Application of Porous Concrete Infiltration Techniques to Street Stormwater Inlets That Simultaneously Mitigate against Non-Point Heavy Metal Pollution and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the Potential of Discrete and Small-Scale Techniques
Abstract
:1. Introduction
1.1. Overview and Review Objectives
- Heavy metal concentrations in urban road runoff.
- Adsorption of heavy metals by porous concrete.
- Estimating the amount of runoff that can be treated in stormwater drains fitted with porous concrete filters.
1.2. Features and Definitions of Non-Point Pollution Sources and the Countermeasures Required for Their Reduction in Runoff
- Infiltration practice
- Infiltration basins
- Infiltration trenches
- Pervious or porous pavements
- Vegetated open channel practices
- Filtering practices
- Detention ponds or vaults
- Retention ponds
- Wetlands
- Other practices, including water quality inlets.
2. Runoff Behavior from Non-Point Sources in Urban Areas
2.1. Road Runoff Water Quality Assessments in Sendai City, Miyagi Prefecture, Japan
2.1.1. Materials and Methods
2.1.2. Results
2.2. Comparison of Dissolved Heavy Metal Concentrations with Previous Studies
3. Control of Non-Point Sources of Pollution and Sewage Systems
3.1. Non-Point Source Pollution and Sewage Systems
3.2. Indirect and Direct Means of Reducing Non-Point Pollution Runoff Loads
4. Infiltration as a Direct Pollution Control Method in a Separate System
4.1. Porous Concrete as An Infiltration Medium
4.2. Deployment of Porous Concrete Plate at the Bottom of Street Stormwater Inlets
5. Laboratory Experiments Examining the Potential Reduction in Heavy Metals in Porous Concrete Exposed to Runoff
6. Effectiveness of the Porous Concrete Plates Placed at the Bottom of the Inlets Based on Calculations Using Infoworks ICM (Innovyze)
7. Verification of Exfiltration Coefficient Obtained Using Infoworks ICM
8. Proportion of Water Passing through the Porous Concrete Plates at the Bottom of the Street Stormwater Inlets to the Total Volume of Inflow Based on Estimates Calculated Using Infoworks ICM (Innovyze)
9. Conclusions and Future Work
Funding
Data Availability Statement
Conflicts of Interest
References
- Fletcher, T.; Duncan, H.; Poelsma, P.; Lloyd, S. Stormwater Flow and Quality, and the Effectiveness of Non-Proprietary Stormwater Treatment Measures—A Review and Gap Analysis; Technical Report 04/8; Cooperative Research Center for Catchment Hydrology: Melbourne, Australia, 2004. [Google Scholar]
- Shinya, M. Non-point pollution. Seikatsu Eisei 2008, 52, 87–97, (In Japanese with English Abstract). [Google Scholar]
- Marsalek, J.; Ng, H. Evaluation of Pollution Loadings from Urban Nonpoint Sources: Methodology and Applications. J. Great Lakes Res. 1989, 15, 444–451. [Google Scholar] [CrossRef]
- Marsalek, J. Evaluation of Pollutant Loads from Urban Nonpoint Sources. Water Sci. Technol. 1990, 22, 23–30. [Google Scholar] [CrossRef]
- Brett, M.T.; Arhonditsis, G.B.; Mueller, S.E.; Hartley, D.M.; Frodge, J.D.; Funke, D.E. Non-Point-Source Impacts on Stream Nutrient Concentrations Along a Forest to Urban Gradient. Environ. Manag. 2005, 35, 330–342. [Google Scholar] [CrossRef] [PubMed]
- Wada, K.; Fujii, S. Characterization of Stormwater Runoff Processes from Urban Roadways. J. Jpn. Soc. Water Environ. 2006, 29, 699–704, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Wada, Y.; Miura, H. Characterization and Control of Runoff Pollution Loads in Catchment Area of the Lake. J. Jpn. Soc. Water Environ. 1996, 19, 161–169, (In Japanese with English Abstract). [Google Scholar] [CrossRef]
