Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria
Abstract
:1. Introduction
2. Materials and Methods
2.1. Struma River Catchment
2.2. Sampling Locations
2.3. Data Acquisition
2.4. Water Quality Index
- F1 (Scope) represents the percentage of water quality indicators not meeting the regulatory guideline values (“failed variables”) over the total number of variables included in the water quality assessment;
- F2 (Frequency) represents the percentage of measurements in which a water quality indicator exceeds the guideline values (“failed tests”) over the total number of tests (measurements);
- F3 (Amplitude) represents the extent of deviation of the “failed tests” values relative to the corresponding guideline values. The amplitude is calculated utilizing a three-step algorithm, at the beginning of which an assessment is made of the magnitude of the deviations (excursion) of the so-called “bad samples” relative to the corresponding maximum allowable concentrations:
2.5. Statistical Data Treatment
2.5.1. Mann–Kendall Test
2.5.2. Principal Component Analysis (PCA)
3. Results
3.1. Statistical Analysis
3.2. WQI
3.3. PCA
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Victor, R.; Kotter, R.; O′Brien, G.; Mitropoulos, M.; Panayi, G. WHO Guidelines for the safe use of wastewater, excreta and greywater—Volume 1: Policy and regulatory aspects. Int. J. Environ. Stud. 2006, 65, 157–176. [Google Scholar] [CrossRef]
- The United Nation. The Millennium Development Goals Report; The United Nation: New York, NY, USA, 2015. [Google Scholar]
- European Parliament, Council of the European Union. Directive 2000/60/EC of the European Parliament and of the Council establishing a framework for Community action in the field of water policy. Off. J. Eur. Union 2000, 327, 1–73. [Google Scholar]
- European Commission, Directorate-General for Environment, Publications Office. Monitoring under the Water Framework Directive. Guidance Document No 7; European Commission, Directorate-General for Environment, Publications Office: Luxembourg, 2012. [Google Scholar]
- Gurjar, S.; Tare, V. Spatial-temporal assessment of water quality and assimilative capacity of river Ramganga, a tributary of Ganga using multivariate analysis and QUEL2K. J. Clean. Prod. 2019, 222, 550–564. [Google Scholar] [CrossRef]
- Yotova, G.; Varbanov, M.; Tcherkezova, E.; Tsakovski, S. Water quality assessment of a river catchment by the composite water quality index and self-organizing maps. Ecol. Indic. 2021, 120, 106872. [Google Scholar] [CrossRef]
- Tyagi, S.; Sharma, B.; Singh, P.; Dobhal, R. Water Quality Assessment in Terms of Water Quality Index. Am. J. Water Res. 2013, 1, 34–38. [Google Scholar] [CrossRef]
- Poonam, T.; Tanushree, B.; Sukalyan, C. Water Quality Indices—Important Tols for Water Quality Assessment: A Review. Int. J. Adv. Chem. 2015, 1, 15–29. [Google Scholar]
- Hashim, M.; Nayan, N.; Setyowati, D.; Said, Z.; Mahat, H.; Saleh, Y. Analysis of Water Quality Trends Using the Mann-Kendall Test and Sen’s Estimator of Slope in a Tropical River Basin. Pollution 2021, 7, 933–942. [Google Scholar] [CrossRef]
- Wang, X.; Liu, X.; Wang, L.; Yang, J.; Wan, X.; Liang, T. A holistic assessment of spatiotemporal variation, driving factors, and risks influencing river water quality in the northeastern Qinghai-Tibet Plateau. Sci. Total Environ. 2022, 851, 157942. [Google Scholar] [CrossRef]
