Assessing and Comparing Reference Evapotranspiration across Different Climatic Regions of China Using Reanalysis Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Meteorological Data
2.2. FAO-56 Penman–Monteith Equation
2.3. Data Sources
2.4. Spatial Interpolation Method
2.5. Accurate Statistical Indicators
3. Results
3.1. Assessing the Accuracy of the Reanalysis Weather Variables
3.2. Comparison of the Annual Mean of the Observation-Calculated ET0 and Reanalysis-Estimated ET0
3.3. Assessing the Accuracy of ET0 CLDAS and ET0 ERA5 Estimates Using Reanalysis Products
3.4. Comparison of Time Series Changes in the Monthly Mean Values of the Observed ET0 and Reanalysis of Estimated ET0
4. Discussion
4.1. Analysis of Meteorological Variables Related to ET0 Estimation
4.2. Analysis of the Spatial Distribution of the Observation-Calculated ET0 and Reanalysis-Estimated ET0
4.3. Analysis of the Accuracy of ET0 Estimated by CLDAS and ERA5 across Different Climatic Regions
5. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Holdridge, L.R. Life Zone Ecology; Tropical Science: San Jose, Costa Rica, 1967. [Google Scholar]
- Pereira, L.S.; Perrier, A.; Allen, R.G.; Alves, I. Evapotranspiration: Review of concepts and future trends. J. Irrig. Drain Eng. 1999, 125, 45–51. [Google Scholar] [CrossRef]
- Pereira, L.S.; Allen, R.G.; Smith, M.; Raes, D. Crop evapotranspiration estimation with FAO56: Past and future. Agric. Water Manag. 2015, 147, 4–20. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater depletion and sustainability of irrigation in the US High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed]
- Feng, Y.; Peng, Y.; Cui, N.; Gong, D.; Zhang, K. Modeling reference evapotranspiration using extreme learning machine and generalized regression neural network only with temperature data. Comput. Electron. Agric. 2017, 136, 71–78. [Google Scholar] [CrossRef]
- Dong, Y.; Zhao, Y.; Zhai, J.; Zhao, J.S.; Han, J.Y.; Wang, Q.M.; He, G.H. Changes in reference evapotranspiration over the non-monsoon region of China during 1961–2017: Relationships with atmospheric circulation and attributions. Int. J. Clim. 2020, 41, E734–E751. [Google Scholar] [CrossRef]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements; Food and Agriculture Organization of the United Nations: Rome, Italy, 1998. [Google Scholar]
- Valiantzas, J.D. Simplified forms for the standardized FAO-56 Penman–Monteith reference evapotranspiration using limited weather data. J. Hydrol. 2013, 505, 13–23. [Google Scholar] [CrossRef]
- Pereira, L.S.; Paredes, P.; Rodrigues, G.C.; Neves, M. Modeling malt barley water use and evapotranspiration partitioning in two contrasting rainfall years. Assessing AquaCrop and SIMDualKc models. Agric. Water Manag. 2015, 159, 239–254. [Google Scholar] [CrossRef]