- Zgheib, S.; Moileron, R.; Saad, M.; Chebbo, G. Partition of pollution between dissolved and particulate phases: What about emerging substances in urban stormwater catchments? Water Res. 2011, 43, 913–925. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. The role of coated fertilizer used in paddy fields as a source of microplastics in the marine environment. Mar. Pollut. Bull. 2020, 161, 111727. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. Accumulation of microcapsules derived from coated fer fields. Chemosphere 2021, 267, 129185. [Google Scholar] [CrossRef]
- Katsumi, N.; Kusube, T.; Nagao, S.; Okochi, H. The input–output balance of microplastics derived from coated fertilizer in paddy fields and the timing of their discharge during the irrigation season. Chemosphere 2021, 279, 130574. [Google Scholar] [CrossRef]
- Gjessing, E.; Lygren, E.; Berglind, L.; Gulbrandsen, T.; Skanne, R. Effect of highway runoff on lake water quality. Sci. Total. Environ. 1984, 33, 245–257. [Google Scholar] [CrossRef]
- Shinya, M.; Tsuchinaga, T.; Kitano, M.; Yamada, Y.; Ishikawa, M. Characterization of heavy metals and polycyclic aromatic hydrocarbons in urban highway runoff. Water Sci. Technol. 2000, 42, 201–208. [Google Scholar] [CrossRef]
- Sansalone, J.J.; Buchberger, S.G. Partitioning and First Flush of Metals in Urban Roadway Storm Water. J. Environ. Eng. 1997, 123, 134–143. [Google Scholar] [CrossRef]
- Pitt, R.; Field, R.; Lalor, M.; Brown, M. Urban stormwater toxic pollutants assessment, sources, and treatability. Water Environ. Res. 1995, 67, 260–275. [Google Scholar] [CrossRef]
- Murakami, M.; Fujita, M.; Furumai, H.; Kasuga, I.; Kurisu, F. Sorption behavior of heavy metal species by soakaway sediment receiving urban road runoff from residential and heavily trafficked areas. J. Hazard. Mater. 2009, 164, 707–712. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Nakajima, F.; Furumai, H. The sorption of heavy metal species by sediments in soakaways receiving urban road runoff. Chemosphere 2008, 70, 2099–2109. [Google Scholar] [CrossRef]
- Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Potential mobility of heavy metals through coupled application of sequential extraction and isotopic exchange: Comparison of leaching tests applied to soil and soakaway sediment. Chemosphere 2013, 90, 796–804. [Google Scholar] [CrossRef]
- Kumar, M.; Furumai, H.; Kurisu, F.; Kasuga, I. Tracing source and distribution of heavy metals in road dust, soil and soakaway sediment through speciation and isotopic fingerprinting. Geoderma 2013, 211–212, 8–17. [Google Scholar] [CrossRef]
- Ozaki, H.; Watanabe, I.; Kuno, K. Investigation of the Heavy Metal Sources in Relation to Automobiles. Water Air Soil Pollut. 2004, 157, 209–223. [Google Scholar] [CrossRef]
- Root, R.A. Lead loading of urban streets by motor vehicle wheel weights, Environ. Health Perspect. 2000, 108, 937–940. [Google Scholar] [CrossRef]
- Westerlund, K.G. Metal Emissions from Stockholm Traffic-Wear of Brake Linings; Report SLB Analysis No.3; Stockholm Environment and Health Protection Administration: Stockholm, Sweden, 2001. [Google Scholar]
- Adach, K.; Tainosho, Y. Single particle characterization of size-fractionated road sediments. Appl. Geochem. 2005, 20, 849–859. [Google Scholar] [CrossRef]
- Gray, S.R.; Becker, N.S.C. Contaminant flows in urban residential water systems. Urban Water 2002, 4, 331–346. [Google Scholar] [CrossRef]
- Rijstenbil, J.W.; Poortvliet, T.C.W. Copper and zinc in estuarine water: Chemical speciation in relation to bioavailability to the marine planktonic diatom Ditylum Brightwellii. Environ. Toxicol. Chem. 1992, 11, 1615–1625. [Google Scholar] [CrossRef]