- Chong, L.; Li, B.; Sun, Z.; Hu, C.; Meng, X.; Gao, J. Temporal and spatial variation in water quality in the Yangtze Estuary from 2012 to 2018. Environ. Sci. Pollut. Res. 2022, 29, 76235–76250. [Google Scholar] [CrossRef]
- Fraga, M.D.S.; da Silva, D.D.; Reis, G.B.; Guedes, H.A.S.; Elesbon, A.A.A. Temporal and spatial trend analysis of surface water quality in the Doce River basin, Minas Gerais, Brazil. Environ. Dev. Sustain. 2021, 23, 12124–12150. [Google Scholar] [CrossRef]
- Chong, L.; Zhong, J.; Sun, Z.; Hu, C. Temporal variations and trends prediction of water quality during 2010–2019 in the middle Yangtze River, China. Environ. Sci. Pollut. Res. 2023, 30, 28745–28758. [Google Scholar] [CrossRef] [PubMed]
- Horton, R.K. An index number system for rating water quality. J. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Bharti, N.; Katyal, D. Water Quality Indices Used for Surface Water Vulnerability Assessment. Int. J. Environ. Sci. 2011, 2, 154–173. [Google Scholar]
- Abbasi, T.; Abbasi, S. Water-Quality Indices; Elsevier: Amsterdam, The Netherlands, 2012; pp. 353–356. [Google Scholar]
- Brown, R.; McClelland, N.; Deininger, R.; Tozer, R.G. A water quality index—Do we dare? Water Sew. Works 1970, 117, 339–343. [Google Scholar]
- Dunnette, D.A. A geographically variable water quality index used in Oregon. J. Water Pollut. Control Fed. 1979, 51, 53–61. [Google Scholar]
- Dezfooli, D.; Hosseini-Moghari, S.-M.; Ebrahimi, K.; Araghinejad, S. Classification of water quality status based on minimum quality parameters: Application of machine learning techniques. Model. Earth Syst. Environ. 2018, 4, 311–324. [Google Scholar] [CrossRef]
- Noori, R.; Berndtsson, R.; Hosseinzadeh, M.; Adamowski, J.F.; Abyaneh, M.R. A critical review on the application of the National Sanitation Foundation Water Quality Index. Environ. Pollut. 2019, 244, 575–587. [Google Scholar] [CrossRef]
- Wong, Y.J.; Shimizu, Y.; He, K.; Sulaiman, N.M.N. Comparison among different ASEAN water Qual-Ity indices for the assessment of the spatial variation of surface water quality in the Selangor river basin, Malaysia. Environ. Monit. Assess. 2020, 192, 644. [Google Scholar] [CrossRef]
- Gikas, G.D.; Lergios, D.; Tsihrintzis, V.A. Comparative Assessment of the Application of Four Water Quality Indices (WQIs) in Three Ephemeral Rivers in Greece. Water 2023, 15, 1443. [Google Scholar] [CrossRef]
- Panagopoulos, Y.; Alexakis, D.E.; Skoulikidis, N.T.; Laschou, S.; Papadopoulos, A.; Dimitriou, E. Implementing the CCME Water Quality Index for the Evaluation of the Physicochemical Quality of Greek Rivers. Water 2022, 14, 2738. [Google Scholar] [CrossRef]
- Hu, L.; Chen, L.; Li, Q.; Zou, K.; Li, J.; Ye, H. Water quality analysis using the CCME-WQI method with time series analysis in a water supply reservoir. Water Suppl. 2022, 22, 6281–6295. [Google Scholar] [CrossRef]
- Dao, V.; Urban, W.; Hazra, S.B. Introducing the modification of Canadian water quality index. Groundw. Sustain. Dev. 2020, 11, 100457. [Google Scholar] [CrossRef]
