
Kinta River in Malaysia, showed that ANN has an excellent ability to predict the WQI
value, and the accuracy value of the model in this study was 0.97, which indicated high
accuracy of the model. Boateng, et al. [19] collected and analyzed a total of 19 groundwater
samples. In this study, the groundwater quality index showed that most of the samples
were in the category of good to excellent, which indicated the suitability of groundwater
for drinking and other household use. Adimalla and Qian [20] conducted a study in South
India and investigated the water quality index for drinking purposes. Residents of this area
use underground water to supply their water needs, so the importance of this source is very
high. The results found that the nitrate concentration in more than 61% of the prepared
samples was higher than the permissible limits. WQI values showed that 86% of the studied
area had low water quality for drinking purposes. The health risk was also investigated,
and it was found that excessive consumption of nitrate-contaminated groundwater has
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a higher health risk for infants than children and adults in this area. Brahim, et al. [21],
in a study in the Kebilli region, investigated groundwater quality using the water quality
index and fuzzy logic. The values of the WQI index for drinking and irrigation water were
between 421.83 to 436.858 and 50 to 77, respectively. The correlation of fuzzy membership
levels showed high values, between 0.88 and 0.79, for drinking and irrigation purposes,
respectively. Kouadri et al. [14] used eight artificial intelligence algorithms to generate WQI
forecasts in the Illizi region, southeastern Algeria. Two different scenarios were used to
check the accuracy of the models when compared to one another. The results showed that
the MLR and RF models were more accurate in the first and second scenarios, respectively,
than other models. In another study, Khoi et al. [22] evaluated the performance of twelve
machine learning (ML) models in surface water quality estimation in the Labung River in
Vietnam. Water quality data from 2010 to 2017 were used to calculate the water quality
index (WQI). The performance of each machine learning model was evaluated using R2 and
RMSE. The results showed that all the models performed well, but the extreme gradient
boosting (XGBoost) performed best, with the highest accuracy.

After a complete review of the previous literature, as far as the author knows, no
research has been conducted (especially in the Yazd-Ardakan plain, Iran) that, in addition
to investigating the water quality index, and predicting it with three artificial intelligence
models, namely, Gene Expression Programming, M5P Model tree, and Multivariate Adap-
tive Regression Splines, compares performance in groundwater prediction. Such a study
is important to the analysis of water quality. However, taking water quality samples is
challenging, due to the costly and time-consuming techniques required to check the quality
of water.

The current research aimed to determine groundwater quality in the Yazd-Ardakan
region in the Yazd province to gain a proper perspective, and understanding, of the water
quality resources. Due to the time-consuming calculation of the water quality index,
machine learning algorithms were used to estimate WQI. Finally, the results of each of the
algorithms were compared with one another so that the best one was selected to estimate
the value of the water quality index. In the meantime, Wilcox and Schoeller’s charts were
used to examine water quality for agricultural and drinking purposes.

2. Materials and Methods
2.1. Study Area

The Yazd-Ardakan Plain was selected as the study area. The plain, which covers an
area of 8050 square kilometers, is part of the Siah Kooh basin and is approximately located
in the center of Yazd province, Iran. (Longitude from 53◦46′ to 55◦ and latitude from 31◦49′

to 32◦55′). The plain is bounded by the Siah Kooh desert in the north, and the Shir Kooh
heights ridge in the south. Shirkooh is the highest point of the basin, with an elevation of
4037 m above the mean sea level, and the lowest point, which lies at the edge of the Siah
Kooh desert, has an elevation of 970. The average height of the basin is 1565 m. Figure 1
shows the study area with sampling points.

The study area is in the sedimentary structural unit, and inherits some tectonic,
stratigraphic, magmatic and metamorphic features of central Iran. The geology of the
region mostly dates to the Quaternary era [23]. The evaporation rate in the city of Yazd is
above 3000 mm per year, and the average temperature in the city is 18.9 degrees Celsius,
while the average relative humidity is equal to 35.3%. Groundwater resources are depleted
due to extraction from wells, aqueducts, and springs. The total annual depletion of ground
water resources is about 617 million cubic meters, 92% of which is used in agriculture, 5%
for drinking and health, and the remaining portion for use in industry and for livestock [23].
The groundwater generally flows from southwest to northeast.
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Figure 1. Study area.

2.2. Water Quality Index

The WQI is used to assess groundwater quality and for various purposes, such as
drinking and irrigation. WQI has been used by various researchers in different parts of
the world [24–26]. Water quality index, as per the World Health Organization (WHO)
requirements, was calculated using the permissible limits for the parameters listed in
Table 1.

Table 1. Permissible limit for each parameter [23].

Chemical Parameters K+ Na+ pH Ca2+ SO2−
4 Cl− HCO−3 EC TH TDS Mg2+

Sn 12 200 8.5 200 250 600 120 1500 500 1500 150

Water quality grades are calculated using the Equation (1) [23]:

qn = 100
(

Vn −Vi
Sn −Vi

)
(1)

where, qn is water quality grading for parameter n, Vi represents the ideal value for the
parameter n, Vn is the Observed value of the parameter n and Sn is the standard permissible
value for the parameter n.

