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Abstract: Accurate and reliable discharge estimation plays an important role in water resource
management as well as downstream applications such as ecosystem conservation and flood control.
Recently, data-driven machine learning (ML) techniques showed seemingly insurmountable perfor-
mance in runoff forecasting and other geophysical domains, but they still need to be improved in
terms of reliability and interpretability. In this study, focusing on discharge estimation and manage-
ment, we developed an ML-based framework and applied it to the Huitanggou sluice hydrological
station in Anhui Province, China. The framework contains two ML algorithms, the ensemble learning
random forest (ELRF) and the ensemble learning gradient boosting decision tree (ELGBDT). The
SHapley Additive exPlanation (SHAP) was introduced into our framework to interpret the impact
of the model features. In our framework, the correlation analysis of the dataset can provide feature
information for modeling, and the quartile method was utilized to solve the outlier problem of
the dataset. The Bayesian optimization algorithm was adopted to optimize the hyperparameters
of the ensemble ML models. The ensemble ML models are further compared with the traditional
stage–discharge rating curve (SDRC) method and the single ML model. The results show that the
estimation performance of the ensemble ML models is superior to that of the SDRC and the single
ML model. In addition, an analysis of the discharge estimation without considering the flow state
was performed. This analysis reveals that the ensemble ML models have strong adaptability. The
ensemble ML models accurately estimate the discharge, with a coefficient of determination of 0.963, a
root mean squared error of 31.268, and a coefficient of correlation of 0.984. Our framework can prove
helpful to improve the efficiency of short-term hydrological estimation and simultaneously provide
the interpretation of the impact of the hydrological features on estimation results.

Keywords: discharge estimation; ensemble machine learning; exploratory data analysis; feature
interpretation; sluice hydrological station

1. Introduction

The accurate estimation of discharge is important for effective water resource man-
agement and downstream ecosystem conservation. In the daily measurement tasks of the
hydrological station, discharge measurement is a complex, hazardous, time-consuming,
and expensive task [1,2]. Moreover, the continuous collection of discharge data is costly or
impossible, especially during large flood events [3]. In general, the hydrological station
provides continuous information on the water level (stage) and sparse information on corre-
sponding discharges. Therefore, an alternative approach is to establish the stage–discharge
relationship and use this relationship to convert records of the stage into discharges [4].
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In previous discharge estimations, historical stage and discharge data were usually
used as the basis to establish a relationship, which is known as the stage–discharge rating
curve (SDRC) [5]. The quality of the SDRC determines the accuracy of the calculated
discharge data. The SDRC is typically established as a single-valued relationship using
statistical regression analysis of the stage and discharge measurement [6]. However, under
the condition of a gentle slope and narrow channel, the discharge of a flood in the upstream
phase is different from that in the downstream phase [7]. Therefore, this method cannot
establish the relationship between stage and discharge under different levels of flood
fluctuation. In fact, it is influenced by subjective and objective factors, such as the flood
process, cross-section erosion, downstream backwater jacking, and measurement errors
of the sluice gate opening height, and thus the SDRC presents a complex and non-linear
relationship [8]. Obviously, the SDRC cannot describe the dynamic relationship between
stage and discharge well [9]. In practical applications of the SDRC, it is necessary to
consider the water flow state in the sluice waterway. In addition, the SDRC requires the
establishment of multiple fitting curves, which makes it inconvenient to use.

In recent years, some ML methods, such as the decision tree, Takagi–Sugeno fuzzy
inference system, neuro-fuzzy inference system (ANFIS), gene expression programming
(GEP), support vector machine, back-propagation (BP) neural network, and artificial neural
network (ANN) [10–16], have been widely used in discharge estimation and renewable
energy field [17]. This is because these methods are not affected by the external physical
environment. They can learn the potential correlational relationship between data to
establish the quantitative relationship between input and output [18], the calculation speed
is fast, and the estimation accuracy is high.

However, the decision tree, BP neural network, support vector machine, and ANN
belong to a single ML. The performance of a single ML algorithm is limited, which may
generate partially correct analysis results, thus reducing the reliability of the algorithm.
With the rapid development and widespread application of artificial intelligence, ensemble
learning [19,20] is an effective method to improve the reliability of ML algorithms. The
core of ensemble learning is that the error result of a single learning machine will not affect
the analysis results of most learning machines [21]. At present, two popular ensemble
learning methods are bagging and boosting [22,23]. Research in many fields has shown the
advantages of ensemble learning methods both theoretically and empirically [24,25]. In
bagging, the basic learners are constructed using random independent bootstrap replicates
from a training dataset, and the final result is calculated by means of a simple majority
vote [26]. In boosting, the basic learners are constructed on a weighted version of the
training dataset, which depends on the results of the previous basic learners, and the final
result is calculated by means of a weighted majority vote [27,28]. Compared with a single
ML algorithm, the ensemble ML algorithm trains multiple learning machines. Therefore,
the ensemble ML algorithm increases the reliability and robustness of the algorithm.