- Jensen, M.E.; Allen, R.G. Evaporation, Evapotranspiration, and Irrigation Water Requirements; American Society of Civil Engineers: Reston, VA, USA, 2016. [Google Scholar] [CrossRef]
- Monteith, J.L. Evaporation and the Environment in the State and Movement of Water in Living Organisms. Symp. Soc. Exp. Biol. 1965, 19, 205–234. [Google Scholar]
- Popova, Z.; Kercheva, M.; Pereira, L.S. Validation of the FAO methodology for computing ETo with limited data. Application to south Bulgaria. Irrig. Drain. 2006, 55, 201–215. [Google Scholar] [CrossRef]
- McMahon, T.A.; Finlayson, B.L.; Peel, M.C. Historical developments of models for estimating evaporation using standard meteorological data. Wiley Interdiscip. Rev. Water 2016, 3, 788–818. [Google Scholar] [CrossRef]
- Martínez-Cob, A.; Tejero-Juste, M. A wind-based qualitative calibration of the Hargreaves ET0 estimation equation in semiarid regions. Agric. Water Manag. 2004, 64, 251–264. [Google Scholar] [CrossRef]
- Eyer, J.R. Progress Achieved on Assimilation of Satellite Data in Numerical Weather Prediction over the Last 30 Years/Proceeding of ECMWF Seminar on Recent Developments in of Satellite Observations in Numerical Weather Prediction; ECMWF Publication: Reading, UK, 2007; pp. 1–27. [Google Scholar]
- Eyre, J.R.; Kelly, G.A.; McNally, A.P.; Andersson, E.; Persson, A. Assimilation of TOVS radiance information through one-dimensional variational analysis. Q. J. R. Meteorol. Soc. 1993, 119, 1427–1463. [Google Scholar] [CrossRef]
- Harris, B.A.; Kelly, G. A satellite radiance-bias correction scheme for data assimilation. Q. J. R. Meteorol. Soc. 2001, 127, 1453–1468. [Google Scholar] [CrossRef]
- Wang, Y.; Han, W.; Xue, J.; Li, J.; Lei, B.; Yang, J. Adaptive tuning of background error and satellite radiance observation error for operational variational assimilation. In MIPPR 2007: Remote Sensing and GIS Data Processing and Applications; and Innovative Multispectral Technology and Applications; SPIE: Washington, DC, USA, 2007; Volume 6790, pp. 1063–1071. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Trouet, V.; Van Oldenborgh, G.J. KNMI Climate Explorer: A Web-Based Research Tool for High-Resolution Paleoclimatology. Tree-Ring Res. 2013, 69, 3–13. [Google Scholar] [CrossRef]
- Balsamo, G.; Albergel, C.; Beljaars, A.; Boussetta, S.; Brun, E.; Cloke, H.; Dee, D.; Dutra, E.; Muñoz-Sabater, J.; Pappenberger, F.; et al. ERA-Interim/Land: A global land surface reanalysis data set. Hydrol. Earth Syst. Sci. 2015, 19, 389–407. [Google Scholar] [CrossRef]
- Kanamitsu, M.; Ebisuzaki, W.; Woollen, J.; Yang, S.-K.; Potter, G.L. NCEP–DOE AMIP-II Reanalysis (R-2). Bull. Am. Meteorol. Soc. 2002, 83, 1631–1644. [Google Scholar] [CrossRef]