The unit weight of the corresponding parameter n (Wn), is defined as the inverse of
the recommended standard value, Sn:

Wn = K/Sn (2)

where Wn is the weight unit of the parameter n, K denotes the standard value of the
parameter n, while Sn represents a proportionality constant.
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The proportionality constant is also calculated using Equation (3):

k = 1/∑(1/Sn) (3)

The total water quality index is then calculated linearly by adding the quality grade to
the unit weight.

WQI = ∑qnWn /∑Wn (4)

As shown in Table 2, the calculated values of the water quality index are usually
classified into 5 classes: excellent, good, poor, very poor and unsuitable.

Table 2. Water quality classification based on WQI definition [25].

Class WQI Value Water Quality Status

A <50 Excellent
B 51–100 Good
C 101–200 Poor Water
D 201–300 Very Poor Water
E >300 Water Unsuitable for Drinking

In addition to evaluation of measured chemical parameters, the parameters and
indicators of salinity and alkalinity risks were also utilized to assess the quality of water
used for agricultural purposes. These parameters and indicators include SAR, permeability
index, Magnesium Absorption Ratio (MAR), Kelley’s ratio (KR) for ground waters, and the
index of water’s potential salinity (PS). Table 3 defines these indicators and provides their
standard values.

The WQI method is a simple approach to delineate water quality in different places
and at any time. It can be easily interpreted and analyzed. To assess water quality using
the WQI method, detailed data on water parameters are required, which can be counted
as a limitation. Therefore, it cannot be used to assess water quality in areas where the
access to accurate data on water quality parameters is limited. Additionally, it is exclusively
based on physical, chemical, and biological parameters to determine water quality, whereas
environmental factors, such as seasonal changes, the impact of technology and human
activities, and pollution sources are not considered in this approach.

2.3. Wilcox and Schoeller Diagrams

The most important qualitative criteria for water classification for agricultural appli-
cations, using the Wilcox diagram, are EC and SAR. EC is an effective parameter in deter-
mining agricultural water quality. Water with lower EC values (less than 200 µmho/cm) is
considered “very good” for agricultural applications, while water with EC values between
200 to 900 µmho/cm are classified as “good” and values between 900 to 2200 µmho/cm are
“moderate”. Water with EC values higher than 2200 µmho/cm is considered unsuitable
for use. The Wilcox diagram contains EC values on its horizontal axis and SAR values
on the vertical axis. According to this diagram, perfect waters, with EC values less than
250 µmho/cm, are classified in C1S1 class. Moderate waters belong to one of the C1S2,
C2S1, or C2S2 classes. Waters with poor quality belong to one of the C3S1, C3S2, C2S3, C3S2,
or C1S3 classes, which are only useable for irrigation of certain crops in coarse-grained
lands with proper drainage. Water classified in C4S4, C1S4, C4S1, C4S2, C2S4, C3S4, and
C4S3 classes is considered to have very bad quality and only used for watering crops that
are very resistant to salinity in coarse-textured soils with high drainage capacity [6].

The Schoeller diagram is commonly used for water evaluation in terms of drinkability.
It is a semi-logarithmic diagram that presents the concentration of major ions in mg/L. In
this diagram, five chemical properties, namely, sodium, chlorine, sulfate, total dissolved
solids (TDS), and hardness, are used to classify water in terms of drinkability. This classifi-
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cation defines the following six groups to classify water quality: good, acceptable, average,
unsuitable, completely undesirable, and non-drinkable [27,28].

Table 3. Comparison of the maximum allowable concentrations of elements in agricultural water.

Index Standard Range in Water Equation Reference

Ec 0–3000
(µmohs cm−1) - [29]

Ps (mmol L−1) PS = Cl− + 1
2 SO2−

4 [30]

SAR 0–15
(meq L−1) 0.5 SAR = Na+√

Ca+Mg
2

[31]

MAR <50 MAR =
Mg

Ca+Mg × 100 [32]

SSP <40
(meq L−1) SSP = Na+K

Ca+Mg+Na × 100 [29]

PI 0.19–7.15 PI = ((Na+K)+
√

Hco3)×100
Ca+Mg+Na+K

[33]

KR 0–1 KR = Na+
Ca+Mg [34]

The EC of each sample measures its ability to transmit electrical current. This depends
on the concentration, mobility, and electrical capacity of the ions available in the sample
and its temperature. Solutions containing mineral compounds have higher conductivity,
while those with organic compounds suffer poor conductivity. SAR is calculated from the
ratio of sodium to calcium and magnesium. The latter is important for ions since they tend
to counteract the effects of sodium. Continuous use of water with high SAR values results
in the decomposition of the soil’s physical structure, leading to more compact and impene-
trable soil [32]. Soil permeability is affected by the long-term usage of irrigation water, the
sodium, calcium, and bicarbonate contents of which affect the soil. Doneen [33] developed
the permeability index criterion to assess the suitability of water for irrigation [34]. Kelly’s
ratio (KR) determines the suitability of ground waters for irrigation.

