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Abstract: This study aims to assess the accuracy of the reference evapotranspiration (ET0) estimated
by CLDAS, ERA5 reanalysis products, and the quality of reanalysis weather variables required to
calculate PM-ET0. For this purpose, the applicability of surface meteorological elements from the
ERA5 reanalysis datasets provided by the European Centre for Medium-Range Weather Forecasts
(ECMWF), and the second-generation China Meteorological Administration Land Data Assimilation
System (CLDASV2.0) datasets are evaluated in China by comparison with local observations from
689 stations reported by the Chinese Meteorological Administration (CMA). Statistics including
percent bias (PBias), coefficient of determination (R2), root mean square error (RMSE) and mean
absolute error (MAE) are used to check the accuracy. The results show the highest correlation between
reanalysis temperature and observations, with a mean R2 of 0.96, 0.90 for the CLDAS maximum and
minimum air temperatures, and 0.87, 0.84 for ERA5. For the reanalysis of solar radiation (Rs) and
relative humidity (RH), an overestimation trend is shown for Rs and an underestimation trend is
shown for RH. For reanalysis of wind speed, a relatively low accuracy is shown. The accuracy of
ET0 estimated by the two reanalysis products is acceptable in China, but the spatial and temporal
consistency between the CLDAS estimates and site observations is higher, with a mean RMSE R2 of
0.91, 0.82 for CLDAS and 1.42, 0.70 for ERA5, respectively. Moreover, CLDAS reanalysis products are
more effective in describing the boundary details of the study area.

Keywords: CLDAS reanalysis products; ERA5 reanalysis products; accuracy indicators; meteorological
variables; reference evapotranspiration

1. Introduction

Evapotranspiration (ET) is an important meteorological element in the hydrological
cycle, which is directly related to the energy and water balance of the Earth’s surface,
determining the formation and evolution of the geographical environment [1], and also an
important basis and a key link in the evaluation of agricultural water use efficiency [2,3]. As
the global competition for water resources intensifies and water resources become depleted,
coping with water scarcity requires a more accurate knowledge of ET [4].

Irrigation management in agricultural practices requires the accurate estimation of
crop water consumption, which in turn requires an accurate estimation of crop evapo-
transpiration (ETc), and its forecasting is significant in developing crop irrigation systems
and real-time irrigation scheduling [5,6]. A commonly used ETc estimation method at
the field scale consists of using the Kc-ET0 approach, as proposed in FAO56 [7], where
a crop coefficient (Kc) for the considered vegetation is multiplied by the crop reference
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evapotranspiration (ET0) to estimate the ETc, although the calculation of Kc is based on
experience, and applications worldwide are successful [8–10].

At present, ET0 can also be estimated from pan evaporation, but such methods are
expensive, technically complex, and not practical. Therefore, the Penman–Monteith model
is usually used for the estimation ET0 [11–14]. However, the model requires the input of
several climate variables, including the maximum and minimum air temperature (Tmax
and Tmin), relative humidity (RH), solar radiation (Rs), and wind speed at 2 m height
(U2). These variables are not observed, or the price of obtaining these meteorological data
from the relevant meteorological services is prohibitive in many regions and locations in
China. In addition, the common method of obtaining these meteorological data is station
monitoring, which is time-consuming and makes it difficult to obtain long time series and
high-quality meteorological variables.

Since the 1960s, the application of meteorological satellite data made up for the
shortage of station observations, and the spatial and temporal continuity of meteorological
data made great progress. After the 1990s, satellite data entered the data assimilation
system, which further improved the accuracy of meteorological data [15,16]. Reanalysis
information assimilates data obtained from remote sensing, ground-based observations and
numerical simulations [17,18], which has the characteristics of high spatial and temporal
resolutions and is an ideal driving data source for distributed models. The main advantage
of reanalysis products is the free access to continuous meteorological data and its great
advantage and potential to become an alternative to observed data.

Several global reanalysis datasets are available for ET0 estimation, such as WorldClim,
which provides the global historical and future climate data and elevation data [19]; The
World Meteorological Organization’s Climate Explorer weather data retrieval platform,
with a wealth of global or regional climate data [20]; the European Centre for Medium-
range Weather Forecasts (ECMWF), which provides ERA5 reanalysis products [21]; the
National Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR), known as NCEP/NCAR Reanalysis I [22]; the National Aeronautics and
Space Administration (NASA) Global Simulation; and the Assimilation Office for a Second
Review of Modern Research and Applications (MERRA-2) [23,24], etc.