Despite the success of ensemble ML, ensemble ML is visualized as a black box model,
which is not highly explanatory and has no explicit physical constraints. Lack of trust
in the ensemble ML is often due to a lack of interpretability [29,30]. Therefore, model
interpretability is currently used to compensate for the lack of trust in models [31]. At
present, the Local Interpretable Model-Agnostic Explanation (LIME) and SHapley Additive
exPlanation (SHAP) are the most popular explainable methods [32,33]. Among them, the
LIME method interprets individual model estimations based on linear assumptions and
locally approximates the model around a given estimation [32]. However, the explanations
are very unstable [34]. For most of these explanatory solutions, an important goal is to
answer which input features are more important to the output of the model [35]. One
prominent example is the SHAP method. The SHAP method is derived from Shapley
values in game theory, which describe the contribution of each team member in a collab-
orative environment [36]. In ML, it works by assigning important values to each feature
for a particular estimation. In addition, Microsoft researchers have published a unified
interpretive framework for ML [33].
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The main research objectives of this work were as follows: (1) to focus on discharge
estimation and management, by developing an ML-based framework; (2) to interpret
the impact of the model features, by introducing the SHAP into our framework; (3) to
verify the effectiveness and applicability of the proposed method in discharge estimation,
by conducting the method in a real-world case study at Huitanggou sluice hydrological
station in Anhui Province, China. The correlation analysis of the dataset can provide
feature information for modeling, and the Bayesian optimization algorithm was adopted to
optimize the hyperparameters of the ensemble ML models. This approach can be utilized
to estimate the discharge of the sluice hydrological station and further transfer application
to other similar domains.

2. Methodology
2.1. Study Area and Data Sources

Huitangguo sluice hydrological station, an important control station to the Xinsui
River in Suzhou city, Northern Anhui Province, China, is shown in Figure 1. The hydro-
logical station is located at longitude 117◦33′59′′ E, latitude 33◦45′26′′ N. The watershed
encompasses an area of 2396 square kilometers. Huitangguo sluice hydrological station
was established in 1951. The measurement items include stage, discharge, precipitation,
evaporation, groundwater, soil moisture, and water quality. Huitanggou sluice was de-
molished in 2006 and moved upstream for reconstruction. The discharge measurement
cross-section was also moved to above the Sanqu ditch estuary. The new sluice (Figure 2)
has a total of 7 waterways and every waterway is 12 m wide. The type of sluice gate
is arc-shaped, and the composition consists of steel. The elevation of the sluice bottom
is 16.18 m.
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Figure 2. Schematic diagram of the new sluice.

Many variables can affect discharge estimation. After the analysis of the actual situa-
tion of the Huitangguo sluice hydrological station, the data of six variables were selected.
The variables Zu, Zd, e, n, Bq, and Aq are the upstream stage, downstream stage, sluice
gate opening height, sluice gate opening number, discharge measurement cross-section
width, and discharge measurement cross-section area, respectively. Among them, the
measurement position of Zu was 120 m away from the upstream of the sluice, and the
measurement position of Zd was 380 m away from the downstream of the sluice. In total,
1281 sets of Zu, Zd, e, n, Bq, Aq, and measured discharge (Qm) data covered the period from
2008 to 2022. The dataset was divided into the training set and the testing set at a ratio of
7:3. The measured data were derived from the Suzhou Hydrology and Water Resources
Bureau of Anhui Province. The descriptive statistics of these variables are summarized in
Table 1. The variation amplitude of Qm and Aq was higher than that of Zu and Zd. The
minimum and maximum values of Zu, Zd, Aq, and Qm in the testing set fell within the
range in the training set. This shows that the training set with a wider data spectrum can
guarantee a robust model for estimating discharge in a wider range, and can overcome the
problem of estimating extreme discharge values.

Table 1. Summary of descriptive statistics for variables.