2.4. Modified Water Quality Index

The Fuzzy Analysis Hierarchy Process (FAHP) method was proposed to facilitate
more confident decision-making by addressing uncertainty [35]. The FAHP technique is
an advanced analytical method developed from conventional AHP. In FAHP, fuzzy AHP
primarily sets the weights for the criteria through pairwise comparisons performed by
experts in the field. The experts use their subjective judgments in determining the weight
ratio. Chang [36] developed a fuzzy hierarchical analysis method based on fuzzy triangular
numbers and pairwise comparisons. In this method, decision hierarchy is formed based
on the importance of each parameter, and a triangular fuzzy number is assigned to each
parameter (Table 4) [37,38]. In the next step, pairwise comparison matrices were formed for
each level of the hierarchical tree [37,38]. In this method, the numbers 2/3, 1, 3/2, 2, 5/2, 3,
7/2, 4, and 9/2 are used as fuzzy scaling ratios, corresponding to the preference power of
one element over another with distance values. The steps of fuzzy hierarchical analysis use
the Chang [36] development and analysis method.

Table 4. Fuzzy scale [37–39].

Linguistic Scale for Importance Triangular Triangular Fuzzy Reciprocal Scale

Just equal (1, 1, 1) (1, 1, 1)

Equally important (1/2, 1, 3/2) (2/3, 1, 2)

Weakly more important (1, 3/2, 2) (1/2, 2/3, 1)

More important (3/2,2,5/2) (2/5, 1/2, 2/3)

Strongly more important (2, 5/2, 3) (1/3, 2/5, 1/2)

Absolutely more important (5/2, 3, 7/2) (2/7, 1/3, 2/5)
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2.5. Artificial Intelligence Models

In this study, MARS, GEP, and M5P models are proposed to estimate the WQI of
Yazd-Ardakan plain groundwater. Of the data, 70% was used for the calibration stage, and
30% was used for verification. Choosing the primary factors and parameters of artificial
intelligence modeling is one of the most critical stages. MATLAB R2013a was used for
MARS analysis, GeneXproTools 5.0 was used for GEP, and the M5P model was developed
in WEKA-version 3.9.3.

2.5.1. Gene Expression Programming (GEP)

GEP is one of the circular algorithm methods, which are based on Darwin’s comple-
mentation theory. These algorithms define an objective function in the form of qualitative
criteria and then, using the said function, compare different solutions to the problem in a
step-by-step process of modifying the data structure, finally providing a suitable solution.
The primary difference between GEP and the Genetic Algorithm (GA) is related to the
nature of each individual, so that individuals are linear rows of fixed length (chromosomes)
in GA. Still, in gene expression programming, they are the same separate branches [40].
In GEP, the tree structure of the collections is emphasized, but the work of the genetic
algorithm is based on a system of binary digits [41]. GEP has the advantage that a simple
mathematical expression can produce a suitable result for practical use and provision of
better prediction accuracy [42]. GEP exploits a relatively simple mathematical expression
to estimate a suitable result with a higher prediction accuracy for practical applications [42].
Furthermore, a GEP-based model can be trained and updated as new data becomes avail-
able. Estimation models developed by GEP have high interpretability, which facilitates
better understanding of the model’s behavior.

The step-by-step process of solving a problem using GEP consists of the following
5 steps: (i) selection of independent variables of the problem and system state variables;
(ii) selection of a set of functions, which includes arithmetic operators, test functions
and Boolean functions; (iii) utilization of an index measuring the accuracy of the model,
based on which a determination can be made of the model’s ability to solve a specific
problem, (iv) utilization of the values of numerical components and qualitative variables as
control components, to control the execution of programs; (v) employment of conditions
for stopping the execution of the program, as a measure to achieve the results and stop the
program. The Tools 5.0 Gene Xpro software was used in this research to estimate the WQI
index using the GEP model. The settings used in GEP modeling to estimate WQI are given
in Table 5.

Table 5. Parameters of the GEP model in the WQI Index.

Description of Parameters Setting of Parameters

Function set +.− .× .÷
Linking function Addition

Mutation rate 0.00138
Inversion rate 0.00546

One-point and two-point recombination rates 0.00277
Fitness function RMSE

Permutation 0.00546
Head size 7

Number of Genes 3
Number of chromosomes 30

2.5.2. Model Tree

The growth of information technology and methods of data production and collection
facilitate access to a large quantity of data, and, as a result, data mining and extracting
knowledge from data has attracted much attention. One of the methods and algorithms for
applying data mining on a set of data is the decision tree, which has various algorithms
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and subsets, depending on the conditions of the problem and the characteristics of the data.
When the decision tree is used to predict numerical (continuous) variables, the constructed
tree is called a regression tree. One of the most common tree model algorithms is the M5
algorithm. Quinlan [43] first proposed this algorithm. Then, the M5P algorithm, as a logical
and extended reconstruction of M5, was introduced by Wang and Witten, in 1997 [44].
One of the main advantages of the M5P model is that it can handle datasets with different
characteristics and dimensions [45]. It can efficiently work with complex data and many
variables and avoids the algorithm complexity for decision-making.

To build a tree model, the first stage requires a tree-building algorithm to create a
tree. Then, in the second stage, the constructed tree is pruned, according to the leaves’
error values and the subtrees’ error values. The separation criteria for determining the best
variable for separating part of the batch values that reach a specific node is based on the
standard deviation of the batch values, and calculation of the expected reduction in this
error, as the result of testing each attribute in that node. The reduction of the standard
deviation is calculated from Equation (5):

SDR = sd(K)−∑
|Ki|
|K| sd(Ki) (5)

where K: a group of samples that reach the node, Ki: the subset of illustrations that have
the ith product of the possible set, and sd: the standard deviation.