The main advantages of the reanalysis product are the high spatial and temporal
resolutions, the ability to scale the product appropriately, and the stable improved model
resolution and bias [25]. Currently, many authors have used reanalysis products to rep-
resent the spatiotemporal variability of surface climate variables. ERA5_land reanalysis
data were applied to the observations of Peruvian glaciers verified by Martin et al., and
were found to be appropriate for characterizing 2 m air temperature and relative humidity,
particularly in the wet outer tropics [26]. Song et al. (2020) [27] compared the applicability
of various soil moisture data in Inner Mongolia, and found that the ERA5 simulation
capability is optimal. Srivastava et al. (2016) [28] compared the ET0 estimation from ERA-
interim and NCEP for all the seasons, and revealed a similar performance to the seasonal
assessment, with a higher agreement for the ERA-interim. The only drawback of using a
downscaling ERA-interim reanalysis dataset with the WRF is that it is time-consuming.
Martins et al. (2016) [29] used the ERA-interim and NOAA NCEP reanalysis datasets for
the calculation of PM-ET0 in the Iberian Peninsula and compared it with the ET0 Observed
at 130 meteorological stations in the Iberian Peninsula. The results supported the quality
of the ERA-interim reanalysis data to calculate the ET0 computations. The ECMWF ERA5
reanalysis products were selected for this study because they had previously performed
well and showed great a potential for estimating ET0. However, due to the bias reported
for ERA products, the use of these data requires assessing the impact of bias on the perfor-
mance of the estimations of reanalysis-based ET0 when compared with ET0 computed with
observational data [30,31].

CLDAS-V2.0 is the latest version of the land surface assimilation system developed by
the China National Meteorological Information Center, providing a variety of atmospheric
driving field products (URL: https://data.cma.cn/, accessed on 1 May 2021). At the same
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time, some scholars have evaluated the applicability of different land surface model data.
Liu et al. (2021) [32] compared CLDAS air temperature data with hourly air temperature
data from 48,708 ground automatic meteorological stations in China for 2017–2018, and
found that CLDAS air temperature data better reflects the interannual variability of air
temperature in Chinese regions, with an average correlation coefficient of more than 0.991.
Shi et al. (2018) [33] analyzed the temporal variation characteristics of average soil moisture
in China by comparing CLDAS soil moisture with hourly observations of automatic soil
moisture observation stations, concluding that the simulated values were very close to the
observed values, and the time-series variation of soil moisture was captured in each study
area. Using GLDAS and CLDAS forcing data, Yang et al. (2017) [34] evaluated precipitation
and shortwave radiation from the ITPCAS, GLDAS, CLDAS and the gridded analysis
based on CMA gauge observations (CN05.1) over mainland China during 2008–2014, and
showed that CLDAS provides more realistic precipitation and radiation approximations
than the other datasets. The CLDAS forcing dataset contains more in situ and remote
sensing observations of China, so it is more accurate over mainland China. Liu et al.
(2019) [35] compared and evaluated the simulation results of monthly soil moisture and
monthly evapotranspiration, and reported that CLDAS_Noah-MP significantly improved
the simulation results for mainland China and eight river basins; the R-value increased from
0.451 to 0.534 and the RMSE reduced from 0.078 to 0.068, which confirmed the superiority
of CLDAS, as previously reported by Cui et al. (2018) [36] and Shi et al. (2018) [37].

The most recent studies have focused on assessing one or several meteorological
variables for the reanalysis of atmospheric field-driven products, but relatively few have
conducted comprehensive assessments of the meteorological variables required to calculate
ET0 and reanalysis for ET0 estimation, especially for small temporal scales. In addition, the
numerical–physical approach, horizontal and vertical resolution, and temporal variability
of the reanalysis model will bring uncertainties in the reanalysis simulation process [38,39].
The resolution and accuracy of these reanalysis products appear to vary with the location
and timescale of the study [40]. Although research indicates that the spatial resolution and
reliability of the new generation of reanalysis data products have improved, there is still a
need to evaluate the region-specific applicability of CLDASV2.0, ERA5 reanalysis weather
variables and the estimation of ET0 in different climate zones of China, and find the best
method for researchers and users to carry out irrigation practices.

The main objective of this research is to apply the ET0 calculated from reanalysis
data to irrigation scheduling and management, for which it can be used in those places
where the weather data quality is low or (and) weather variables are missing [41,42]. The
correlations and bias of the five reanalyzed meteorological variables from CLDASV2.0 and
ERA5 are compared based on the daily weather variable data obtained from 689 ground
automatic meteorological stations in China from 2017–2019. Any biases in these products
can be identified by comparison so that the bias correction method can be easily applied.
Moreover, a comprehensive set of the statistical indicators is used to assess how calculated
reanalysis PM-ET0 compared with the corresponding station observations, which also
offers a reference for the selection and application of CLDASV2.0 and ERA5 reanalysis
meteorological data across different climatic regions of China.

2. Materials and Methods
2.1. Meteorological Data

CLDAS uses fusion and assimilation technology to fuse data from various sources,
such as ground observation, satellite observation, numerical model products and numeri-
cal model products, then output the land surface-driven products with high spatial and
temporal resolution, including the maximum and minimum air temperatures, 2 m specific
humidity, 10 m wind speed, etc. It covers the Asian region (60◦–160◦ E, 0◦–65◦ N), with
a spatial resolution of 0.0625◦ × 0.0625◦ and a temporal resolution of 1 h. The dataset is
formed by using the ECMWF numerical analysis/forecasting product as the background
field and the topographic adjustment, multigrid variational assimilation, optimal interpola-
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tion and other techniques in the Chinese region, to fuse the ground-based automatic station
observations and interpolate them to the reanalysis grid points [33,43].