Dataset Number of Cases Variable Minimum Maximum Mean Median Standard Deviation

Training 897 Zu (m) 17.07 23.06 21.13 21.31 0.81
Zd (m) 16.77 22.97 18.26 18.16 0.87
e (m) 0.10 6.86 0.52 0.30 0.89

n 1 7 3 2 2
Bq (m) 97.5 158 118.1 119 7.1

Aq (m2) 28.1 856 200.7 188 109.1
Qm (m3/s) 2.49 875 66.9 36.6 107.4

Testing 384 Zu (m) 18.43 22.96 21.15 21.27 0.69
Zd (m) 17.08 22.92 18.52 18.18 1.20
e (m) 0.10 6.76 0.91 0.30 1.55

n 1 7 3 2 2
Bq (m) 89.1 156 120.8 121 8.9

Aq (m2) 63.5 818 241.9 195 153.3
Qm (m3/s) 7.75 767 116.9 45.6 163.3
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2.2. Methods
2.2.1. Exploratory Data Analysis (EDA)

EDA is helpful for finding the outliers of the dataset and providing a reference for
modeling, which can improve the estimation accuracy of the model. In this study, Spear-
man’s rank correlation coefficient (SRCC) (Equations (1) and (2)) [37] was used to find the
features that have a weak correlation relationship with discharge. The quartile method [38]
was applied to solve the outlier problem of the dataset. The quartile method is a statistical
descriptive analysis method used to describe various types of data. Itis one of the most
common methods used to detect outliers. This method uses the median to measure the
trend in concentration of the data and the quartile interval to measure the dispersion of the
data, because these statistics are more robust to outliers.

a =
n

∑
i=1
| f (xi)− f (yi)|2 (1)

SRCC = 1− 6a
n(n2 − 1)

(2)

where f (x) and f (y) are the ranks of variables x and y, respectively, and n is the number
of samples.

2.2.2. Conventional Method: Stage–Discharge Rating Curve (SDRC)

The SDRC is a useful tool for a hydrologist to estimate discharge from gauge observa-
tions. It alleviates the need for costly and time-consuming discharge measurements [16].
The Huitanggou sluice is affected by the water storage of the downstream sluice, and it has
always demonstrated the submerged orifice flow state and the submerged weir flow state.
According to the principle of hydraulics, the average velocity of the sluice waterway is
mainly related to the difference between the upstream stage and downstream stage in the
submerged orifice flow state (Equations (3) and (4)), and the discharge is mainly related to
the downstream stage in the submerge weir flow state (Equation (5)). In hydrology, many
observations of stage and discharge data are often used to calibrate the relationship formula
or relationship curve between stage and discharge, which is used to estimate the discharge,
reduce the intensity of measurement and improve the accuracy of the calculation.

Vi = a∆Zb
i , i = 1, 2, 3 . . . , n (3)

Qi = BeVi, i = 1, 2, 3 . . . , n (4)

Qj = mZt
dj, j = 1, 2, 3 . . . , n (5)

where Vi is the average velocity of sluice waterway; ∆Zi is the difference between the
upstream stage and downstream stage; B is the sluice gate opening total width; e is the
sluice gate opening height; Zdj is the downstream stage; a, b, m and t are the coefficients;
Qi is the submerged orifice discharge; and Qj is the submerged weir discharge.

2.2.3. Ensemble Learning Random Forest (ELRF) Algorithm

The ELRF algorithm [39] is a typical bagging algorithm which is widely used in finance,
medicine, manufacturing, and other fields. The basic principle is to extract several subsets
from the original training set according to the Bootstrap method. Then, different features
are extracted, and the base model is trained on different subsets. The Bagging algorithm
generates multiple training sets by extracting training samples and training a classification
and regression tree (CART) [40] on a subset of each training set. The results of multiple
CART are arithmetically averaged to produce the final result [41]. The random forest (RF)
algorithm is an ML algorithm with higher accuracy. The RF algorithm adopts CART as
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the base model. The CART is widely used in regression problems. It uses impurity as
the basis for its tree model segmentation. This paper studies a regression problem, so the
mean square error (MSE) is selected as the impurity function. Figure 3 exhibits the bagging
algorithm process.
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2.2.4. Ensemble Learning Gradient Boosting Decision Tree (ELGBDT) Algorithm

The ELGBDT algorithm is a classic boosting algorithm, which is a decision tree model
of sequence ensemble learning (Figure 4). In each round of model training, each calculation
of gradient boosting seeks to reduce the residual error generated by the previous decision
tree. This causes the overall model to have better data fitting ability and improves the
training effect of the model [42]. In the iterative process of the model training of the gradient
boosting decision tree (GBDT) algorithm, as the number of individual learners increases,
the value of the loss function decreases significantly [43]. The loss function of the GBDT
algorithm is as follows:

L(yi, fi(x)) = L(yi, fi−1(x) + hi(x)) (6)

L(yi, fi(x)) < L(yi, fi−1(x)) (7)

F(X) = min
n

∑
i=1

L(yi, fi(x)) (8)

where fi−1(x), L(yi, fi(x)), hi(x), yi and n are the strong learners from the fusion of indi-
vidual learners in the i− 1 rounds, the loss function in the i rounds, the base learners in the
i rounds, the measured values, and the number of base learners, respectively.
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the weight in the i base learner.