- Borgmann, U. Interactive Effects of Metals in Mixtures on Biomass Production Kinetics of Freshwater Copepods. Can. J. Fish. Aquat. Sci. 1980, 37, 1295–1302. [Google Scholar] [CrossRef]
- Enserink, E.; Maas-Diepeveen, J.; Van Leeuwen, C. Combined effects of metals; an ecotoxicological evaluation. Water Res. 1991, 25, 679–687. [Google Scholar] [CrossRef]
- Watanabe, H.; Nakajima, F.; Kasuga, I.; Furumai, H. Application of whole sediment toxicity identification evaluation proce-dures to road dust using a benthic ostracod Heterocypris incongruens. Ecotoxicol. Environ. Saf. 2013, 89, 245–251. [Google Scholar] [CrossRef]
- Watanabe, H.; Nakajima, F.; Kasuga, I.; Furumai, H. Toxicity evaluation of road dust in the runoff process using a benthic ostracod Heterocypris incongruens. Sci. Total. Environ. 2011, 409, 2366–2372. [Google Scholar] [CrossRef]
- Mikkelsen, P.S.; Jacobsen, P.; Fujita, S. Infiltration practice for control of urban stormwater. J. Hydraul. Res. 1996, 34, 827–840. [Google Scholar] [CrossRef]
- Mikkelsen, P.; Häfliger, M.; Ochs, M.; Tjell, J.; Jacobsen, P.; Boller, M. Experimental assessment of soil and groundwater contamination from two old infiltration systems for road run-off in Switzerland. Sci. Total Environ. 1996, 189–190, 341–347. [Google Scholar] [CrossRef]
- Bardin, J.-P.; Barraud, S.; Alfakih, E.; Dechesne, M. Performance Assessment of Stormwater Infiltration Strategies: A Multi-Indicator Approach. In Proceedings of the 9th International Conference on Urban Drainage, Portland, OR, USA, 8–13 September 2002; CD-ROM. ASCE Publications: Reston, VA, USA, 2002. [Google Scholar] [CrossRef]
- Goebel, P.; Fach, S.; Kories, H.; Geiger, W.F.; Coldewey, W.G. Effects of Stormwater Infiltration on the Water Balance of an Urban Area. In Proceedings of the 9th International Conference on Urban Drainage, Portland, OR, USA, 8–13 September 2002; CD-ROM. ASCE Publications: Reston, VA, USA, 2002. [Google Scholar] [CrossRef]
- Datry, T.; Malard, F.; Vitry, L.; Hervant, F.; Gibert, J. Solute dynamics in the bed sediments of a stormwater infiltration basin. J. Hydrol. 2003, 273, 217–233. [Google Scholar] [CrossRef]
- Legret, M.; Colandini, V. Effects of a porous pavement with reservoir structure on runoff water: Water quality and fate of heavy metals. Water Sci. Technol. 1999, 39, 111–117. [Google Scholar] [CrossRef]
- Harada, S.; Kim, J. Application of infiltration technic for residential zone in agricultural area. Water Land Environ. Eng. 2014, 82, 301–304. [Google Scholar]
- Harada, S.; Komuro, Y. Decrease of heavy metal non-point runoff using porous concrete. Trans. JSIDRE 2009, 264, 81–82. (In Japanese) [Google Scholar]
- Harada, S.; Komuro, Y. Decrease of non-point zinc runoff using porous concrete. Chemosphere 2010, 78, 488–491. [Google Scholar] [CrossRef]
- Harada, S.; Yanbe, M. Adsorption by and artificial release of zinc and lead from porous concrete for recycling of adsorbed zinc and lead and of porous concrete to reduce urban non-point heavy metal runoff. Chemosphere 2018, 197, 451–456. [Google Scholar] [CrossRef]
- Harada, S.; Kitatusji, M.; Onodera, S. Reducing Non-Point Heavy Metal Runoff from Urban Catchment Using Porous Concrete Filters in Storm Sewer Catch Basins and Manholes. In Proceedings of the DIPCON/ARC-2014, Kyoto, Japan, 3–4 September 2014. [Google Scholar]
- United States Environmental Protection Agency. National Management Measures to Control Nonpoint Source Pollution from Urban Area; United States Environmental Protection Agency: Washington, DC, USA, 2005.