- Kazutoshi, O.; Junichi, T.; Hiroshi, K.; Masami, S.; Shinya, K.; Hiroaki, H.; Takanori, M.; Nobuo, Y.; Hirotaka, K. The JRA-25 Reanalysis. J. Meteorol. Soc. Jpn. 2007, 85, 369–432. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ota, Y.; Harada, Y.; Ebita, A.; Moriya, M.; Onoda, H.; Onogi, K.; Kamahori, H.; Kobayashi, C.; Endo, H.; et al. The JRA-55 Reanalysis: General Specifications and Basic Characteristics. J. Meteorol. Soc. Jpn. Ser. II 2015, 93, 5–48. [Google Scholar] [CrossRef]
- Sheffield, J.; Goteti, G.; Wood, E.F. Development of a 50-Year High-Resolution Global Dataset of Meteorological Forcings for Land Surface Modeling. J. Clim. 2006, 19, 3088–3111. [Google Scholar] [CrossRef]
- Martí, B.; Jose, U.; Giovanni, L.; Philipp, K.; Álvaro, N.; Rolando, C. Validation of ERA5-Land temperature and relative humidity on four Peruvian glaciers using on-glacier observations. J. Mt. Sci. 2022, 19, 1849–1873. [Google Scholar] [CrossRef]
- Song, H.Q.; Sun, X.L.; Li, Y.P. Evaluation of ERA5 reanalysis soil moisture over inner mongolia. Sci. Technol. Eng. 2020, 20, 2161–2168. [Google Scholar]
- Srivastava, P.K.; Han, D.; Islam, T.; Petropoulos, G.P.; Gupta, M.; Dai, Q. Seasonal evaluation of evapotranspiration fluxes from MODIS satellite and mesoscale model downscaled global reanalysis datasets. Theor. Appl. Clim. 2016, 124, 461–473. [Google Scholar] [CrossRef]
- Martins, D.S.; Paredes, P.; Raziei, T.; Pires, C.; Cadima, J.; Pereira, L.S. Assessing reference evapotranspiration estimation from reanalysis weather products. An application to the Iberian Peninsula. Int. J. Clim. 2016, 37, 2378–2397. [Google Scholar] [CrossRef]
- Zhao, T.; Guo, W.; Fu, C. Calibrating and Evaluating Reanalysis Surface Temperature Error by Topographic Correction. J. Clim. 2008, 21, 1440–1446. [Google Scholar] [CrossRef]
- Hwang, S.; Graham, W.D.; Geurink, J.S.; Adams, A. Hydrologic implications of errors in bias-corrected regional reanalysis data for west central Florida. J. Hydrol. 2014, 510, 513–529. [Google Scholar] [CrossRef]
- Liu, Y.; Shi, C.X.; Wang, H.J.; Han, S. Applicability assessment of CLDAS temperature data in China. Atmos. Sci. 2021, 44, 540–548. [Google Scholar] [CrossRef]
- Shi, C.; Xie, Z.; Qian, H.; Liang, M.; Yang, X. China land soil moisture EnKF data assimilation based on satellite remote sensing data. Sci. China Earth Sci. 2011, 54, 1430–1440. [Google Scholar] [CrossRef]
- Yang, F.; Lu, H.; Yang, K.; He, J.; Wang, W.; Wright, J.S.; Li, C.; Han, M.; Li, Y. Evaluation of multiple forcing data sets for precipitation and shortwave radiation over major land areas of China. Hydrol. Earth Syst. Sci. 2017, 21, 5805–5821. [Google Scholar] [CrossRef]
- Liu, J.; Shi, C.; Sun, S.; Liang, J.; Yang, Z.-L. Improving Land Surface Hydrological Simulations in China Using CLDAS Meteorological Forcing Data. J. Meteorol. Res. 2019, 33, 1194–1206. [Google Scholar] [CrossRef]
- Cui, Y.Y.; Qin, J.; Jing, W.; Tan, G. Applicability evaluation of merged soil moisture in GLDAS and CLDAS products over Qinghai-Tibetan Plateau. Plateau Meteorol. 2018, 37, 123–136. [Google Scholar] [CrossRef]