In this study, the base learner was the CART. The training process can be divided
into the following steps: (1) the multiple training sets were generated, and the weight
initialization of the training set (Wi, i = 1, 2, . . . , n) was conducted. The first weak base
learner (BL1) was trained based on W1, and the weight of BL1 was updated based on its
learning performance. The poorly performing data from BL1 were recorded and their
weights were set higher in W2 to make them more important to BL2. (2) The BL2 was
trained based on the knowledge from the previous step, and this iteration continued until
the number of learning machines reached the set number. In this study, the number of
learning machines was set to 100. (3) Based on ensemble learning, by integrating multiple
learning machines into a machine learning algorithm, we obtained a machine learning
algorithm with greater generalization ability.

2.2.5. SHAP Algorithm

SHAP is an explanatory model of additivity constructed by Lundberg [33] in 2017,
inspired by cooperative game theory (Figure 5). The core of the algorithm is to calculate
the SHAP values (Equation (9)). SHAP values can reflect the contribution of features to
the estimation ability of the overall model. SHAP interprets the estimated value of the
model as the sum of the SHAP values of each input feature. SHAP provides not only the
contribution of each feature to the whole ML model, but also the positive and negative
impact of each feature value in each sample point on the estimation result [44]. For each
estimation sample, the model generates an estimation value, and the SHAP values are
the numerical values assigned to each variable in that sample. The SHAP method reveals
the interactions between all variables and how this relationship is reflected in the model.
Therefore, the SHAP is beneficial for increasing the interpretability of the model, thereby
increasing trust in the model.
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In ML interpretable methods, the traditional method of feature importance will be
affected by noise and feature interference with high correlation, and these problems can be
solved by the SHAP method. In addition, the traditional method of feature importance can
directly reflect the importance of features, but cannot determine the relationship between
features and the final estimation result. SHAP uses the feature attribution method to
calculate the attribution value of features, which can reflect the impact of each feature on
the final estimated value, increasing the interpretability of the model. SHAP can be applied
to any ML model, especially in the ensemble learning model based on the decision tree,
which can have higher efficiency and richer interpretation functions. Moreover, the SHAP
provides a powerful data visualization function to display the interpretation results of
models and estimations and is widely used to interpret more complex algorithm models.

yi =
−
y0 + f (xi1) + f (xi2) + . . . + f (xin) (9)

where yi,
−
y0, xin, and f (xin) are the estimated value, the mean of the target variable, the

feature of n in the i sample, and the SHAP value of xin, respectively.

2.2.6. Bayesian Optimization Algorithm

The Bayesian optimization algorithm is an automatic parameter tuning algorithm
based on the Gaussian process [45,46]. Due to its ability to quickly obtain the optimal value,
it is widely used in the field of computer science to determine the optimal hyperparameter
values of models [47]. Compared with the grid search parameter tuning method, the
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Bayesian optimization algorithm has fewer iterations and faster speed. The acquisition
function (Equation (10)) is used to set the update and measure the expected utility of
performing an evaluation of the objective at the new point. In this study, the objective
function is root mean squared error.

x = min
x∈X

f (x) (10)

where f (x), x, and X are the objective function to be optimized, the next acquisition point
of Bayesian optimization, and the search space of the target solution, respectively.

2.3. Performance Evaluation Methods

In this study, four standards were used to validate the performance of the models to
avoid the limitation of a single evaluation standard. The coefficient of determination (R2),
root mean squared error (RMSE), coefficient of correlation (CC), and relative error (RE)
(Equations (11)–(14)) were used as the evaluation standards. They, respectively, represent
the fitting degree, relative deviation degree, correlation degree between estimated values
and measured values, and the stability of models.

R2 = 1− ∑
(
Qm −Qp

)2

∑
(

Qm −
−
Qm

)2 (11)

RMSE =

√
∑
(
Qm −Qp

)2

n
(12)

CC =
∑
(

Qm −
−
Qm

)(
Qp −

−
Qp

)
√

∑
(

Qm −
−
Qm

)2

∑
(

Qp −
−
Qp

)2
(13)

RE =

∣∣∣∣Qm −Qp

Qm

∣∣∣∣ (14)

where Qm and Qp are the measured discharge values and the estimated discharge val-

ues, respectively;
−
Qm and

−
Qp are the average value of Qm and the average value of Qp,

respectively; and n is the length of dataset.