2.5.3. Multivariate Adaptive Regression Splines (MARS)

The MARS method was developed in 1991 by Friedman [46]. This method is used
for non-parametric modeling of data and can discover hidden relationships between pre-
dictive and predicted variables. The method does not require any specific assumptions
to determine the relationships between inputs and outputs [46]. The MARS method has
high potential for predicting environmental parameters, solving nonlinear problems, and
data mining. It has a significant advantage in that it does not require any pre-existing
assumptions about the functional relationship between dependent and independent vari-
ables. Instead, the relationship is represented through a selection of coefficients and basic
functions, which comprise piecewise linear lines [47].

In the first stage, the MARS model needs data to train the model. The data is divided
into different splines, and several nodes are created. Based on the generated nodes, data
representative functions in these splines, known as basic functions, model the data series.
The strip function of the MARS model is defined by Equations (6) and (7):

−(x− k)q
+ =

{
(k− x)q i f x < k

0 otherwise
(6)

+(x− k)q
+ =

{
(k− x)q i f x > k

0 otherwise
(7)

where q > 0 specifies the power of the polynomial function of the fragment. If q = 1, the
splines are linear. The MARS model is calculated from the Equation (8):

f (x) = β0 +∑M

m=1
βmBm(x) (8)

Bm(x) = max(0.x− c) (9)

Bm(x) = max(0.c− x) (10)

The parameters β0, βm, and Bm(x) are, respectively, the following: the constant coeffi-
cient of the function, the constant coefficient of the base function m, and the base function
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m or the bias function, and m is the number of sentences in the final model, which is a step
process, found in step and forward–backward. The function f (x) represents a regression
function, and x and c are the independent variables and the threshold value of the inde-
pendent variable x, respectively. The MARS model is produced in two phases, forward
and backward. Any bias function may be used in the forward phase to develop the MARS
equations. This step usually results in an overfitting model. The regression phase removes
the ineffective functions with the bias function in MARS.

The optimal MARS model was selected, based on the lowest value of the generalized
validation criterion, or GCV, which is calculated using Equation (11):

GCV(m) =
1
n

∑n
i=1[yi − f (xi)]

2(
1− C(M)

n

)2 (11)

C(M) = (M + 1) + d×m (12)

2.6. Statistical Metrics

Various statistical indices have been used to evaluate models, and each has a different
relationship to express the error of the observed and predicted values [48]. Error evaluation
measures are calculated for the training and test data. The five error evaluation indices
considered are the correlation coefficient (R), the least square mean error (RMSE), the mean
absolute value of the error (MAE), the Nash–Sutcliffe coefficient (NSE), and the agreement
index (Ia). The relationships of each of these are given below [49].

R =
∑n

1
(
WQIO −WQIO

)(
WQIF −WQIF

)√
∑n

1
(
WQIO −WQIO

)2 ·∑n
1
(
WQIF −WQIF

)2
(13)

RMSE =

√
∑n

1 (WQIF −WQIO)
2

N
(14)

NSE = 1− ∑n
1 (WQIF −WQIO)

2

∑n
1
(
WQIO −WQIO

)2 (15)

Ia = 1− ∑n
1 (WQIF −WQIO)

2

∑n
1
(∣∣WQIF −WQIO

∣∣+ ∣∣WQIO −WQIO
∣∣)2 (16)

MAE =
∑n

1 |WQIF −WQIO|
N

(17)

where N is the number of samples, WQIO is the observed value, WQIF is the simulated
value, WQIO is the average of the observed values, and WQIF is the average of the
simulated values.

3. Results and Discussion
3.1. WQI and FAHP-WQI

The drinking water quality in the study area was evaluated using the WQI index.
Moreover, the FAHP-WQI method was used to resolve the inconsistencies in the WQI
method. Figure 2 shows the water quality index within the study area, calculated by
means of the Kriging and IDW interpolation methods. As seen in Figure 2, based on the
WQI(WHO) analysis more than 78% of the surface of the Ardakan-Yazd case study area
was classified in the excellent or good classes.
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As can be observed in Figure 2, according to the WQI(WHO) analysis 72 wells out
of 96 were in a good class regarding water quality, while 23 wells were in a poor class.
Furthermore, the southwestern and central regions of the study area had higher-quality
drinking water resources compared to the northern and southeastern regions. According to
the FAHP-WQI results, 31 water wells out of 96 water wells were in a good class regarding
water quality, 23 wells were in the poor class, 22 wells were in the unusable class, and four
wells were in the excellent class.