- Shi, C.; Zhang, S.; Sun, S. Effect of Improved Precipitation CLDAS on Snow Simulation in China. Meteor. Mon. 2018, 44, 985–997. [Google Scholar] [CrossRef]
- Vanella, D.; Longo-Minnolo, G.; Belfiore, O.R.; Ramírez-Cuesta, J.M.; Pappalardo, S.E.; Consoli, S.; D’urso, G.; Chirico, G.B.; Coppola, A.; Comegna, A.; et al. Comparing the use of ERA5 reanalysis dataset and ground-based agrometeorological data under different climates and topography in Italy. J. Hydrol. 2022, 42, 101182. [Google Scholar] [CrossRef]
- Shea, J.G.; Worley, J.; Stern, R.N. An Introduction to Atmospheric and Oceanographic Datasets. (No.NCAR/TN-404+IA); University Corporation for Atmospheric Research: Boulder, CO, USA, 1994. [Google Scholar] [CrossRef]
- Sheffield, J.; Wood, E.F.; Roderick, M.L. Little change in global drought over the past 60 years. Nature 2012, 491, 435–438. [Google Scholar] [CrossRef]
- Boulard, D.; Castel, T.; Camberlin, P. Capability of a regional climate model to simulate climate variables requested for water balance computation: A case study over northeastern France. Clim. Dyn. 2015, 46, 2689–2716. [Google Scholar] [CrossRef]
- Paredes, P.; Rodrigues, G.C.; Alves, I.; Pereira, L.S. Partitioning evapotranspiration, yield prediction and economic returns of maize under various irrigation management strategies. Agric. Water Manag. 2014, 135, 27–39. [Google Scholar] [CrossRef]
- Shi, C.X.; Jiang, L.P.; Zhang, T.; Xu, B.; Han, S. Status and plans of CMA land data assimilation system (CLDAS) project. Geophys. Res. Abstr. 2014, 16, EGU2014-5671. [Google Scholar]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Allen, R.G.; Smith, M.; Perrier, A.; Pereira, L.S. An update for the definition of reference evapotranspiration. ICID Bull. 1994, 43, 1–35. [Google Scholar]
- Takakura, T.; Kubota, C.; Sase, S.; Hayashi, M.; Ishii, M.; Takayama, K.; Nishina, H.; Kurata, K.; Giacomelli, G.A. Measurement of evapotranspiration rate in a single-span greenhouse using the energy-balance equation. Biosyst. Eng. 2009, 102, 298–304. [Google Scholar] [CrossRef]
- Mobilia, M.; Longobardi, A. Prediction of Potential and Actual Evapotranspiration Fluxes Using Six Meteorological Data-Based Approaches for a Range of Climate and Land Cover Types. ISPRS Int. J. Geo Inf. 2021, 10, 192. [Google Scholar] [CrossRef]
- Yin, Y.H.; Li, B.Y. A New Scheme for Climate Regionalization in China. Acta Geogr. Sin. 2010, 65, 3–12. [Google Scholar] [CrossRef]
- Zheng, J.Y.; Bian, J.J.; Ge, Q.S.; Hao, Z.X.; Yin, Y.H.; Liao, Y.M. The climate regionalization in China for 1981–2010. Geogr. Res. 2013, 32, 987–997. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Gupta, H.V.; Sorooshian, S.; Yapo, P.O. Status of Automatic Calibration for Hydrologic Models: Comparison with Multilevel Expert Calibration. J. Hydrol. Eng. 1999, 4, 135–143. [Google Scholar] [CrossRef]