3. Results
3.1. Data Exploration and Analysis

The analysis of error or uncertainty in model estimation is very useful for modeling.
In this study, the source of error is mainly caused by variable measurement. After obtaining
the dataset, this research first performed EDA. EDA can discover laws from the dataset, the
correlation analysis of the dataset can provide a reference for modeling, and the quartile
method can find the outliers of the dataset. Figure 6 shows the SRCC heatmap of the
six variables and measured discharge. As can be seen in Figure 6, the six variables have
different degrees of positive correlation with the measured discharge. Among them, the
correlation degree of Zu and Qm is the weakest, and the correlation degree of n and Qm is
the strongest. Except for Zu, the absolute value of SRCC between the variables and Qm is
greater than 0.5, which indicates that the selected variables have a high correlation with
Qm. Therefore, the input variables for the ELRF and ELGBDT models include Zu, Zd, e, n,
Bq, and Aq.
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Figure 6. SRCC heatmap of the six variables and measured discharge. These numbers are SRCC
values of the six variables and measured discharge.

Figure 7 presents box plots of the average velocity of the sluice waterway (V). The
top horizontal line segment represents the confidence interval upper limit (CIUL) of the V
distribution, the upper, middle, and lower line segments of the box represent the upper
quartile (UQ), median, and lower quartile (LQ) of the V distribution, and the bottom line
segment represents the confidence interval lower limit (CILL) of the V distribution. The
red dots represent the outliers of the V distribution, and the black dot represents the mean
value of the V distribution. As can be seen from the box plots, except for waterways six
and seven, all of the waterways have abnormal points. So, the models developed in this
study after the data were cleaned through the quartile method. The number of samples
after data cleaning is 1256 sets.

Water 2023, 14, x FOR PEER REVIEW 10 of 20 
 

 

 

Figure 6. SRCC heatmap of the six variables and measured discharge. These numbers are SRCC 

values of the six variables and measured discharge. 

Figure 7 presents box plots of the average velocity of the sluice waterway (V). The 

top horizontal line segment represents the confidence interval upper limit (CIUL) of the V 

distribution, the upper, middle, and lower line segments of the box represent the upper 

quartile (UQ), median, and lower quartile (LQ) of the V distribution, and the bottom line 

segment represents the confidence interval lower limit (CILL) of the V distribution. The 

red dots represent the outliers of the V distribution, and the black dot represents the mean 

value of the V distribution. As can be seen from the box plots, except for waterways six 

and seven, all of the waterways have abnormal points. So, the models developed in this 

study after the data were cleaned through the quartile method. The number of samples 

after data cleaning is 1256 sets. 

 

Figure 7. The box plots of the average velocity of the sluice waterway. 
Figure 7. The box plots of the average velocity of the sluice waterway.



Water 2023, 15, 1923 11 of 20

3.2. Conventional SDRC Fitting

The functional relationship between stage and discharge can be established by the
measured values of the stage, sluice gate opening height, sluice gate opening number, and
discharge. The fitting curve is shown in Figure 8 and the rating curve is shown in Figure 9.
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Figure 8. The fitting curve of the submerged orifice flow state.
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Figure 9. The rating curve of the submerged weir flow state.

As can be seen from Figure 8, the estimated average velocity of the sluice waterway (V)
remained within a reasonable range of the measured values for most of the time. However,
the V values from the rating curve showed great variation from the measured values in
some cases. Because the SDRC bears certain non-idealized features, such as section erosion,
downstream backwater jacking, measurement error of the sluice gate opening height, the
SDRC presents a non-linear relationship. Therefore, the fitting effect of the SDRC is poor.
Figure 9 shows the SDRC of the submerged weir flow state. Because of the small sample
size of the dataset, most of the points are distributed on the red line, and the SDRC is prone
to overfitting.

3.3. Model Estimation
3.3.1. Bayesian Hyperparameter Optimization

The hyperparameter tuning of the model is a significant work. In this study, the optimal
hyperparameters were determined using the Bayesian optimization algorithm. The Bayesian
tuning uses a Gaussian process, which considers the previous parameter information and
constantly updates the prior [45]. It has fewer iterations and faster speed. The Bayesian tuning
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is still robust for non-convex problems, so the model has good generalization ability. The
number of iterations is 30, and the optimal target values for the ELRF and ELGBDT models in
the submerged orifice flow state are 0.931 and 0.929, respectively. In this study, the optimal
target values are the optimal coefficient of determination values for the ELRF and ELGBDT
models. The optimization process for the hyperparameters of ELRF and ELGBDT models is
presented in Tables S1 and S2 in the Supplementary Materials, respectively.