- Fletcher, T.D.; Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D.; Arthur, S.; Trowsdale, S.; Barraud, S.; Semadeni-Davies, A.; Bertrand-Krajewski, J.L.; et al. SUDS, LID, BMPs, WSUD and more—The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Fujita, S. Experimental sewer system for reduction of urban storm runoff. Proc. Environ. Sani. Eng. Res. 1986, 22, 175–185, (In Japanese with English Abstract). [Google Scholar]
- Hijioka, Y.; Furumai, H. Long-Term Runoff Monitoring of Urban Nonpoint Pollution Load in a Separate Sewer System using Autosampler and Monitoring Devices. J. Jpn. Soc. Water Environ. 2003, 26, 237–242. [Google Scholar] [CrossRef]
- Al Mamun, A.; Shams, S. Nuruzzaman Review on uncertainty of the first-flush phenomenon in diffuse pollution control. Appl. Water Sci. 2020, 10, 525–542. [Google Scholar] [CrossRef]
- Maniquiz-Redillas, M.; Robles, M.E.; Cruz, G.; Reyes, N.J.; Kim, L.-H. First Flush Stormwater Runoff in Urban Catchments: A Bibliometric and Comprehensive Review. Hydrology 2022, 9, 63. [Google Scholar] [CrossRef]
- Kojima, K.; Sano, S.; Furumai, H. Contributions of Road Surface Deposits and Atmospheric Deposition to Heavy-Metal and Nitrogen Contamination by Road Runoff in a Residential Area. J. Jpn. Soc. Water Environ. 2012, 35, 119–126. [Google Scholar] [CrossRef]
- Murakami, M. Adsorption and Desorption of Heavy Metals in Infiltration Facilities Receiving Urban Runoff. Ph.D. Thesis, Tokyo University, Tokyo, Japan, 2006; p. 17. [Google Scholar]
- Flores-Rodríguez, J.; Bussy, A.-L.; Thevenot, D. Toxic Metals in Urban Runoff: Physico-Chemical Mobility Assessment Using Speciation Schemes. Water Sci. Technol. 1994, 29, 83–93. [Google Scholar] [CrossRef]
- Mikkelsen, P.S.; Weyer, G.; Berry, C.; Waldent, Y.; Colandini, V.; Poulsen, S.; Grotehusmann, D.; Rohlfing, R. Pollution from Urban Stormwater Infiltration. Water Sci. Technol. 1994, 29, 293–302. [Google Scholar] [CrossRef]
- Ozaki, N.; Wada, K.; Murakami, M.; Nakajima, F.; Furumai, H. Prediction and its Reliability Evaluation of Urban Non-point Pollution Loading by Statistical Analysis of the Data of Published Researches. J. Jpn. Soc. Water Environ. 2017, 40, 115–124. [Google Scholar] [CrossRef]
- Ozaki, N.; Wada, K.; Murakami, M.; Nakajima, F.; Furumai, H. Prediction of Urban Non-point Pollution Load by Statistical Analysis of Data of Published Research and Its Reliability Evaluation –Statistical Analysis of Mean Load and Verification and Modification of Previously Proposed Model Using Newly Obtained Data. J. Jpn. Soc. Water Environ. 2021, 44, 1–8. [Google Scholar] [CrossRef]
- Harada, S.; Ichikawa, A. Mitigating peak discharge of urban overland surface runoff using drainage infiltration strata. In Proceedings of the 5th International Conference on Ultrafast Structural Dynamics (ICUSD), Daejeon, Republic of Korea, 25–28 June 1989; Volume 5, pp. 821–826. [Google Scholar]
- Harada, S.; Ichikawa, A. Performance of water infiltrated within infiltration strata and Kanto loam taking into account hysteresis. J. Nat. Disaster Sci. 1990, 12, 21–35. [Google Scholar]
- Harada, S.; Ichikawa, A. Performance of the Drainage Infiltration Strata: Statistical and Numerical Analyses. Water Sci. Technol. 1994, 29, 255–265. [Google Scholar] [CrossRef]
- Harada, S.; Endo, K. Application of urban hydrological model for prediction of runoff from agriculture dominated area. Inter. J. Latest Res. Sci. Technol. 2013, 2, 44–48. [Google Scholar]