- Tie, R.; Shi, C.; Wan, G.; Hu, X.J.; Kang, L.H.; Ge, L.L. CLDASSD: Reconstructing Fine Textures of the Temperature Field Using Super-Resolution Technology. Adv. Atmos. Sci. 2022, 39, 117–130. [Google Scholar] [CrossRef]
- Wu, L.; Qian, L.; Huang, G.; Liu, X.-G.; Wang, Y.-C.; Bai, H.; Wu, S.-F. Assessment of Daily of Reference Evapotranspiration Using CLDAS Product in Different Climate Regions of China. Water 2022, 14, 1744. [Google Scholar] [CrossRef]
- Qian, L.; Wu, L.F.; Liu, X.G.; Cui, Y.K.; Wang, Y.W. Comparison of CLDAS and Machine Learning Models for Reference Evapotranspiration Estimation under Limited Meteorological Data. Sustainability 2022, 14, 14577. [Google Scholar] [CrossRef]
- Simmons, A.J.; Willett, K.M.; Jones, P.D.; Thorne, P.W.; Dee, D.P. Low-frequency variations in surface atmospheric humidity, temperature, and precipitation: Inferences from reanalyses and monthly gridded observational data sets. J. Geophys. Res. 2010, 115, D01110. [Google Scholar] [CrossRef]
- Paredes, P.; Martins, D.S.; Pereira, L.S.; JorgePires, C. Accuracy of daily estimation of grass reference evapotranspiration using ERA-Interim reanalysis products with assessment of alternative bias correction schemes. Agric. Water Manag. 2018, 210, 340–353. [Google Scholar] [CrossRef]
- Bojanowski, J.S.; Vrieling, A.; Skidmore, A.K. A comparison of data sources for creating a long-term time series of daily gridded solar radiation for Europe. Sol. Energy 2014, 99, 152–171. [Google Scholar] [CrossRef]
- Urraca, R.; Martinez-De-Pison, E.; Sanz-Garcia, A.; Antonanzas, J.; Antonanzas-Torres, F. Estimation methods for global solar radiation: Case study evaluation of five different approaches in central Spain. Renew. Sustain. Energy Rev. 2017, 77, 1098–1113. [Google Scholar] [CrossRef]
- Fu, G.; Charles, S.P.; Timbal, B.; BranislavaOuyang, F. Comparison of NCEP-NCAR and ERA-Interim over Australia. Int. J. Clim. 2015, 36, 2345–2367. [Google Scholar] [CrossRef]
- Carvalho, D.; Rocha, A.; Gómez-Gesteira, M.; Santos, C.S. WRF wind simulation and wind energy production estimates forced by different reanalyses: Comparison with observed data for Portugal. Appl. Energy 2013, 117, 116–126. [Google Scholar] [CrossRef]
- Jabloun, M.; Sahli, A. Evaluation of FAO-56 methodology for estimating reference evapotranspiration using limited climatic data. Agric. Water Manag. 2008, 95, 707–715. [Google Scholar] [CrossRef]
- Betts, A.K.; Köhler, M.; Zhang, Y. Comparison of river basin hydrometeorology in ERA-Interim and ERA-40 reanalyses with observations. J. Geophys. Res. 2009, 114, D02101. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S. Variational bias correction of satellite radiance data in the ERA-Interim reanalysis. Q. J. R. Meteorol. Soc. 2009, 135, 1830–1841. [Google Scholar] [CrossRef]