ERA5 is the fifth generation of ECMWF atmospheric reanalysis of the global climate,
created by the EU-funded Copernicus Climate Change Service (C3S). It assimilates remote
sensing information, upper atmosphere, and near-surface conventional observation data,
including different regions and sources, on a global scale, spanning from 1979 to the present,
achieving real-time updates with a spatial resolution of 0.25◦ × 0.25◦ latitude-longitude [44].
ERA5 reanalysis data provide many kinds of meteorological elements, including 2 m air
temperature, 2 m dew point temperature, and 10 m wind speed, etc. The data sources can
be found at http://cdds.climate.copernicus.eu/.

2.2. FAO-56 Penman–Monteith Equation

The reference crop evapotranspiration was calculated using the FAO-56 Penman–
Monteith equation recommended by the Food and Agriculture Organization of the United
Nations (FAO) in 1998 and the PM-ET0 Equation (1). It is not an empirical equation, but
a mechanistic combination equation derived from the definition of the Penman–Monteith
equation, parameterized for the reference crops [45]. ET0 (mm day−1) is described as follows.

ET0 =
0.408∆(Rn − G) + γ 900

Ta+273 u2(es − ea)

∆ + γ(1 + 0.34u2)
(1)

where ET0 is the reference crop evapotranspiration (mm d−1), Rn is the net radiation at
the crop surface (MJ m−2 day−1) and G is the soil heat flux density (MJ m−2 day−1). Ta
is the mean daily air temperature at 2 m height (◦C) calculated from the maximum and
minimum air temperature (Tmax and Tmin, ◦C), u2 is the wind speed at 2 m height (m s−1),
es is the saturated vapor pressure (kPa), ea is actual water vapor pressure (kPa), es − ea is the
vapor pressure deficit (kPa) calculated from the saturation vapor pressure and actual vapor
pressure, ∆ is the slope of the vapor pressure curve (kPa ◦C−1) and γ is the psychrometric
constant (kPa ◦C−1). In the daily calculation scale, G is small relative to Rn, and is therefore
neglected [46,47].

2.3. Data Sources

Station observation data were collected from 689 meteorological stations of the China
Meteorological Administration (https://data.cma.cn/). The list of variables retrieved is
defined by the Penman–Monteith model FAO56 framework, including the maximum and
minimum air temperatures at 2 m, surface radiation, sunshine duration, relative humidity
at 2 m and wind speed at 10 m. The data are subjected to quality control such as climate
threshold value check, temporal consistency, and spatial consistency check.

ET0 is significantly affected by seasonal variation and regional differences. The two
types of data from the different time series and different study regions are compared in the
study, and the detailed analysis and comparison are presented in Section 3. Tmax and Tmin,
RH, Rs, U2 and the estimated PM-ET0 from CLDAS2.0, ERA5, and station observations in
2017–2019 in the Chinese region are selected as the research objects. China was divided
into 7 climatic zones according to climatic characteristics and heat indexes [48,49]. Regions
1–7 are the Northwest desert zone, Inner Mongolia grassland zone, Northeast humid and
semi-temperate zone, humid and semi-humid warm temperate zone, humid subtropical
zone, humid tropical zone and the Qinghai Tibet Plateau zone (Figure 1). Bias, correlation,
and error of the estimated PM-ET0 across different climate zones and the CLDAS and ERA5
reanalysis weather variables used to estimate ET0 are analyzed.

2.4. Spatial Interpolation Method

The meteorological variables related to the calculation of PM-ET0 have been extracted
from the CLDAS2.0, ERA5 reanalysis grid points, and then these grid point meteorological
data were interpolated to the same latitude and longitude positions as the 689 ground
observation sites, and the meteorological data obtained from the interpolation are evaluated

http://cdds.climate.copernicus.eu/
https://data.cma.cn/
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as true values for the test. Grid data from four grid points around it were selected and
interpolated to the station by the inverse distance weight (IDW) method. The formula is
as follows:

Z =

n
∑

i=1

Zi
Di

n
∑

i=1

1
Di

(2)

where Z is the true value, Zi is the value of the control point, and Di is the weight coefficient.
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2.5. Accurate Statistical Indicators

The assessment focused on the pairwise comparison between the weather stations’
observed values (Qi) and the corresponding values (Pi) for the two reanalysis datasets for
each meteorological variable used in ET0 computations and for the ET0 values [50]. The
following several statistical indicators were used to assess the performance of the reanalysis
datasets in representing the spatial and temporal variation of the meteorological variables.

The percent bias (PBias) measures the degree of deviation between the reanalysis
estimated data and the corresponding site observations [51]. It is simply a normalized
difference between the means of both sets of values: positive values indicate overestimation,
and negative values indicate underestimation.

PBias =

n
∑

i=1
(Pi − Qi)

n
∑

i=1
Qi

(3)

The coefficient of determination (R2) is used to assess the degree of dispersion between
the reanalysis estimated value and the site observations. The closer the R2 is to 1, the
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closer the actual site measurements are to the estimated and the higher the correlation,
calculated as:

R2 =

[
n
∑

i=1

(
Qi − Qi

)(
Pi − Pi

)]2

n
∑

i=1

(
Qi − Qi

)2 n
∑

i=1

(
Pi − Pi

)2
(4)

The root means square error (RMSE) measures the overall difference between the
reanalysis estimated values and the site observations. Because of its high sensitivity to
outliers, RMSE can better reflect the accuracy of the data.