- Harada, S.; Sato, I. Evaluation of Exfiltration Rates at the Bottom of Manholes at an Urbanized Area Using Infoworks. Inter. J. Latest Res. Sci. Technol. 2015, 4, 134–137. [Google Scholar]
- Herath, S.; Musiake, K.; Hironaka, S. Field Estimation of Saturated Conductivity Using Borehole Test: Effect of Unsaturated Flow and Soil Anisotropy. Annu. J. Hydraul. Eng. (JSCE) 1992, 36, 435–440. [Google Scholar] [CrossRef]
- Herath, S.; Musiake, K. Simulation of Basin Scale Runoff Reduction by Infiltration Systems. Water Sci. Technol. 1994, 29, 267–275. [Google Scholar] [CrossRef]
- Blazejewski, R.; Nieć, J.; Murat-Błażejewska, S.; Zawadzki, P. Comparison of infiltration models with regard to design of rectangular infiltration trenches. Hydrol. Sci. J. 2018, 63, 1707–1716. [Google Scholar] [CrossRef]
Sampling Date | Settled Date | Antecedent Dry Weather Days | SS | GF/B Filtration | Cr | Cu | Zn | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|
(mg/L) | (ppb) | (ppb) | (ppb) | (ppb) | (ppb) | ||||
18 May | ------- | ------------- | 0.289 | None | 29.88 | 49.27 | 395.47 | 0.22 | 17.35 |
Done | 16.32 | 6.37 | 73.47 | 0.04 | 0.94 | ||||
25 May | 18 May | 3 | 0.051 | None | 18.30 | 16.94 | 178.23 | 0.08 | 3.00 |
Done | 15.17 | 12.36 | 109.46 | 0.04 | 0.83 | ||||
7 Jun. | 25 May | 4 | 0.414 | None | 21.60 | 55.88 | 578.17 | 0.30 | 38.38 |
Done | 14.70 | 8.38 | 116.56 | 0.05 | 1.36 | ||||
9 Jun. | 7 Jun. | 0 | 0.122 | None | 19.87 | 31.03 | 246.51 | 0.15 | 12.78 |
Done | 14.89 | 16.10 | 107.69 | 0.06 | 2.16 | ||||
29 Jun. | 9 Jun. | 2 | 0.382 | None | 19.57 | 23.19 | 337.92 | 0.18 | 11.21 |
Done | 14.53 | 5.41 | 92.99 | 0.05 | 0.19 | ||||
6 Jul. | 29 Jun. | 0 | 0.187 | None | 4.07 | 18.60 | 169.89 | 7.02 | |
Done | 0.95 | 8.04 | 85.29 | 1.10 | |||||
19 Jul. | 6 Jul. | 0 | 0.162 | None | 32.93 | 374.60 | 0.49 | 8.92 | |
Done | 10.32 | 162.52 | 0.32 | 0.71 | |||||
28 Jul. | 19 Jul. | 0 | 0.837 | None | 12.05 | 46.10 | 914.82 | 0.79 | 27.26 |
Done | 0.92 | 6.99 | 87.31 | 0.75 | 1.29 | ||||
30 Jul. | 28 Jul. | 0 | 0.511 | None | 20.34 | 58.15 | 615.98 | 0.67 | 31.01 |
Done | 2.56 | 4.60 | 29.34 | 0.17 | 1.10 | ||||
10 Aug. | 30 Jul. | 9 | 0.151 | None | 88.85 | 487.80 | 1.94 | 14.50 | |
Done | 6.53 | 240.23 | 0.17 | 1.78 | |||||
23 Aug. | 10 Aug. | 2 | 0.128 | None | 38.47 | 0.71 | 13.25 | ||
Done | 7.92 | 0.18 | 0.38 | ||||||
31 Aug. | 23 Aug. | 4 | 0.872 | None | 28.27 | 131.21 | 1385.67 | 2.04 | 69.69 |
Done | 3.26 | 7.20 | 138.00 | 0.21 | 0.13 | ||||
26 Sep. | 31 Aug. | 1 | 0.187 | None | 10.73 | 40.34 | 413.30 | 0.44 | 20.73 |
Done | 2.22 | 5.44 | 84.48 | 0.07 | 0.99 | ||||
10 Oct. | 26 Sep. | 3 | 0.731 | None | 15.97 | 51.42 | 806.82 | 0.65 | |
Done | 2.54 | 5.52 | 249.62 | 0.13 | |||||
6 Dec. | 10 Oct. | 23 | 1.097 | None | 28.68 | 81.86 | 833.19 | 0.57 | |
Done | 2.70 | 8.48 | 76.93 | 0.05 | |||||
19 Dec. | 6 Dec. | 11 | 0.334 | None | 22.36 | 53.44 | 632.71 | 0.50 | 18.80 |
Done | 14.79 | 17.99 | 334.95 | 0.16 | 0.44 |
Sampling Date | Cr | Cu | Zn | Cd | Pb |
---|---|---|---|---|---|
(%) | (%) | (%) | (%) | (%) | |
18 May | 45.38 | 87.07 | 81.42 | 81.15 | 94.60 |
26 May | 17.11 | 27.02 | 38.58 | 44.72 | 72.40 |
7 Jun. | 31.94 | 85.01 | 79.84 | 81.63 | 96.45 |
9 Jun. | 25.03 | 48.11 | 56.32 | 58.67 | 83.11 |
29 Jun. | 25.74 | 76.67 | 72.48 | 71.03 | 98.28 |
6 Jul. | 76.57 | 56.81 | 49.80 | 84.28 | |