This could be due to the existence of urban areas and the existence of absorptive
wells in these parts of the study area. The location of the main wells used for quality
assessment in the study area are highlighted in green color. As discussed earlier, the use of
the WQI(WHO) method has inconsistencies, but, compared to the FAHP-, more than 60%
of the case study areas of Ardakan-Yazd were classified within excellent or good classes.
Different interpolation methods used in this study included IDW and ordinary Kriging. The
results of classification of the wells under study into five categories of excellent, good, poor,
very poor, and unusable, using the WQI(WHO), and FAHP-WQI methods, are presented
in Figure 3. According to the WQI-based rankings, after using the FAHP-WQI model, the
results were subject to a lot of changes. Such changes could typically be seen in the vicinity
of wells with approximately equal WQI values. When a sample with a lower WQI value
had a chemical parameter with a much higher value than other samples with lower WQI
degrees, effects, such as those mentioned, became more apparent. Using the Fuzzy Analytic
Hierarchy Process method (FAHP), along with WQI, increased the accuracy in weighting
parameters and reduced the amount of uncertainty in the water quality calculations.
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3.2. Chemical Indicators

To investigate the hydro-geochemistry of groundwaters in the Yazd-Ardakan plain,
water samples were collected from 96 agricultural and drinking wells. The samples were
collected with the aid of Yazd Agricultural Jihad Management Organization and transferred
to the Soil and Water Laboratory of Yazd province for further chemical analysis. the param-
eters measured in this study included the amounts of calcium (ca2+), magnesium (mg2+),
sodium (Na+), bicarbonate (Hco−3 ), sulfate (SO4), chloride (Cl−), ec, potassium (K+), total
dissolved solids (tds), total hardness (th), and acidity. Data Quality Assurance and Quality
Control (QA/QC) processes were considered throughout the study. Approximately half of
the prepared sample volume was specifically and individually checked in the laboratory to
ensure QA/QC mechanisms. The accuracy of chemical analysis was confirmed by charge
balance errors, and samples were <5% error.

The statistical characteristics of the water of the wells used, along with their standard
ranges for the water, are presented in Table 6. This Table shows that the average of the
parameters, pH, HCO3, Ca, Na, and SO4, were all located within the normal and standard
ranges, but the parameters, EC, TDS, mg, and Ca, were above the allowable standard
upper bounds. Despite the average of some samples being in the standard range, the
maximum values of all parameters showed that there were areas in the study area that are
not suitable for irrigation purposes. The high values of EC and TDS in this plain are due to
the existence of salt formations, the amount of water input to the aquifer and the amount
of water harvested from it. The electrical conductivity of irrigation water or soil saturation
extractives are indicators of the amount of minerals dissolved in the soil environment,
and, as such, determine the quality and classification of water and soil in terms of salinity.
Therefore, EC must be measured in all studies and research regarding the salinity of water
and soil [50]. The electrical conductivity of groundwater in the region under study was in
the range of 375–19,960 µmho/cm, and the average EC value was equal to 4878.21. The
total dissolved solid in the study area was also in the range of 240–12,000 mg/L, and the
average TDS was equal to 3017.78. As shown in Figure 4a, the results of constructing a
zoning map of the parameters under investigation indicated that, for parameters EC and
TDS, the quality of water was not suitable for agriculture in most areas of Yazd-Ardakan
plain. In fact, 47.36% of the wells in this plain were in poor condition, according to the
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EC indicator. Moreover, regarding the parameter TDS, 45.26% of the wells were in poor
conditions The salinity in Yazd-Ardakan plain followed a decreasing trend from east to
west. There was also a decreasing trend from north to south. The satisfactory water quality
in the central and western regions is mainly due to the existence of rocks formed in these
regions, because these parts have Eocene-aged rocks of andesite, latite, ignimbrite, and
basalt, for which the existing waters are mainly fresh water.
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Classification of irrigation water in terms of chloride concentration is necessary due
to the special sensitivity of some plants to chloride. Some results showed that a large part
(about 38%) of the plain had a concentration higher than the allowable limits. Chloride con-
centration varies in the range of 0.79 to 208.68 mEq/L and its average for the Yazd-Ardakan
plain was equal to 38.39. Chloride had a decreasing trend from east to west and from
north to south, Figure 4b. The probable reasons for rising groundwater Cl concentrations
include mixing new waters with higher Cl concentrations, which are mainly of four types:
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deep liquids, hydrothermal waters, porous water in sea clays, and contaminated surface
waters [51,52].

The PS indicator reflects the impact of high salt concentrations with respect to chloride
and sulfate and increases with the reduction of soil moisture. The water is classified into
three classes: good PS (less than 3 mmol/L), average PS (3 to 15 mmol/L) and unusable PS
(higher than 15 mmol/L). Using this index, the majority of wells were in the poor range and
41% had no problems in irrigation systems. The decrease in water quality of northern and
southern areas with respect to salinity was obvious. Examining the qualitative data from
the wells showed that the minimum, maximum and average values were 0.22, 173.99, and
31.81, for sodium, 1.03, 41.82, and 11.88, for magnesium, and 1.2, 46.31, and 10.27 mEq/L
for calcium, respectively. This means that 23.15%, 61.05%, and 14.73% of the wells were in
poor condition according to these parameters, respectively. The reason for high amounts of
magnesium ions and a high percentage of magnesium ions in the water of the wells under
investigation is due to reactions to the rocks and geological formations.

Table 6. Statistical characteristics of well water used, along with their standards [53].