RMSE =

√
1
n

n

∑
i=1

(Qi − Pi)
2 (5)

The mean absolute error (MAE) is a measure of the error between the paired reanalysis
estimated values and site observations, computed as:

MAE =
1
n

n

∑
i=1

(Qi − Pi)
2 (6)

3. Results
3.1. Assessing the Accuracy of the Reanalysis Weather Variables

The assessment indicators PBias, RMSE, MAE and R2 for the reanalysis estimated air
temperatures (Tmin CLDAS, Tmax CLDAS, Tmin ERA5, and Tmax ERA5) and the corresponding
observed values are summarized in Tables 1 and 2. Reanalysis Tmin shows a trend of
overestimation, with the average PBias of Tmin CLDAS and Tmin ERA5 being 0.07 and 0.06,
respectively. On the contrary, Tmax reveals a trend of underestimation, and the mean
PBias of Tmax CLDAS and Tmax ERA5 are −0.06 and −0.34, respectively. When comparing the
reanalysis Tmax, the correlation between reanalysis Tmin and site observations is higher, the
average R2 of the two reanalysis Tmin being 0.96, 0.87 and the corresponding R2 values for
reanalysis Tmax 0.90, 0.84, but with a larger PBias in the case of Tmin.

Table 1. Statistical indicators for the minimum air temperature when comparing CLDAS and ERA5
reanalysis products with the observed values across seven climatic zones and mainland China.

Tmin CLDAS Tmin ERA5

Climate
Zones PBias

RMSE MAE
R2 PBias

RMSE MAE
R2

(◦C) (◦C)

1 0.24 3.22 2.76 0.96 0.36 7.29 6.34 0.90
2 0.31 2.00 1.48 0.98 0.42 5.91 5.05 0.92
3 0.10 2.42 1.83 0.97 1.38 5.17 4.36 0.91
4 0.04 2.12 1.68 0.97 −0.65 9.47 8.51 0.88
5 −0.02 1.79 1.43 0.96 −0.57 13.54 12.33 0.86
6 −0.01 1.51 1.20 0.94 −0.53 16.85 15.40 0.80
7 −0.16 4.08 3.62 0.93 0.04 6.98 5.66 0.83

Average 0.07 2.45 2.00 0.96 0.06 9.32 8.24 0.87

Tmax and Tmin are the key meteorological factors to calculate ET0. Therefore, RMSE,
MAE and R2 are further used to assess the error and correlation of the reanalysis air
temperature. It can be seen from Tables 1 and 2 that the air temperature estimates of
CLDAS and ERA5 products are consistent with the site observations, and the correlation
values are between 0.76 and 0.98. Among the two products, CLDAS estimations are much
closer to the observed values, with lower root means square error values (average range
from 2.45 to 3.52) and higher correlation values (average range from 0.96 and 0.90) in most
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climate zones compared to those obtained from ERA5 (average range from 9.32 to 9.66 and
0.87 to 0.84, respectively).

Table 2. Statistical indicators for the maximum air temperature when comparing CLDAS and ERA5
reanalysis products with the observed values across seven climatic zones and mainland China.

Tmax CLDAS Tmax ERA5

Climate
Zones PBias

RMSE MAE
R2 PBias

RMSE MAE
R2

(◦C) (◦C)

1 −0.14 4.24 3.67 0.95 −0.32 8.40 7.35 0.87
2 −0.03 3.25 2.50 0.93 −0.29 6.31 5.41 0.90
3 −0.01 3.19 2.45 0.94 −0.28 5.56 4.64 0.89
4 −0.03 3.26 2.59 0.92 −0.37 10.14 8.86 0.83
5 −0.02 2.89 2.23 0.88 −0.41 12.75 11.01 0.79
6 −0.02 2.30 1.79 0.85 −0.43 15.09 13.07 0.76
7 −0.18 5.48 4.89 0.83 −0.28 9.38 7.88 0.82

Average −0.06 3.52 2.87 0.90 −0.34 9.66 8.32 0.84

Four indicators of statistical accuracy of reanalysis solar radiation (Rs) across seven
different climate zones and mainland China are shown in Table 3. The overall trends of
the PBias, RMSE, MAE and R2 for reanalysis Rs CLDAS and Rs ERA5 are consistent, with
differences in the numerical values. The mean R2 of Rs CLDAS is between 0.50 and 0.65, and
the mean R2 of Rs ERA5 is between 0.40 and 0.55, indicating that the reanalysis Rs agrees well
with Rs Obs. However, reanalysis Rs CLDAS better reflects the variability of the site-observed
Rs in the overwhelming of locations compared to Rs ERA5. The bias of Rs CLDAS and Rs ERA5
ranges from 0.02 to 0.17 and 0.06 to 0.24, demonstrating that both the reanalysis products
slightly overestimate the observed Rs.

Table 3. Statistical indicators of solar radiation originated from CLDAS and ERA5 reanalysis products
in different climate zones and mainland China.