- Bilgin, A. Evaluation of surface water quality by using Canadian Council of Ministers of the Environment Water Quality Index (CCME WQI) method and discriminant analysis method: A case study Coruh River Basin. Environ. Monit. Assess. 2018, 190, 554. [Google Scholar] [CrossRef]
- UNEP—United Nations Environment Programme. Global Drinking Water Quality Index Development and Sensitivity Analysis Report; UNEP: Toronto, ON, Canada, 2007; p. 60. [Google Scholar]
- Kumar, R.; Dutt, V.; Raina, A.; Sharma, N. Spatial water quality assessment of a mountain stream in northwestern India using multivariate statistical techniques. Environ. Monit. Assess. 2022, 194, 785. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Baskar, S. Water quality assessment of Noyyal river using water quality index (WQI) and multivariate statistical techniques. Water Sci. 2022, 36, 85–98. [Google Scholar] [CrossRef]
- Ustaoğlu, F.; Taş, B.; Tepe, Y.; Topaldemir, H. Comprehensive assessment of water quality and associated health risk by using physicochemical quality indices and multivariate analysis in Terme River, Turkey. Environ. Sci. Pollut. Res. 2021, 28, 62736–62754. [Google Scholar] [CrossRef] [PubMed]
- Franco, H.; Custodio, M.; Peñaloza, R.; De La Cruz, H. Application of Multivariate Statistical Methods and Water Quality Index for the Evaluation of Surface Water Quality in the Cunas River Basin, Peru. Asian J. Water Environ. Pollut. 2021, 18, 19–27. [Google Scholar] [CrossRef]
- Panjgotra, S.; Rishi, M.; Awasthi, A. Water Quality Assessment of River Tawi, Jammu Using Water Quality Index and Multivariate Statistical Techniques. Water Resour. 2022, 49, 1059–1069. [Google Scholar] [CrossRef]
- Roy, B.; Manna, A. The Status of Surface Water in West Tripura District, India: An Approach by Using Water Quality Index and Multivariate Statistical Technique. Asian J. Water Environ. Pollut. 2021, 18, 27–36. [Google Scholar] [CrossRef]
- Gupta, A.K.; Kumar, A.; Maurya, U.K.; Singh, D.; Islam, S.; Rathore, A.C.; Kumar, P.; Singh, R.; Madhu, M. Comprehensive spatio-temporal benchmarking of surface water quality of Hindon River, a tributary of river Yamuna, India: Adopting multivariate statistical approach. Environ. Sci. Pollut. Res. 2023, in press. [Google Scholar] [CrossRef]
- Aydin, H.; Ustaoğlu, F.; Tepe, Y.; Soylu, E.N. Assessment of water quality of streams in northeast Turkey by water quality index and multiple statistical methods. Environ. Forensics 2021, 22, 270–287. [Google Scholar] [CrossRef]
- Zhang, Z.-M.; Zhang, F.; Du, J.-L.; Chen, D.-C. Surface Water Quality Assessment and Contamination Source Identification Using Multivariate Statistical Techniques: A Case Study of the Nanxi River in the Taihu Watershed, China. Water 2022, 14, 778. [Google Scholar] [CrossRef]
- Das, S.; Sarkar, R. Monitoring and evaluating the spatiotemporal variations of the water quality of a stretch of the Bhagirathi-Hugli River, West Bengal, India, using geospatial technology and integrated statistical methods. Environ. Sci. Pollut. Res. 2021, 28, 15853–15869. [Google Scholar] [CrossRef] [PubMed]
- Alam, R.; Ahmed, Z.; Seefat, S.M.; Nahin, K.T.K. Assessment of surface water quality around a landfill using multivariate statistical method, Sylhet, Bangladesh. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100422. [Google Scholar] [CrossRef]