SO4 Cl− Na+ Mg2+ Ca2+ HCO3 TDS pH Ec
Parameter

meq·L−1 mg·L−1 - mmoh cm−1

45.8 208.68 173.99 41.82 46.31 10.96 12,000 8.75 19,960 Maximum

0.42 0.79 0.22 1.03 1.2 1.52 240 7 375 Minimum

12.08 38.39 31.81 11.88 10.27 4.09 3017.78 7.82 4878.21 Average

10.91 45.37 37.52 10.74 9.33 1.77 2918.01 0.31 4740.49 Standard
deviation

0–20 0–30 0–40 0–5 0–20 0–10 0–2000 6.5–8 0–3000 Standard
domain

Bicarbonate is an important parameter due to the deposition of calcium and mag-
nesium in soil and water, as their deposition increases SAR and intensifies the sodium
problem. The amounts of carbonate (CO3) and bicarbonate (HCO3) are in equilibrium
within ground waters. However, carbonate is released from under the ground immediately
after water outflow. Examinations of the data obtained from the wells under study showed
that the minimum, maximum and average values were equal to 1.52, 10.96, and 4.09 for
bicarbonate, 0.42, 45.8, and 12.08 mEq/L for sulfate, respectively. Equivalence maps of
bicarbonate and sulfate values for the Yazd-Ardakan plain were plotted using the ordinary
Kriging method and are presented in Figure 4c.

In the past, water quality was only assessed based on sodium. The truth is that sodium
has highly negative effects on soil and plant growth. One way to determine the risk of
sodium is to use the sodium absorption ratio. This method was proposed by the American
Salinity Laboratory. The minimum, maximum, and average sodium absorption ratios in
the Yazd-Ardakan plain were equal to 0.15, 30.9, and 8.37, respectively. Studies suggest
that, except for a few cases, waters from other wells had SAR values less than 15, which
are within the appropriate range in this regard. This means that 16.9% of the wells were
in dire condition in this regard. The values of this index are presented in Figure 4b, along
with the PS index. The calculated total quality index showed that 18.53% of the regions in
the Yazd-Ardakan plain had appropriate water quality for irrigation, 65.28% had average
water quality, while 18.17% had poor water quality. The SSP ratio, or the percentage of
sodium dissolved in water, was calculated using the concentrations of calcium, sodium,
and magnesium elements. SSP is an important parameter for investigating salinity risk.
High percentages of soluble sodium may prevent plant growth and reduce soil permeability.
The maximum, minimum, and average values of the soluble sodium percentage in the
Yazd-Ardakan plain were equal to 86.05, 5.05, and 49.08, respectively. The SAR and SSP
index zoning map using Kriging interpolation is presented in Figure 5a. The results showed
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that 66.31% of the well water had SSP values higher than 40%. The study of spatial changes
of this index also showed that its value increased from east to west and from north to south
of the plain. The bar diagram of the SSP index and the MAR index of water from wells
in the region are presented in Figure 5. The permissible limit of the MAR parameter for
irrigation water is 50% [54]. Most of the samples under study were above the standard
allowable limit of 50% with respect to magnesium absorption ratio. This value reached 60%
in some wells, and instances of 80% were also observed in a few wells. The study of zoning
of this index, depicted in Figure 5, showed that the groundwater from the northern areas of
the zone had the worst conditions in this regard. Higher magnesium amounts in water not
only result in water salinity, but also reduce product yields [32].
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The average Kelley’s ratio for the water of the wells under study was determined
to be equal to 1.03. In general, the situation was relatively favorable with respect to this
indicator, since Chidambaram et al. [55] reported that the maximum allowable limit for this
component in water is equal to 1. If this ratio became greater than one, it would indicate
that the amount of sodium was higher than the two divalent elements of calcium and
magnesium, and it would damage soil permeability in the long term. Examining the spatial
changes of Kelley’s index in Figure 5c, the southern areas of the plain were not satisfactory,
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and the soil permeability had been damaged. The bar diagram of the Kr index, as well as
the EC index, along with their allowable limits, are illustrated in Figure 5.

To investigate the permeability of another index that covers more factors compared
to Kelley’s ratio, the permeability index was used. Of course, this index is affected by the
long-term use of irrigation water. According to a report by Chidambaram et al. [55], the
appropriate range for the permeability index is from 0.19 to 7.15. Figure 5c presents the
equivalence map of the PI and KR indices throughout the Yazd-Ardakan plain. Examining
the spatial variations of PI, the ground waters of this plain had no issues in this regard, but,
unlike previous indices, the values for this index were at their highest in the southern and
southwestern regions.

Improving groundwater quality, or mitigating the effects of poor water quality, can be
complex. In the following, a few suggestions are presented for improving groundwater
quality in the study area: (i) implementing Best Management Practices (BMPs). These
practices can include reducing the use of fertilizers and pesticides in the agricultural sector
and proper waste management; (ii) management of human activities, such as mining,
overexploitation of groundwater, and landfilling, which can significantly influence ground-
water quality. Proper management and regulation of these activities can help prevent
groundwater pollution.