Rs CLDAS Rs ERA5

Climate
Zones PBias

RMSE MAE
R2 PBias

RMSE MAE
R2

(MJ m2 d−1) (MJ m2 d−1)

1 0.02 4.04 2.87 0.65 0.06 4.31 3.47 0.53
2 0.06 4.21 2.95 0.60 0.11 4.43 3.50 0.51
3 0.04 4.16 2.91 0.58 0.13 4.22 3.31 0.55
4 0.14 4.84 3.38 0.53 0.15 5.23 3.92 0.46
5 0.10 4.78 3.40 0.54 0.24 5.08 4.01 0.41
6 0.17 4.33 3.16 0.51 0.18 4.63 3.58 0.38
7 0.02 4.46 3.25 0.50 0.09 4.54 3.47 0.40

Average 0.08 4.40 3.14 0.56 0.14 4.63 3.61 0.45

The spatial distribution of PBias, RMSE, MAE and R2 of Rs across the different climatic
regions of China are presented in Figure 2. The regional distribution of the statistical
indicators of Rs is characterized clearly. The estimation bias and error are generally lower in
the northwest and northeast regions than in the southeast; in other words, the mean PBias,
RMSE and MAE are small in arid and semi-arid regions (climate zones 1, 2) and cold regions
(climate zone 3), with distributions ranging from 0.02 to 0.13, 4.04 to 4.43 and 2.87 to 3.51,
respectively. The average biases and estimation errors are large for humid and semi-humid
areas (climate zones 4,5 and climate zone 6), with distributions of the PBias, RMSE and
MAE ranging from 0.10 to 0.24, 4.33 to 5.23 and 3.16 to 4.01, respectively. The R2 of Rs is
the opposite of the previous three indicators. The R2 of Rs CLDAS and Rs ERA5 is between
0.65 and 0.58, and 0.55 and 0.50 in climatic zones 1, 2 and 3, while the R2 is between 0.51 and
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0.54 and 0.38 and 0.46 in climatic zones 4, 5 and 6. As a whole, the reanalysis of Rs CLDAS
and Rs ERA5 reflected the temporal and spatial variation characteristics of Rs Observed well at
most stations.
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The statistical indicators of reanalysis relative humidity are shown in Table 4. The PBias
of RHCLDAS is negative (ranging from −0.07 to −0.30) across the 1–6 climate zones. The
results indicate a slight underestimation, with the PBias of climate zone 7 being positive,
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with a value of 0.35. The PBias of RHERA5 are 0.04 and 0.20 in climate zones 4 and 7,
respectively, indicating a slight overestimation trend, and the remaining climate zones have
a negative PBias, with values from −0.17 to −0.34. As for the error, compared with other
climate zones, the estimation errors for climate zone 7 are larger, the RMSE and MAE for
RHCLDAS are 25.94% and 22.51%, respectively, and those of ERA5 are 22.70% and 18.84%.
Reanalysis RH and the observed RHObs are in better agreement in climate zone 2, and the
correlation values are 0.68 and 0.53 for RHCLDAS and RHERA5, but the estimation error is
relatively high, with the corresponding RMSE values of 11.63% and 18.51%. Furthermore,
the estimation errors for climate zones 1–3 (RMSE between 10.82 and 21.75%) are generally
larger than those for climate zones 4–6 (RMSE between 7.91 and 17.47%), partly because
the latter are located in the humid zones with little variation in daily relative humidity,
while the former are in the arid desert and grassland zones with a low vegetation cover
and more frequent changes in daily relative humidity.

Table 4. Statistical indicators of relative humidity originated from CLDAS and ERA5 reanalysis
products across different climate zones and mainland China.

RHCLDAS RHERA5

Climate
Zones PBias

RMSE MAE
R2 PBias

RMSE MAE
R2

(%) (%)

1 −0.30 12.84 10.29 0.58 −0.34 21.75 18.80 0.45
2 −0.29 11.63 9.79 0.68 −0.26 18.51 13.99 0.53
3 −0.20 10.82 8.23 0.59 −0.27 11.09 9.47 0.48
4 −0.14 8.71 7.13 0.63 0.04 15.46 11.60 0.46
5 −0.14 10.24 8.27 0.51 −0.17 17.47 13.08 0.41
6 −0.07 7.91 6.32 0.62 −0.21 14.83 10.17 0.48
7 0.35 25.94 22.51 0.37 0.20 22.70 18.84 0.32

Average −0.12 12.58 10.36 0.57 −0.14 17.40 13.71 0.45

In contrast to the performance of the previous weather variables, both U2 CLDAS and
U2 ERA5 show a relatively low accuracy, with a high dispersion of pairs of 2 m wind speed
derived from the reanalysis datasets and the station observations along the regression
line, with R2 averages of 0.25 for U2 CLDAS and 0.18 for U2 ERA5. For PBias, U2 CLDAS is
underestimated relative to RHObs., and PBias ranged from −0.31 to −0.63 in seven different
climatic regions. U2 ERA5 is underestimated in climate zones 1–3, with PBias ranging from
−0.33 to −0.78, and overestimated in the rest of the climate zones with PBias ranging from
0.21 to 0.41. In terms of RMSE and MAE, the mean values of the RMSE and MAE are 1.09,
0.84 for U2 CLDAS and 1.23, 0.99 for U2 ERA5 at the national scale, respectively, the details
can be found in Table 5.

Table 5. Statistical indicators of wind speed originated from CLDAS and ERA5 reanalysis products
across different climate zones of China.