- Dimri, D.; Daverey, A.; Kumar, A.; Sharma, A. Monitoring water quality of River Ganga using multivariate techniques and WQI (Water Quality Index) in Western Himalayan region of Uttarakhand, India. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100375. [Google Scholar] [CrossRef]
- Varol, M.; Karakaya, G.; Alpaslan, K. Water quality assessment of the Karasu River (Turkey) using various indices, multivariate statistics and APCS-MLR model. Chemosphere 2022, 308, 136415. [Google Scholar] [CrossRef] [PubMed]
- Giao, N.; Dan, T.; Ni, D.; Anh, P.; Nhien, H. Spatiotemporal Variations in Physicochemical and Biological Properties of Surface Water Using Statistical Analyses in Vinh Long Province, Vietnam. Water 2022, 14, 2200. [Google Scholar] [CrossRef]
- Giao, N. Analysis of Surface Water Quality using Multivariate Statistical Approaches: A case study in Ca Mau Peninsula, Vietnam. Pollution 2022, 8, 463–477. [Google Scholar] [CrossRef]
- Ofosu, S.; Adjei, K.; Odai, S. Assessment of the quality of the Densu river using multicriterial analysis and water quality index. Appl. Water Sci. 2021, 11, 183. [Google Scholar] [CrossRef]
- Mamun, M.; An, K.-G. Application of Multivariate Statistical Techniques and Water Quality Index for the Assessment of Water Quality and Apportionment of Pollution Sources in the Yeongsan River, South Korea. Int. J. Environ. Res. Public Health 2021, 18, 8268. [Google Scholar] [CrossRef]
- Gruss, Ł.; Wiatkowski, M.; Pulikowski, K.; Kłos, A. Determination of Changes in the Quality of Surface Water in the River—Reservoir System. Sustainability 2021, 13, 3457. [Google Scholar] [CrossRef]
- Elsayed, S.; Hussein, H.; Moghanm, F.; Khedher, K.; Eid, E.; Gad, M. Application of Irrigation Water Quality Indices and Multivariate Statistical Techniques for Surface Water Quality Assessments in the Northern Nile Delta, Egypt. Water 2020, 12, 3300. [Google Scholar] [CrossRef]
- Wong, Y.J.; Shimizu, Y.; Kamiya, A.; Maneechot, L.; Bharambe, K.P.; Fong, C.S.; Sulaiman, N.M.N. Application of artificial intelligence methods for monsoonal river classification in Selangor river basin, Malaysia. Environ. Monit. Assess. 2021, 193, 438. [Google Scholar] [CrossRef] [PubMed]
- Azhari, H.E.; Cherif, E.K.; Sarti, O.; Azzirgue, E.M.; Dakak, H.; Yachou, H.; Esteves da Silva, J.C.G.; Salmoun, F. Assessment of Surface Water Quality Using the Water Quality Index (IWQ), Multivariate Statistical Analysis (MSA) and Geographic Information System (GIS) in Oued Laou Mediterranean Watershed, Morocco. Water 2023, 15, 130. [Google Scholar] [CrossRef]
- Thuan, N.C. Assessment of Surface Water Quality in the Hau Giang Province Using Geographical Information System and Statistical Approaches. J. Ecol. Eng. 2022, 23, 265–276. [Google Scholar] [CrossRef]
- FORCOM. Geography of Bulgaria: Physical and Socio-Economic Geography; FORCOM: Sofia, Bulgaria, 2002; p. 760. [Google Scholar]
- Regions, Districts and Municipalities in the Republic of Bulgaria. Electronic Edition, NSI. Available online: https://www.nsi.bg/sites/default/files/files/publications/ROO_2021.zip (accessed on 17 March 2023).
- Ordinance N-4/2012 for Characterisation of Surface Waters. D V 2013, 22, 9–46. Available online: http://eea.government.bg/bg/legislation/water/Naredba13.pdf (accessed on 17 March 2023). (In Bulgarian).