19 Jul. | 68.66 | 56.62 | 34.18 | 92.07 | |
28 Jul. | 92.36 | 84.84 | 90.46 | 4.39 | 95.28 |
30 Jul. | 87.42 | 92.10 | 95.24 | 75.02 | 96.44 |
10 Aug. | 92.65 | 50.75 | 91.03 | 87.70 | |
23 Aug. | 79.41 | 75.07 | 97.15 | ||
31 Aug. | 88.46 | 94.51 | 90.04 | 89.58 | |
26 Sep. | 79.28 | 86.50 | 79.56 | 83.19 | 95.20 |
1 Nov. | 84.10 | 89.26 | 69.06 | 79.86 | |
6 Dec. | 90.57 | 89.65 | 90.77 | 90.62 | |
19 Dec. | 33.86 | 66.33 | 47.06 | 68.60 | 97.67 |
Average | 59.83 | 76.54 | 69.87 | 68.58 | 91.59 |
RUN | Column | Experiment Timing | Heavy Metal Concentration (ppb) | ||
---|---|---|---|---|---|
Pb | Zn | Cu | |||
1-1 | C | January 2009 | 1500 | ---------------- | ---------------- |
1-2 | C | January 2009 | ---------------- | 580 | ---------------- |
1-3 | C | January 2009 | ---------------- | ---------------- | 4150 |
2-1 | C | December 2017 | 21 | ---------------- | ---------------- |
2-2 | C | December 2017 | ---------------- | 53 | ---------------- |
2-3 | C | December 2017 | ---------------- | ---------------- | 42 |
3-1 | C | April 2018 | 55 | ---------------- | ---------------- |
3-2 | C | April 2018 | ---------------- | 66 | ---------------- |
3-3 | C | April 2018 | ---------------- | ---------------- | 22 |
4-1 | N | April 2018 | ---------------- | ---------------- | 22 |
5 | C | April 2018 | 10 | 25 | 7 |
6 | N | April 2018 |
RUN | Adsorption Proportion (%) | ||
---|---|---|---|
Pb | Zn | Cu | |
1-1 | 83.1 | ---------------- | ---------------- |
1-2 | ---------------- | 66.6 | ---------------- |
1-3 | ---------------- | ---------------- | 69.6 |
2-1 | 84.9 | ---------------- | ---------------- |
2-2 | ---------------- | 77.1 | ---------------- |
2-3 | ---------------- | ---------------- | 66.6 |
3-1 | 87.9 | ---------------- | ---------------- |
3-2 | ---------------- | 63.2 | ---------------- |
3-3 | ---------------- | ---------------- | 69.6 |
4-1 | ---------------- | ---------------- | 70.2 |
5 | 80.5 | 60.2 | 73.0 |
6 | 85.8 | 64.4 | 52.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harada, S. Application of Porous Concrete Infiltration Techniques to Street Stormwater Inlets That Simultaneously Mitigate against Non-Point Heavy Metal Pollution and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the Potential of Discrete and Small-Scale Techniques. Water 2023, 15, 1998. https://doi.org/10.3390/w15111998
Harada S. Application of Porous Concrete Infiltration Techniques to Street Stormwater Inlets That Simultaneously Mitigate against Non-Point Heavy Metal Pollution and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the Potential of Discrete and Small-Scale Techniques. Water. 2023; 15(11):1998. https://doi.org/10.3390/w15111998
Chicago/Turabian StyleHarada, Shigeki. 2023. "Application of Porous Concrete Infiltration Techniques to Street Stormwater Inlets That Simultaneously Mitigate against Non-Point Heavy Metal Pollution and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the Potential of Discrete and Small-Scale Techniques" Water 15, no. 11: 1998. https://doi.org/10.3390/w15111998
APA StyleHarada, S. (2023). Application of Porous Concrete Infiltration Techniques to Street Stormwater Inlets That Simultaneously Mitigate against Non-Point Heavy Metal Pollution and Stormwater Runoff Reduction in Urban Areas: Catchment-Scale Evaluation of the Potential of Discrete and Small-Scale Techniques. Water, 15(11), 1998. https://doi.org/10.3390/w15111998