U2 CLDAS U2 ERA5

Climate
Zones PBias

RMSE MAE
R2 PBias

RMSE MAE
R2

(%) (%)

1 −0.50 1.31 0.98 0.26 −0.78 1.63 1.45 0.22
2 −0.47 1.52 1.08 0.30 −0.33 1.21 0.94 0.23
3 −0.63 0.90 0.68 0.31 −0.46 1.08 0.84 0.18
4 −0.31 0.90 0.66 0.23 0.41 1.15 0.90 0.15
5 −0.46 1.20 1.05 0.25 0.33 1.11 0.87 0.16
6 −0.42 1.13 0.94 0.21 0.21 1.39 1.10 0.18
7 −0.58 0.68 0.52 0.19 0.23 1.04 0.81 0.14

Average −0.48 1.09 0.84 0.25 −0.06 1.23 0.99 0.18
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3.2. Comparison of the Annual Mean of the Observation-Calculated ET0 and Reanalysis-Estimated ET0

A spatial distribution of the annual mean values of ET0 calculated from the sta-
tions observations (ET0 Obs), ET0 estimated by CLDAS (ET0 CLDAS), and ET0 estimated by
ERA5(ET0 ERA5) in China, is shown in Figure 3. The frequency distribution of the average
annual evapotranspiration between different value ranges is shown in the histogram of
Figure 3. The spatial distribution of the annual mean values of ET0 estimated from the two
reanalysis datasets are approximately the same; however, from the perspective of frequency
distribution, ET0 CLDAS is more consistent with ET0 Obs. For the observed calculated ET0,
only 15.14% of stations have an ET0 Obs < 500 mm, 23.41% of stations an ET0 Obs between
650 and 800 mm, 16.15% of stations an ET0 Obs between 950 and 1000 mm, and 3.34%
of stations an ET0 Obs > 1000 mm. For the CLDAS estimated ET0, 13.10% of the stations
showed ET0 CLDAS <500 mm, ET0 CLDAS ranged from 650 mm to 800 mm for 25.21% of the
stations, from 800 mm to 900 mm for 15.97% of stations, and 5.82% of stations exhibited an
ET0 CLDAS >1000 mm. The frequency distribution of different intervals of the annual mean
evapotranspiration estimated by CLDAS is similar to that of the site-observed ET0, but in
most cases, ET0 CLDAS is slightly overestimated.

For ERA5 estimated ET0, 11.79% of stations have an ET0 ERA5 between 500 and 650 mm,
which is 3.64% higher than the frequency of ET0 Obs observations in this range. Of the
stations, 21.69% have ET0 ERA5 between 950 and 1000 mm, an increase of 5.53% over the
percentage of ET0 Obs in this interval, while the proportion of ET0 ERA5 with an annual
average evapotranspiration interval in the range of 800–950 mm is lower than that of
ET0 Obs. The frequency distribution of ET0 ERA5 in different evapotranspiration intervals
differs from that of ET0 Obs observations, and ET0 ERA5 is overall overestimated relative to
the ET0 Obs site-observed values.

The statistical indicators of ET0 from station observations and two reanalysis estimates
show significant regional variations in different climatic regions of China (Figure 4). The
annual mean ET0 in climate zones 1 and 2 is mainly concentrated between 800 and 950 mm,
with a higher ET0 in Xinjiang; for example, ET0 is greater than 1000 mm in Urumqi and
other stations. The annual mean ET0 in climate zone 3 is low, with the lower values
appearing in the eastern and northern parts of climate zone 3, and the lowest values of
ET0 in the whole of China also occur in this region, which may be caused by the lower
average temperature. The majority of the stations in climate zone 4 have a small trend of
annual mean ET0 fluctuations and are concentrated in the range of 800–950 mm; however,
ET0 changes in the west of climate zone 4 and the southwest of climate zone 5, and its
accuracy statistical indicators also change abruptly at this boundary location, and the
change in ET0 CLDAS is more significant, mainly because these two locations are susceptible
to topography. The high fluctuation of ET0 in climatic zones 6 and 7, where the higher
PBias and RMSE values also occur (Figure 4), is due to the influence of the topography of
the Tibetan Plateau region. In addition, the short sunshine time and high relative humidity
cause a lower ET0 in the southwestern part of climate zone 6 and the eastern part of climate
zone 7. Compared with the ERA5 reanalysis data, CLDAS can better simulate the detailed
characteristics of ET0 in different climate zones.

To explore the accuracy of estimating the daily ET0 from CLDAS, ERA5 reanalysis
data for different climatic zones is shown. The paired comparisons between ET0 Obs and
ET0 CLDAS (1st line, 3rd line), and ET0 Obs and ET0 ERA5 are shown in scatter plots in Figure 5,
in which all stations are from seven different climate zones. The analysis in Figure 5
complements the one in Figure 4 in detail. The results show that except for climate zone
7, the simulated ET0 of the reanalysis datasets is closer to the ET0 Obs of the stations in
the arid and semi-arid areas; that is, the scatter points are concentrated on the y = x line,
and the lowest value of the ET0 CLDAS correlation value is 0.91, and the lowest value of the
ET0 ERA5 correlation value is 0.85. The R2 values of the two reanalysis products are smaller
in humid, and sub-humid areas, ranging from 0.71 to 0.86, and 0.63 to 0.72 for ET0 CLDAS
and ET0 ERA5. The results indicate that the variability of meteorological variables is higher
in humid and semi-humid areas than in arid and semi-arid areas. Moreover, the accuracy
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of the reanalysis products for extreme weather estimation is low, and the extreme values
of ET0 Obs tend to be reconciled by the reanalysis datasets. For example, when the ET0 Obs
value at site 50,557 is greater than 6 mm d−1, the reanalysis estimates ET0 to be less than
the corresponding site-observed ET0 value. When the ET0 Obs value at the sites is 59, 133 is
less than 2 mm d−1, and the ET0 simulated by ERA5 is greater than the ET0 Observed at
the corresponding site. These phenomena can be explained in the reanalysis temperature
variables in Section 2.2.
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fitting curve).