3.3.2. Model Evaluation

Table 2 presents the estimated results of the submerged orifice flow state after Bayesian
optimization. Due to the small sample size in the submerged weir flow state, three models
are prone to overfitting, and the generalization ability of the models is weak. So, they
are not displayed. From Table 2, it can be seen that the overall performance of the model
developed using ELRF and ELGBDT is better than that of the SDRC model. According to
the three evaluation standards, the R2, RMSE, and CC values of the ELRF are similar to
those of the ELGBDT model. This indicates that the ELRF and ELGBDT models estimate
discharge with almost identical accuracy. The R2 of the ensemble ML model increased
by 13.86% compared to that of the SDRC model. This shows that the fitting degree of the
ensemble ML model is high. The RMSE of the ensemble ML model is 41.30% lower than
that of the SDRC model. This reveals that the stability of the ensemble ML model has strong.
The CC of the ensemble ML model increased by 2.53% compared with the SDRC model. It
can be seen that the correlation degree of the ensemble ML model is high. Therefore, the
ensemble ML model has a stronger learning ability.

Table 2. Estimated results of the submerged orifice flow state.

Model R2 RMSE CC

SDRC 0.801 33.354 0.947
ELRF 0.911 19.578 0.971

ELGBDT 0.912 19.955 0.967

Figure 10 compares the estimated discharge distribution of the three models. As
detailed in Figure 10, the distribution of SDRC model dots is mostly below the red line.
This shows that the estimated discharge of the SDRC model is lower. The distribution of
the other two model dots is even and similar. This reveals that the ensemble learning model
performs well where both high and low discharges were reasonably estimated. Meanwhile,
the stability of the models is validated by the RE between each estimated discharge and
measured discharge. The violin plots of the three models are shown to compare the RE
distributions. Figure 11 and Table 3 shows the violin parameters.

Table 3. RE distribution parameters of three models.

Model CIUL (%) UQ (%) Median (%) LQ (%) CILL (%)

SDRC 52.90 25.80 14.02 7.74 0
ELRF 50.07 24.54 13.50 7.53 0

ELGBDT 49.38 24.25 14.81 7.49 0
Note: CIUL is the confidence interval upper limit; UQ is the upper quartile; LQ is the lower quartile; CILL is the
confidence interval lower limit.

Figure 11 details the violin plot of the three models after removing outliers greater
than 1. As detailed in Table 3 and Figure 11, the RE distribution of the ELRF and ELGBDT
models is similar. Compared with the violin parameters of the SDRC model, although the
CILL of the ensemble ML model and SDRC model are both 0, the violin parameters of
the ensemble ML model have a smaller CIUL, UQ, median and LQ. The 95% confidence
interval (CI) and interquartile range (IQR) of the ensemble ML model are smaller than that
of the SDRC model. Therefore, the stability of the ensemble ML model is better.
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Figure 10. Distribution plot of estimated discharge of three models in the testing set. The blue dots
are the estimated discharge, and the dots on the red line indicate that the estimated discharge is equal
to the measured discharge.
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Figure 11. The violin plots of three models. The red dots are the relative error (RE), the outer curve is
the probability density curve (PDC), and the white dot is the median.

3.4. Model Feature Importance Interpretation

To determine the contribution of each variable, Figure 12 represents an absolute
summary plot where the mean value of the SHAP values for each variable is used to obtain
a bar chart as a function of the contribution of each variable to the estimation of the ELRF
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and ELGBDT models. From this plot, it can be inferred that the influential variables of
the two models are different. For example, the most influential variables in the ELRF
model are n, e, and Aq, from greater to lesser significance, respectively (Figure 12a). In the
ELGBDT model, the influential variables from strong to weak are n, e, Zu, Aq, Zd, and Bq,
respectively (Figure 12b).
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Figure 12. Absolute summary plot of two models in the testing set. The average absolute value of the
SHAP values for each variable is used to obtain a bar chart as a function of the contribution of each
variable to the estimation of the model. The y axis is the variable used in the study.

Figure 13 represents a summary plot that shows the contribution of each variable to
the ELRF and ELGBDT models, taking into account all values of each variable. The figure
includes all of the variables of the input model, where the magnitude is indicated by the
colored line on the right. As can be seen from Figure 13, the summary plots of the two
models are similar. The summary plot shows that the existence of the variable n (higher
values in red on the horizontal bar) means an increase in the estimated discharge (indicated
on the scale at the bottom of the figure); in contrast, the lack of n (lower values in blue
on the horizontal bar) is associated with a decrease in the estimated discharge. The same
analysis can be applied to the other variables. Furthermore, for the Zu variables, the values
appear more heterogeneous due to their continuous nature (more purple than red and blue),
unlike n, which is a dichotomous variable with its color polarization (only red and blue).
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Figure 13. Summary plot of two models in the testing set. The horizontal axis indicates the SHAP
values of each variable used by the model to estimate the discharge. The left vertical axis represents
the influence of variables in the model.