- Su, T.; Feng, T.; Feng, G. Evaporation variability under climate warming in five reanalyses and its association with pan evaporation over China. J. Geophys. Res. Atmos. 2015, 120, 8080–8098. [Google Scholar] [CrossRef]
- Zhang, X.; Li, M.; Ma, Z. Evapotranspiration variability over global arid and semi-arid regions from 1982 to 2011. Chin. J Atmos. Sci. 2018, 42, 251–267. [Google Scholar] [CrossRef]
- Luo, H.; Cui, Y.; Duan, Z. Analysis of the Sensitivity of ET0 and the Main Meteorological Factors in Major Agricultural Regions in Tibet. Mod. Water Sav. Effic. Agric. Ecol. Irrig. Area Constr China 2010, 8, 130–136. [Google Scholar]
Tmin CLDAS | Tmin ERA5 | |||||||
---|---|---|---|---|---|---|---|---|
Climate Zones | PBias | RMSE | MAE | R2 | PBias | RMSE | MAE | R2 |
(°C) | (°C) | |||||||
1 | 0.24 | 3.22 | 2.76 | 0.96 | 0.36 | 7.29 | 6.34 | 0.90 |
2 | 0.31 | 2.00 | 1.48 | 0.98 | 0.42 | 5.91 | 5.05 | 0.92 |
3 | 0.10 | 2.42 | 1.83 | 0.97 | 1.38 | 5.17 | 4.36 | 0.91 |
4 | 0.04 | 2.12 | 1.68 | 0.97 | −0.65 | 9.47 | 8.51 | 0.88 |
5 | −0.02 | 1.79 | 1.43 | 0.96 | −0.57 | 13.54 | 12.33 | 0.86 |
6 | −0.01 | 1.51 | 1.20 | 0.94 | −0.53 | 16.85 | 15.40 | 0.80 |
7 | −0.16 | 4.08 | 3.62 | 0.93 | 0.04 | 6.98 | 5.66 | 0.83 |
Average | 0.07 | 2.45 | 2.00 | 0.96 | 0.06 | 9.32 | 8.24 | 0.87 |
Tmax CLDAS | Tmax ERA5 | |||||||
---|---|---|---|---|---|---|---|---|
Climate Zones | PBias | RMSE | MAE | R2 | PBias | RMSE | MAE | R2 |
(°C) | (°C) | |||||||
1 | −0.14 | 4.24 | 3.67 | 0.95 | −0.32 | 8.40 | 7.35 | 0.87 |
2 | −0.03 | 3.25 | 2.50 | 0.93 | −0.29 | 6.31 | 5.41 | 0.90 |
3 | −0.01 | 3.19 | 2.45 | 0.94 | −0.28 | 5.56 | 4.64 | 0.89 |
4 | −0.03 | 3.26 | 2.59 | 0.92 | −0.37 | 10.14 | 8.86 | 0.83 |
5 | −0.02 | 2.89 | 2.23 | 0.88 | −0.41 | 12.75 | 11.01 | 0.79 |
6 | −0.02 | 2.30 | 1.79 | 0.85 | −0.43 | 15.09 | 13.07 | 0.76 |
7 | −0.18 | 5.48 | 4.89 | 0.83 | −0.28 | 9.38 | 7.88 | 0.82 |
Average | −0.06 | 3.52 | 2.87 | 0.90 | −0.34 | 9.66 | 8.32 | 0.84 |
Rs CLDAS | Rs ERA5 | |||||||
---|---|---|---|---|---|---|---|---|
Climate Zones | PBias | RMSE | MAE | R2 | PBias | RMSE | MAE | R2 |
(MJ m2 d−1) | (MJ m2 d−1) | |||||||
1 | 0.02 | 4.04 | 2.87 | 0.65 | 0.06 | 4.31 | 3.47 | 0.53 |
2 | 0.06 | 4.21 | 2.95 | 0.60 | 0.11 | 4.43 | 3.50 | 0.51 |
3 | 0.04 | 4.16 | 2.91 | 0.58 | 0.13 | 4.22 | 3.31 | 0.55 |
4 | 0.14 | 4.84 | 3.38 | 0.53 | 0.15 | 5.23 | 3.92 | 0.46 |
5 | 0.10 | 4.78 | 3.40 | 0.54 | 0.24 | 5.08 | 4.01 | 0.41 |
6 | 0.17 | 4.33 | 3.16 | 0.51 | 0.18 | 4.63 | 3.58 | 0.38 |
7 | 0.02 | 4.46 | 3.25 | 0.50 | 0.09 | 4.54 | 3.47 | 0.40 |
Average | 0.08 | 4.40 | 3.14 | 0.56 | 0.14 | 4.63 | 3.61 | 0.45 |
RHCLDAS | RHERA5 | |||||||
---|---|---|---|---|---|---|---|---|
Climate Zones | PBias | RMSE | MAE | R2 | PBias | RMSE | MAE | R2 |
(%) | (%) | |||||||