3.3. Assessing the Accuracy of ET0 CLDAS and ET0 ERA5 Estimates Using Reanalysis Products

The statistical accuracy indicators for the reanalysis estimation of ET0 and observed
ET0 in the seven climate zones are summarized in Table 6. The results show that the per-
formance of CLDAS in estimating ET0 is better than that of ERA5 reanalysis products: the
average RMSE = 0.91 mm d−1 is smaller than that for ERA5 (RMSE = 1.42 mm d−1), while
the average determination coefficient is larger for the CLDAS reanalysis products (R2 = 0.82)
than for ERA5 (R2 = 0.70). Similar results have been shown by Liu et al. (2019) [35], who re-
ported that the simulation results of CLDAS in most climate zones maintained a consistent
and reasonable performance. The PBias distribution of ET0 estimated for two reanalysis
products shows that the number of positive bias stations is more than the number of neg-
ative bias stations. The ET0 CLDAS shows a negative bias in climate zones 1,6 and climate
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zone 7, with a PBias of −0.05, −0.03 and −0.14, respectively; ET0 Obs is underestimated in
these climate zones. ET0 CLDAS shows a positive bias in all other climate zones, with a PBias
distribution range of 0.01–0.03; ET0 Obs is overestimated, but to a lesser extent. ET0 ERA5
shows negative bias in climate zones 1,2 and climate zone 7, with PBias ranging from −0.08
to −0.18, and the ET0 Obs observations are underestimated, the remaining climate zones
have a positive PBias and the ET0 Obs observations are overestimated.

Table 6. Comparing the statistical indicators relative to the estimation of ET0 by CLDAS. ERA5
reanalysis for 689 weather stations across the seven climatic regions and mainland China.

ET0 CLDAS ET0 ERA5

Climate
Zones PBias

RMSE MAE
R2 PBias

RMSE MAE
R2

mm d−1 mm d−1

1 −0.05 0.86 0.62 0.91 −0.08 1.33 1.16 0.87
2 0.02 0.82 0.56 0.90 0.07 1.29 1.12 0.85
3 0.01 0.78 0.52 0.88 −0.12 1.12 1.04 0.79
4 0.03 0.89 0.67 0.85 0.16 1.56 1.39 0.70
5 0.01 0.88 0.65 0.77 0.11 1.49 1.30 0.62
6 −0.03 0.91 0.68 0.69 0.13 1.42 1.28 0.54
7 −0.14 1.22 1.06 0.75 −0.18 1.67 1.52 0.59

Average −0.01 0.91 0.68 0.82 0.01 1.42 1.28 0.70

The results of the ET0 estimation generated from the two reanalysis datasets revealed
that the reanalysis product presented a superior performance in the arid and semi-arid
regions, with a higher correlation at most sites, with R2 > 0.85. Like the Northwest desert
zone, the Inner Mongolia grassland zone and R2 of ET0 CLDAS are 0.91, 0.90, and the R2 of
ET0 ERA5 are 0.87, 0.85, respectively, while the correlations were slightly worse in humid and
semi-humid areas such as climate zones 5 and 6. The R2 distributions of ET0 CLDAS range
from 0.69 to 0.77 and 0.54 to 0.62 for ET0 ERA5 (Table 6).To further evaluate the accuracy of
the CLDAS, the ERA5 reanalysis datasets in estimating ET0, RMSE and MAE for different
climate zones are compared. ET0 CLDAS and ET0 ERA5 have the largest estimation errors in
climate zone 7, with an RMSE and MAE of 1.22, 1.06 and 1.67, 1.52, respectively. Except
for climate zone 7, the RMSE and MAE of ET0 CLDAS range from 0.78 to 0.91 and 0.52 to
0.68, respectively, the distribution of the RMSE for ET0 ERA5 ranged from 1.12 to 1.56 and
MAE from 1.04 to 1.39. Moreover, the higher values of the RMSE and MAE for ET0 are
mainly concentrated in coastal humid areas such as climate zones 4, 5 and 6 (Figure 6),
with an RMSE > 0.88 and MAE > 0.65 for ET0 CLDAS, and ET0 ERA5 with an RMSE > 1.42
and MAE > 1.28. Overall, the RMSE and MAE are shorter and closer to the optimal target
when estimating ET0 using the CLDAS reanalysis products. The effects of topography,
slope, monsoon and other factors on meteorological variables in different climatic zones are
adopted and integrated into the CLDAS reanalysis datasets, which makes the estimation of
ET0 CLDAS more accurate [35,52].