3.3. Wilcox and Schoeller Diagrams

As stated earlier, the Wilcox diagram presents the classification of water quality in
terms of agriculture. According to Figure 6, about 37.25% of the wells were in classes C3S2,
and C3S1, which was, in fact, the highest accumulation in this area and indicated waters
with poor quality that were only effective for irrigating certain crops in large textured lands
with proper drainage. Moreover, about 16.25% of the wells were classified in the C4S4 class,
which indicated very poor water quality for irrigation purposes. Only about 13.75% of the
wells were determined to have average water quality. The Schoeller diagram is presented
in Figure 7. The minimum, maximum and average amounts of ions deliver a classification
of drinking water quality. According to the diagram, the drinking water quality in the
Yazd- Ardakan plain was classified as acceptable, bad, and unsuitable.
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3.4. Assessment of AL Models in WQI Prediction

From 96 data sets, 70% (66 data sets) were randomly selected for training and 30%
(30 data sets) for testing. Eleven main variables, SO4, Cl, HCO3, pH, TDS, TH, EC, K, Na,
Mg and Ca, were used to develop GEP, M5P and MARS.

3.4.1. GEP Model

In the GEP algorithm, empirical relationships are generated to predict continuous
values using a combination of mathematical functions and mathematical operators [56].

Since GEP uses mathematical functions and operators, the empirical relations of this
algorithm also include linear and non-linear combinations of mathematical functions and
operators. For example, empirical GEP relationships may involve linear combinations of
mathematical functions such as addition, multiplication, and subtraction. These relations
may also include non-linear combinations of mathematical functions, such as logarith-
mic and power functions [57]. To evaluate WQI using the GEP model, the first step in
implementing the model is to find the best input model to the model, based on which
the best output is obtained. The pattern that causes the least error is considered the most
appropriate input pattern among the different input patterns. Of the data, 70% was used to
train the model using the random selection method, and the remaining 30% was used to
validate the model. All the data were introduced as input to the software to find the best
structure as input for WQI estimation. The software introduced the best input combination
by running the model with different input combinations. The GEP model expression trees
are shown in Figure 8. One of the important capabilities of GEP is to present mathematical
relationships explicitly and simply. The simplified analytical form of the GEP model can be
expressed as in Equation (18).

WQI = (((−7.41 + pH)× (HCO3 + HCO3))− ((−0.832− pH)− (−9.796
+(−9.796)))) + ((((9.18× pH) + (Na
−(−5.537)))×(pH × K))×0.185) + ((HCO3
−(8.303× 2.324))+((K + Mg) + (pH × pH)))

(18)

3.4.2. M5P Tree Model

The M5P algorithm, like MARS, is a non-parametric regression algorithm used to
predict continuous values. This algorithm also estimates the relationship between depen-
dent and independent variables using linear and non-linear basis functions. Unlike MARS,
which uses a polynomial and interactive basis function in its primary function, the M5P
algorithm uses a decision tree in its primary function [43,58,59].

The evaluation results of the M5P tree model show the high accuracy of this model.
One of the advantages of the M5P tree model is to provide a simple linear relationship
combination in the form of a tree model that can be used to estimate the water quality
index. Generating a tree model in the first step includes determining the most appropriate
input parameter for branching and the division rule to produce a decision tree. Therefore,
after entering all the inputs in the Weka software (version 3.9.3), SO4, Cl, HCO3, pH, K, and
Na parameters were selected as the best input combination. Since the results of this model
are in the form of regression relationships, the regression model is presented according to
Equation (19).

WQI = 0.6654 ×SO4 + 0.3761× Cl + 2.1054× HCO3
+33.2017× PH + 117.0444× K− 0.0736× Na
−232.1628

(19)
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3.4.3. MARS Model

The MARS model is implemented in Matlab R2013a software. This model can provide
the best combination of model inputs for WQI estimation. Hence, the best proposed input
combination included Ec, pH, K, HCO3, SO4, Cl, and TH parameters. Leading and trailing
phases were used for prediction. In this research, the number of basic functions (NBF)
equaled 14 functions, introduced with the symbol λ. In the implementation of this model,
GCV equal to 0.1375 was obtained. The basic functions of this model are calculated in
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Table 7, and the general relation extracted from the mentioned model for estimation is also
obtained according to Equation (20):

Γ(t) = 71.663 +

14

∑
i=1

Ci · λi(t) (20)

Table 7. Fixed coefficients and basic functions obtained from the MARS model.

Fixed Coefficients Basis Functions

C1 0.00065043 λ1 max (0, Ec—2950)
C2 −0.00068293 λ2 max (0, 2950—Ec)
C3 33.358 λ3 max (0, pH—7.8)
C4 −33.391 λ4 max (0, 7.8—pH)
C5 116.88 λ5 max (0, K—0.05)
C6 −113.52 λ6 max (0, 0.05—K)
C7 1.9707 λ7 max (0, HCO3—2.96)
C8 −1.8072 λ8 max (0, 2.96—HCO3)
C9 0.54801 λ9 max (0, SO4—20.82)
C10 −0.52785 λ10 max (0, 20.82—SO4)
C11 0.24887 λ11 max (0, Cl—65.99)
C12 −0.24965 λ12 max (0, 65.99—Cl)
C13 0.0011579 λ13 max (0, TH—2659)
C14 −0.0014433 λ14 max (0, 2659—TH)