- Neary, B.; Cash, K.; Hébert, S.; Khan, H.; Saffran, K.; Swain, L.; Williamson, D.; Wright., R. Canadian Water Quality Guidelines for the Protection of Aquatic Life; CCME Water Quality Index 1.0 Technical Report; Canadian Council of Ministers of the Environment: Winnipeg, MB, Canada, 2001. [Google Scholar]
- Radeva, K.; Seymenov, K. Assessment of Physicochemical Properties and Water Quality of the Lom River (NW Bulgaria). In Smart Geography. Key Challenges in Geography; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar] [CrossRef]
- Varbanov, M.; Gartsiyanova, K. Index assessment of the water quality—A case study of Bulgarian rivers. Geogr. Tour. 2017, 5, 41–49. [Google Scholar] [CrossRef]
- Rickwood, C.; Carr, G. Development and sensitivity analysis of a global drinking water quality index. Environ. Monit. Assess. 2009, 156, 73–90. [Google Scholar] [CrossRef]
- Kisi, O.; Ay, M. Comparison of Mann–Kendall and innovative trend method for water quality parameters of the Kizilirmak River, Turkey. J. Hydrol. 2014, 513, 362–375. [Google Scholar] [CrossRef]
- Güçlü, Y. Multiple Şen-innovative trend analyses and partial Mann-Kendall test. J. Hydrol. 2018, 566, 685–704. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann-Kendall Test Modified by Effective Sample Size to Detect Trend in Serially Correlated Hydrological Series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Platikanov, S.; Rodriguez-Mozaz, S.; Huerta, B.; Barceló, D.; Cros, J.; Batle, M.; Poch, G.; Tauler, R. Chemometrics quality assessment of wastewater treatment plant effluents using physicochemical parameters and UV absorption measurements. J. Environ. Manag. 2014, 140, 33–44. [Google Scholar] [CrossRef]
- Navarro, A.; Tauler, R.; Lacorte, S.; Barceló, D. Occurrence and transport of pesticides and alkylphenols in water samples along the Ebro River Basin. J. Hydrol. 2010, 383, 18–29. [Google Scholar] [CrossRef]
- Acquavita, A.; Aleffi, I.F.; Benci, C.; Bettoso, N.; Crevatin, E.; Milani, L.; Tamberlich, F.; Toniatti, L.; Barbieri, P.; Licen, S.; et al. Annual characterization of the nutrients and trophic state in a Mediterranean coastal lagoon: The Marano and Grado Lagoon (northern Adriatic Sea). Reg. Stud. Mar. Sci. 2015, 2, 132–144. [Google Scholar] [CrossRef]
- Jolliffe, I. Principal Component Analysis, 2nd ed.; Springer: New York, NY, USA, 2002. [Google Scholar]
- Mihailov, G.; Simeonov, V.; Nikolov, N.; Mirinchev, G. Water Quality Environmetric Study of the Struma River Basin, Bulgaria, Part I: Water quality Long-Term Trends (1989–1998). Toxicol. Environ. Chem. 2002, 83, 1–12. [Google Scholar] [CrossRef]
- Zang, C.; Huang, S.; Wu, M.; Du, S.; Scholz, M.; Gao, F.; Lin, C.; Guo, Y.; Dong, Y. Comparison of Relationships Between pH, Dissolved Oxygen and Chlorophyll a for Aquaculture and Non-aquaculture Waters. Water Air Soil Pollut. 2011, 219, 157–174. [Google Scholar] [CrossRef]
- Gartsiyanova, K. Assessment of the water quality of the “Pchelina” Reservoir. Probl. Geogr. 2017, 1, 62–71. [Google Scholar]