In the decision plot shown below (Figure 14), the estimated average discharge of the
two models is less than 100 m3/s. For the y axis, the variables are ranked from highest to
lowest according to their impact on the estimation of the model. If the discharge increases
the average value of the final estimation of the two models, the line is red. Conversely, if
the discharge decreases the average value of the final estimation, the line is blue.
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Figure 14. Decision plot of two models in the testing set. The y axis is the variable used in the study.
The straight vertical line represents the base value of the ELRF and ELGBDT models, and the colored
lines are the estimated values. Starting at the bottom of the plot, the estimated line indicates how the
SHAP values accumulate from the base value to the final model score at the top of the plot.

To explore the reason for the change in the SHAP values of each variable, the depen-
dence plot of individual variables was used to help us better understand the influence of
multiple variables on each other and their impact on the estimation results. Finally, the
dependence plot is shown in Figure 15. As can be seen from Figure 15, the dependence
plots for SHAP values of Zd and the relationship with n of the two models are similar. The
blue points are those with lower n values, while the red points are those with higher n
values. In these plots, it can be explained that the existence of Zd has a smaller impact on
the model when the n is low. Otherwise, at high values of n, the effect of the absence of Zd
in the model is estimated to increase.
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Figure 15. Dependence plot for SHAP values of Zd and the relationship with n of two models in
the testing set. The vertical axis shows the SHAP value, while the horizontal axis represents the
actual value of the variable. In addition, each point in the plot is indicated by a color palette on the
right-hand side of the plot, which indicates the scale of the value of the second variable at each point.

4. Discussion

Bagging and boosting have their characteristics in practical applications. Bagging is
one of the earliest ensemble learning algorithms [48]. Bagging is particularly appealing
when the available data are of limited size. The base learners are trained in parallel without
interfering with each other, so the error of each base learner is independent. Bagging can
reduce the variance and make the model more stable. Boosting contains a series of methods.
Unlike bagging, boosting creates different base learners by sequentially reweighting the
instances in the training dataset [27]. Boosting adopts a forward distribution algorithm, and
the latter base learner needs to optimize the residual of the former learner, so the error is
smaller, and the accuracy is higher. Boosting can reduce bias and improve model accuracy.
In this study, the R2, RMSE, and CC values of the ELRF are similar to those of the ELGBDT
model in the submerged orifice flow state. This demonstrates that bagging and boosting



Water 2023, 15, 1923 16 of 20

estimate discharge with almost the same accuracy. Therefore, these two algorithms can be
selected during modeling.

To verify the adaptability of the framework, we further study the discharge estimation
without considering the flow state. Table 4 presents the estimated results of the two models
after Bayesian optimization. The optimization process of the hyperparameters is shown in
Tables S3 and S4 in the Supplementary Materials, respectively. As can be seen in Table 4,
the R2, RMSE, CC, and mean RE values of the ELRF are similar to those of the ELGBDT
model. This demonstrates that the ELRF model performs equally well as the ELGBDT
model. Compared with Table 2, the R2 and CC values of the two models are superior to
those of the submerged orifice flow state. The R2 of the two models is 5.27% and 5.59%
higher than that of the submerged orifice flow state, respectively. The CC of the two models
is 1.13% and 1.76% higher than that of the submerged orifice flow state, respectively. This
is because the submerged weir flow data are added to the sample set so that the dataset is
increased and distributed evenly. It can also be seen that the ensemble ML model can more
effectively decrease the error and average deviation degree of the model, and enhance the
generalization ability of the model.

Table 4. Estimated results without considering the flow state.

Model R2 RMSE CC Mean RE

ELRF 0.959 31.451 0.982 0.174
ELGBDT 0.963 31.268 0.984 0.173

The results of different algorithms and models may be different. To demonstrate
the superiority of the framework developed in this study, the support vector machine
(SVM) and K-nearest neighbor (KNN) regression models are developed to compare their
results with the results of the ELGBDT model, because SVM and KNN models have been
widely used in regression problems [49]. The SVM and KNN are also mature and classic
algorithms. Therefore, SVM and KNN are selected as specific machine learning algorithms
for comparison. The optimization process for the hyperparameters of the SVM and KNN
models is presented in Tables S5 and S6 in the Supplementary Materials, respectively.
Table 5 shows the estimated results without considering the flow state. The R2, RMSE, CC,
and mean RE of the ELGBDT model are superior to those of the SVM and KNN models.
This shows that the estimation accuracy of the ELGBDT model is better than that of the
SVM and KNN models. Compared with Table 4, the R2, RMSE, CC, and mean RE of the
ensemble ML model are superior to those of the SVM and KNN models. This reveals that
the stability of the ensemble ML model is superior to that of the SVM and KNN models.