1 | −0.30 | 12.84 | 10.29 | 0.58 | −0.34 | 21.75 | 18.80 | 0.45 |
2 | −0.29 | 11.63 | 9.79 | 0.68 | −0.26 | 18.51 | 13.99 | 0.53 |
3 | −0.20 | 10.82 | 8.23 | 0.59 | −0.27 | 11.09 | 9.47 | 0.48 |
4 | −0.14 | 8.71 | 7.13 | 0.63 | 0.04 | 15.46 | 11.60 | 0.46 |
5 | −0.14 | 10.24 | 8.27 | 0.51 | −0.17 | 17.47 | 13.08 | 0.41 |
6 | −0.07 | 7.91 | 6.32 | 0.62 | −0.21 | 14.83 | 10.17 | 0.48 |
7 | 0.35 | 25.94 | 22.51 | 0.37 | 0.20 | 22.70 | 18.84 | 0.32 |
Average | −0.12 | 12.58 | 10.36 | 0.57 | −0.14 | 17.40 | 13.71 | 0.45 |
U2 CLDAS | U2 ERA5 | |||||||
---|---|---|---|---|---|---|---|---|
Climate Zones | PBias | RMSE | MAE | R2 | PBias | RMSE | MAE | R2 |
(%) | (%) | |||||||
1 | −0.50 | 1.31 | 0.98 | 0.26 | −0.78 | 1.63 | 1.45 | 0.22 |
2 | −0.47 | 1.52 | 1.08 | 0.30 | −0.33 | 1.21 | 0.94 | 0.23 |
3 | −0.63 | 0.90 | 0.68 | 0.31 | −0.46 | 1.08 | 0.84 | 0.18 |
4 | −0.31 | 0.90 | 0.66 | 0.23 | 0.41 | 1.15 | 0.90 | 0.15 |
5 | −0.46 | 1.20 | 1.05 | 0.25 | 0.33 | 1.11 | 0.87 | 0.16 |
6 | −0.42 | 1.13 | 0.94 | 0.21 | 0.21 | 1.39 | 1.10 | 0.18 |
7 | −0.58 | 0.68 | 0.52 | 0.19 | 0.23 | 1.04 | 0.81 | 0.14 |
Average | −0.48 | 1.09 | 0.84 | 0.25 | −0.06 | 1.23 | 0.99 | 0.18 |
ET0 CLDAS | ET0 ERA5 | |||||||
---|---|---|---|---|---|---|---|---|
Climate Zones | PBias | RMSE | MAE | R2 | PBias | RMSE | MAE | R2 |
mm d−1 | mm d−1 | |||||||
1 | −0.05 | 0.86 | 0.62 | 0.91 | −0.08 | 1.33 | 1.16 | 0.87 |
2 | 0.02 | 0.82 | 0.56 | 0.90 | 0.07 | 1.29 | 1.12 | 0.85 |
3 | 0.01 | 0.78 | 0.52 | 0.88 | −0.12 | 1.12 | 1.04 | 0.79 |
4 | 0.03 | 0.89 | 0.67 | 0.85 | 0.16 | 1.56 | 1.39 | 0.70 |
5 | 0.01 | 0.88 | 0.65 | 0.77 | 0.11 | 1.49 | 1.30 | 0.62 |
6 | −0.03 | 0.91 | 0.68 | 0.69 | 0.13 | 1.42 | 1.28 | 0.54 |
7 | −0.14 | 1.22 | 1.06 | 0.75 | −0.18 | 1.67 | 1.52 | 0.59 |
Average | −0.01 | 0.91 | 0.68 | 0.82 | 0.01 | 1.42 | 1.28 | 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, X.; Qian, L.; Wang, W.; Huo, X.; Hu, X.; Wang, Y. Assessing and Comparing Reference Evapotranspiration across Different Climatic Regions of China Using Reanalysis Products. Water 2023, 15, 2027. https://doi.org/10.3390/w15112027
Yu X, Qian L, Wang W, Huo X, Hu X, Wang Y. Assessing and Comparing Reference Evapotranspiration across Different Climatic Regions of China Using Reanalysis Products. Water. 2023; 15(11):2027. https://doi.org/10.3390/w15112027
Chicago/Turabian StyleYu, Xingjiao, Long Qian, Wen’e Wang, Xuefei Huo, Xiaotao Hu, and Yafei Wang. 2023. "Assessing and Comparing Reference Evapotranspiration across Different Climatic Regions of China Using Reanalysis Products" Water 15, no. 11: 2027. https://doi.org/10.3390/w15112027
APA StyleYu, X., Qian, L., Wang, W., Huo, X., Hu, X., & Wang, Y. (2023). Assessing and Comparing Reference Evapotranspiration across Different Climatic Regions of China Using Reanalysis Products. Water, 15(11), 2027. https://doi.org/10.3390/w15112027