- Venelinov, T.; Mihaylova, V.; Peycheva, R.; Todorov, M.; Yotova, G.; Todorov, B.; Lyubomirova, V.; Tsakovski, S. Sediment Assessment of the Pchelina Reservoir, Bulgaria. Molecules 2021, 26, 7517. [Google Scholar] [CrossRef]
- Astel, A.; Tsakovski, S.; Barbieri, P.; Simeonov, V. Comparison of self-organizing maps classification approach with cluster and principal components analysis for large environmental data sets. Water Res. 2007, 41, 4566–4578. [Google Scholar] [CrossRef] [PubMed]
- Yotova, G.; Lazarova, S.; Kudłak, B.; Zlateva, B.; Mihaylova, V.; Wieczerzak, M.; Venelinov, T.; Tsakovski, S. Assessment of the Bulgarian Wastewater Treatment Plants’ Impact on the Receiving Water Bodies. Molecules 2019, 24, 2274. [Google Scholar] [CrossRef]
Code | Description | Type * |
---|---|---|
A1 | Studena Dam (surface sample) | L3 |
A2 | Struma River near Pernik town, after the Church quarter, before the mouth of the Rudarska River | R5 |
A2-1 | Konska River before flowing into the Struma River | R5 |
A3 | Struma River on the bridge near Batanovtsi town, after the Wastewater Treatment Plant | R5 |
A3-1 | The Arkata River before flowing into the Struma River | R13 |
A4 | Struma River at the bridge near Priboy village, after the confluence of the Arkata River, before the Pchelina Dam | R5 |
A5 | Pchelina Dam (surface sample) | L13 |
A6 | Struma River after the Pchelina dam, near Zabliano village | R5 |
A7 | Struma River near Razdavitsa village | R5 |
B0-1 | Dragovishtitsa River near the border | R3 |
B0-2 | Sovolyanska Bistrica River before its mouth | R5 |
B0-3 | Banshtitsa River after Kyustendil town, before flowing into the Struma River | R5 |
B1 | Struma River near the village of Nevestino | R5 |
B1-1 | Eleshnitsa river before its mouth, near Chetirtsi village | R3 |
B1-2 | Dyakovo Dam (surface sample) | L13 |
B1-3 | Dupnishka Bistrica River after the village of Bistrica near the town of Dupnitsa before its mouth | R5 |
B1-4 | Razmetanitsa River before its mouth | R13 |
B1-5 | German River before flowing into the Struma River, bridge Boboshevo town | R5 |
B2 | Struma River before Blagoevgrad town | R5 |
B2-1 | Blagoevgradska Bistrica River after Blagoevgrad town before flowing into the Struma River | R5 |
B3 | Struma River after Blagoevgrad town | R5 |
B4 | Struma River after Simitli town, road. bridge on E79 in the city of Orlovets | R5 |
B4-1 | Brezhanska River before its mouth, Poleto village | R5 |
B5 | Struma River before Kresna town | R5 |
B5-1 | Sandanska Bistrica River before its mouth | R3 |
B6 | Struma River after the confluence of the Sandanska Bistrica River, after Sandanski town | R5 |
B6-1 | Lebnitsa River before its mouth | R3 |
B6-2U | Strumeshnitsa River near the border (bridge to the village of Gabrene) | R5 |
B6-2D | Strumeshnitsa River before its mouth, bridge to Mitinovo village | R5 |
B7 | Struma River near the border with Greece (bridge to Topolnitsa village) | R5 |
Status [52] | WQI | Notes | Original CCME-WQI Scale [53] |
---|---|---|---|
Very good | 80–100 | Clean and conditionally clean waters—the water quality meets the reference values for “Good” status | Excellent (95–100) Good (80–94) |