Table 5. Estimated results of three models without considering the flow state.

Model R2 RMSE CC Mean RE

SVM 0.928 42.409 0.966 0.217
KNN 0.943 38.284 0.973 0.195

ELGBDT 0.963 31.268 0.984 0.173

Figure 16 illustrates the absolute error bar plot between the estimated and measure ed
values of the KNN and ELGBDT models. Compared with the error bars of the ELGBDT
model, the error bars of the KNN model become longer, and the error bars increase
obviously at some moments. This shows that the KNN model has a large error. Therefore,
this indicates that the accuracy of the ELGBDT model is higher.

In addition, outliers have a tremendous influence on model performance. In the
submerged orifice flow state, the R2 values of the SDRC, ELRF, and ELGBDT without data
cleaning are 0.657, 0.701, and 0.703, respectively. The CC values of the SDRC, ELRF, and
ELGBDT without data cleaning are 0.852, 0.865, and 0.877, respectively. The R2 and CC
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values of the three models with data cleaning are higher than those without data cleaning.
Meanwhile, the results for the RMSE values are similar. Therefore, data cleaning can
remove outliers and provide a reference for modeling.
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5. Conclusions

In this study, we developed an ML-based framework and applied it to the discharge
estimation of the Huitanggou sluice hydrological station in Anhui Province, China. In our
framework, the quartile method is adopted to find the outliers and improve the estimation
accuracy of models. The correlation analysis of the dataset can provide feature information
for modeling. The ELRF and ELGBDT models are used to estimate the discharge. In
addition, Bayesian optimization is used to improve the generalization ability of the model.
The SHAP is introduced to our framework to interpret the impact of the model features. In
this study, the following conclusions were drawn:

(1) The performance of the model is improved by Bayesian optimization. ELRF and EL-
GBDT models estimate discharge with almost identical accuracy. The accuracy of the
ensemble ML model is superior to that of the SDRC method in the submerged orifice
flow state. The R2, RMSE, and CC values of the ensemble ML model are 0.912, 19.578,
and 0.971, respectively. The RE distribution parameter and violin plot of the ensemble
ML model are the best, and this model has the strongest generalization ability.

(2) The SHAP method reveals the interactions between all variables and how this rela-
tionship is reflected in the model. In the ensemble ML model, the sluice gate opening
number (n) is the strongest influential variable, and the discharge measurement cross-
section width (Bq) is the weakest influential variable. The estimated average discharge
of the ensemble ML model is less than 100 m3/s. The variables can be appropriately
analyzed, resulting in a better model with higher performance indicators.

(3) Compared with the SDRC method and single ML model, the ensemble ML model has
higher accuracy and better stability, which indicates that the ensemble ML model can
express more complex nonlinear transformations accurately and effectively.

(4) The accuracy of the ensemble ML model is the highest without considering the flow
state. The R2, RMSE, and CC values of the ensemble ML model are 0.963, 31.268, and
0.984, which indicates that the ensemble ML model has a strong adaptive ability.

The ensemble ML models are independent of the external physical environment. They
can learn the deep correlational relationship between input and output. In addition, with
the accumulation of the dataset, the estimation accuracy of the ML model will be higher. The
ensemble ML models can reduce the time and cost of discharge measurement. Therefore,
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this research method can provide a reference for other sluice hydrological stations in China
and other countries.

For most data-driven models or frameworks, the models have inherent uncertainty
itself, which may impact the generalization ability. On the other hand, the accuracy of the
framework is limited by the small amount of research data. Future work will be focused
on collecting more data to improve the accuracy of the framework and how to reduce the
impact of dataset imbalance on discharge estimation. In addition, testing more artificial
intelligence models and focusing on the impact of important variables on the models to
enhance practicability requires more attention.

Supplementary Materials: The following supporting information can be downloaded at: https://www.
mdpi.com/article/10.3390/w15101923/s1, Table S1: The optimization process for the hyperparameters
of the ELRF model in the submerged orifice flow state; Table S2: The optimization process for
the hyperparameters of the ELGBDT model in the submerged orifice flow state; Table S3: The
optimization process for the hyperparameters of the ELRF model without considering the flow
state; Table S4: The optimization process for the hyperparameters of the ELGBDT model without
considering the flow state; Table S5: The optimization process for the hyperparameters of the SVM
model without considering the flow state; Table S6: The optimization process for the hyperparameters
of the KNN model without considering the flow state.
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