Table 8 shows the values of error evaluation criteria for machine learning models in
two parts, training and testing. According to the error evaluation criteria in the mentioned
table among machine learning models, the performance of the MARS model was better
than that of the other models. In the M5P model, the values of RMSE, MAE, and Ia for the
test data were obtained as 0.225, 0.175, and 1, respectively. The training data of this model
had acceptable accuracy and was close to the test results. These results showed that the
mentioned model could estimate the training and testing data well. Among the models,
the performance of GEP had the lowest prediction accuracy compared to other models. Of
course, according to the evaluation criteria, it could be said that the results of GEP were
weaker than other models, but it had high accuracy in predicting the water quality index.
The MARS model also had good estimation accuracy, and the error evaluation indices
showed better values, with a slight difference compared to the M5P model (Table 8). In the
examination of statistical error values in the two categories of training and testing data in
the models, it was observed that there was a slight difference between the error of training
and testing data in MARS and M5P models compared to GEP. Figure 9 shows the observed
values against the predicted values of the models in the training and test section. The
observed and predicted values by MARS and M5p models were closest to the bisector line,
showing good convergence. Among the models, GEP had relatively scattered data, which
caused a lower correlation coefficient. The MARS model had decreased accuracy in the
testing phase compared to the training phase, but it still had the best values among the
statistical indicators, compared to the other two models.

Table 8. Performance of ML models.

R RMSE MAE NSE Ia

GEP
Training 0.986 4.366 2.884 0.971 0.993
Testing 0.980 5.557 3.973 0.920 0.975

M5p Training 0.999 0.286 0.196 0.999 1.000
Testing 1.000 0.225 0.175 0.999 1.000

MARS
Training 1.000 0.172 0.127 1.000 1.000
Testing 0.999 0.212 0.167 0.999 1.000
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The results of this research were compared with the studies of other researchers. In
a study conducted by Amiri-Ardakani and Najafzadeh [60], the records of broken pipes
and related causes in the water distribution networks of Yazd City were investigated. In
this study, three models, GEP, MARS, and M5, were used to derive the exact formula
for estimating the failure rate of pipes. The results also showed that the MARS model
performed more satisfactorily than other models. In another study, Mehdizadeh, et al. [61]
estimated Iran’s monthly mean evaporation and transpiration. They used GEP, MARS, and
two Support Vector Machine (SVM) models. The results showed that MARS and SVM-RBF
methods performed better than GEP and SVM-Poly. In other research, Qasem, et al. [62]
investigated the ability of three data-driven methods, (GEP), M5 model tree, and support
vector regression (SVR), to model and estimate dew point temperature (DPT) in Tabriz
station, Iran. In the end, the M5 model was recommended as the most accurate model in
DPT estimation compared to other models considered.

For future studies, it is suggested to investigate the sources of uncertainty, both metric
critical value uncertainties and weight uncertainties in WQI and control them as much as
possible. Both producers and consumers of water bear the costs of a lack of water supply,
or the supply of low-quality water, so, investigating the sources of future uncertainties,
along with water quality checks to investigate different water supply systems, should be a
basis for analyzing the costs and effects of risk control [63].

4. Conclusions

In this study, WQI(WHO) and Fuzzy AHP-WQI were used to check the quality of
96 wells in the Yazd-Ardakan Plain and then the results of these two methods were com-
pared. According to the results of the WQI(WHO) method, it was found that 72 wells out
of 96 wells were in the good class, in terms of water quality, and 23 wells were classified as
poor in the WQI analysis. Meanwhile, according to the FAHP-WQI method, 31 wells were
in the good class, 23 wells were in the poor classification, 22 wells were in the unusable cate-
gory, and 4 wells were in the excellent category of the WQI analysis. Wilcox and Schoeller’s
diagrams were also used to classify water quality from the point of view of agriculture
and to evaluate the water from the point of view of drinkability, respectively. According
to the results of the Wilcox diagram, it was found that about 37.25% of the wells were in
the C3S2 and C3S1 classes, indicating low-quality water that is only effective for irrigating
some crops in large-textured fields with proper drainage. According to Schoeller’s diagram,
the drinking water quality of the Yazd-Ardakan Plain was classified into three categories:
acceptable, bad, and inappropriate. Since calculating the water quality index takes time,
artificial intelligence algorithms were used in this research to estimate WQI. Three models,
GEP, M5P, and MARS, were selected, and a WQI calculation was performed according to
the processes of each algorithm. The results from the three models were evaluated using
Nash–Sutcliffe (NSE), root mean square error (RMSE), agreement index (Ia), correlation
coefficient (R), and mean absolute error (MAE) statistical indices. Finally, the models were
compared to determine the best model for estimating the water quality index. GEP had
relatively scattered data, which caused a lower correlation coefficient than the other two
models. The results of the statistical indicators for the M5P and MARS models were close.
The results of the MARS model for the RMSE, MAE, Ia, NSE, and R indicators in the
training phase were equal to 0.172, 0.127, 1, 1 and 1, respectively, and for the test phase, they
were equal to 0.212, 0.167, 1, 0.999 and 0.999. The accuracy of the MARS model decreased
in the testing phase compared to the training phase, but it still had the best values among
the statistical indicators, compared to the other two models.
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