Good | 65–79 | Weakly polluted waters—the water quality randomly deteriorates from the reference values for “Good” status | Fair (65–79) |
Moderate | 0–64 | Polluted waters—the water quality does not meet the reference values for “Good” status | Marginal (45–64) Poor (0–44) |
Type * | Status | DissO2, mg/L | pH | EC µS/cm | NH4+ mg/L | NO3− mg/L | NO2− mg/L | N mg/L | PO43− mg/L | P mg/L | BOD mg/L O2 |
---|---|---|---|---|---|---|---|---|---|---|---|
R3 | Very good | 10.5–8.0 | – | 650 | <0.04 | <0.2 | <0.01 | <0.2 | <0.01 | <0.012 | <1 |
Good | 8.0–6.0 | 6.5–8.5 | 750 | 0.04–0.4 | 0.2–0.5 | 0.01–0.025 | 0.2–0.8 | 0.01–0.02 | 0.012–0.03 | 1–2.5 | |
Moderate | <6.0 | – | >750 | >0.4 | >0.5 | >0.025 | >0.8 | >0.02 | >0.03 | >2.5 | |
R5 | Very good | 10.5–8.0 | – | 700 | <0.04 | <0.5 | <0.01 | <0.5 | <0.02 | <0.025 | <1.2 |
Good | 8.0–6.0 | 6.5–8.5 | 750 | 0.04–0.4 | 0.5–1.5 | 0.01–0.03 | 0.5–1.5 | 0.02–0.04 | 0.025–0.075 | 1.2–3 | |
Moderate | <6.0 | – | >750 | >0.4 | >1.5 | >0.03 | >1.5 | >0.04 | >0.075 | >3 | |
R13 | Very good | 9.0–7.0 | – | 700 | <0.10 | <0.7 | <0.03 | <0.7 | <0.07 | <0.15 | <2 |
Good | 7.0–6.0 | 6.5–8.5 | 750 | 0.10–0.3 | 0.7–2 | 0.03–0.06 | 0.7–2.5 | 0.07–0.15 | 0.15–0.3 | 2–4 | |
Moderate | <6.0 | – | >750 | >0.3 | >2 | >0.06 | >2.5 | >0.15 | >0.3 | >4 | |
L3, L13 | Very good | 10.5–8.0 | – | 650 | <0.03 | <0.2 | <0.01 | <0.2 | 0.007–0.0125 | <0.0125 | <1 |
Good | 8.0–6.0 | 6.5–8.7 | 750 | 0.03–0.08 | 0.2–0.5 | 0.01–0.025 | 0.2–0.8 | 0.0125–0.04 | 0.0125–0.04 | 1–2.5 | |
Moderate | <6.0 | – | >750 | >0.08 | >0.5 | >0.025 | >0.8 | >0.04 | >0.04 | >2.5 |
Indicator | Unit | n | Mean | Median | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|---|---|
DissO2 | mg/L | 1300 | 8.30 | 8.30 | 2.39 | 15.99 | 2.12 |
pH | – | 1301 | 8.08 | 8.12 | 6.24 | 11.39 | 0.45 |
EC | μS/cm | 1300 | 467.16 | 424.00 | 25.00 | 1883.00 | 270.74 |
NH4+ | mg/L | 1284 | 0.45 | 0.10 | 0.00 | 16.80 | 1.12 |
NO3− | mg/L | 1281 | 1.15 | 0.85 | 0.00 | 10.35 | 1.19 |
NO2− | mg/L | 1272 | 0.05 | 0.02 | 0.00 | 2.70 | 0.10 |
N | mg/L | 1272 | 2.20 | 1.56 | 0.00 | 39.00 | 2.36 |
PO43− | mg/L | 1285 | 0.14 | 0.08 | 0.00 | 4.90 | 0.24 |
P | mg/L | 1277 | 0.22 | 0.12 | 0.00 | 5.30 | 0.36 |
BOD5 | mgO2/L | 1298 | 3.50 | 2.49 | 0.25 | 79.00 | 4.65 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benkov, I.; Varbanov, M.; Venelinov, T.; Tsakovski, S. Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria. Water 2023, 15, 1961. https://doi.org/10.3390/w15101961
Benkov I, Varbanov M, Venelinov T, Tsakovski S. Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria. Water. 2023; 15(10):1961. https://doi.org/10.3390/w15101961
Chicago/Turabian StyleBenkov, Ivan, Marian Varbanov, Tony Venelinov, and Stefan Tsakovski. 2023. "Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria" Water 15, no. 10: 1961. https://doi.org/10.3390/w15101961
APA StyleBenkov, I., Varbanov, M., Venelinov, T., & Tsakovski, S. (2023). Principal Component Analysis and the Water Quality Index—A Powerful Tool for Surface Water Quality Assessment: A Case Study on Struma River Catchment, Bulgaria. Water, 15(10), 1961. https://doi.org/10.3390/w15101961