3.4. Comparison of Time Series Changes in the Monthly Mean Values of the Observed ET0 and
Reanalysis of Estimated ET0

The monthly time series variation of ET0 for the seven climate zones across the country
in 2017–2019 is shown in Figure 7. The two reanalysis estimates of ET0 agree well with
the observed ET0 values in most cases, indicating that the reanalysis products capture the
seasonal cycle and temporal evolution based on the observed ET0 to some extent. However,
ET0 ERA5 overestimates the fluctuation amplitudes and the estimated ET0 values are all
much higher than the observed values in climate zones 4 and 6. ET0 ERA5 underestimates
the fluctuation amplitudes and the estimated ET0 values are all much lower than the
observed values in climate zone 7. In contrast, the ET0 CLDAS estimates are closer to the
observed values in most climate zones.
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The calculation of ET0 is affected by meteorological variables such as air temperature,
relative humidity and solar radiation, and these meteorological factors vary with time and
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region. ET0 also has obvious seasonal variation and spatial distribution characteristics.
The monthly mean ET0 is large in summer and autumn in different climatic zones, and
statistics found that the cumulative ET0 from May to October each year accounts for about
75–80% of the whole year. ET0 grows with increased precipitation and temperature during
the summer season. Due to the influence of geographical location and meteorological
factors, the peak of monthly mean ET0 occurs at different times, with climate zones 1 and
2 showing a single peak pattern of monthly mean ET0, with the peak occurring in July each
year and the trough occurring in November, lasting until April the following year. There
are differences between the annual intervals of monthly mean ET0 in climate zones 3 and 6,
where 2017 showed a single peak type, with a peak in June, and 2018–2019 a double peak
type, with a peak in May and a low peak in July. The monthly mean ET0 in climate zones
4, 5 and 7 show a double peak pattern, with peaks in April and July, and a valley from
October to February of the next year.

4. Discussion
4.1. Analysis of Meteorological Variables Related to ET0 Estimation

In this paper, the key meteorological factors for calculating ET0 are evaluated. It was
found that Tmin shows an overestimation trend and Tmax shows an underestimation trend,
and the consistency of the reanalysis minimum temperature of the two datasets (average
R2 0.96 and 0.87) is higher than that of the maximum temperature (0.90 and 0.84), but
the PBias of the former is larger. Similar conclusions were found by Wu et al. (2022) [53]
and Qian et al. (2022) [54] when they used reanalysis data to assess air temperature
in the Chinese region. In addition, Simmons et al. (2010) [55] and Paredes et al. [56]
also reported a tendency for the overestimation of Tmin and underestimation of Tmax by
the ERA-Interim in Continental Portugal [57]. The authors hypothesized that CLDAS,
ERA5 reanalysis datasets are capturing warming over the land more than over the sea,
which makes Tmin CLDAS and Tmin ERA5 larger than Tmin Obs data; Tmax CLDAS, Tmax ERA5
showed the opposite performance. For the reanalysis Rs, both CLDAS and ERA5 slightly
overestimate the site-observed Rs, the PBias of Rs CLDAS and Rs ERA5 range from 0.02 to
0.17 and 0.06 to 0.24, which is similar to the reports of Bojanowski et al. (2014) [57] and
Urraca et al. (2017) [58]. Sheffield et al. (2006) [25] also reported a similar conclusion and
combined this behavior of overestimation of global radiation for NCEP1 with the fact that
the reanalysis dataset does not consider the blocking of shortwave radiation by the clouds.
As for reanalysis of the relative humidity, the PBias of RHCLDAS is negative (ranging from
−0.07 to −0.30) in the 1–6 climate zones, with a slight underestimation. The PBias of
climate zone 7 is positive, and the value is 0.35. This is consistent with the conclusion of
Simmons et al. (2010) [55] that the relative humidity of ERA5 reanalysis is underestimated
in the mid–low latitudes. Fu et al. (2015) [59] also concluded that the RH of NCEP1
reanalysis was slightly underestimated in Australia. Differently, Martins et al. (2016) [29]
reported no tendency for over- or underestimation of the RH when using the reanalysis
monthly products for Iberia, which can be attributed to the different time scales of the study.
Different from the previous four meteorological factors, the analysis of the wind speed
showed a lower accuracy across the seven climatic regions. The average R2 of U2 CLDAS was
0.25, and the average R2 of U2 ERA5 0.18. Many scholars have reanalyzed the wind speed
and obtained similar results, the low accuracy of the wind speed derived from reanalysis
was reported by Carvalho et al. (2014) [60] studies applied to Continental Portugal. The
same results were reported by Martins et al. (2016) [29] in the Iberian Peninsula for the
problem of low accuracy in analyzing the wind speed. The two wind speed estimation
alternatives proposed by Allen et al. (1998) [7] are to replace the daily wind speed with
the annual average wind speed over the local area or use the world average wind speed
value U2 = 2 m s−1 as the default wind speed, obtained from over 2000 weather stations
worldwide. Jabloun and Sahli (2008) [61] compared the above methods and found that both
methods obtained wind speeds with high applicability, but the ET0 was better estimated
using the local area’s annual average wind speed.
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4.2. Analysis of the Spatial Distribution of the Observation-Calculated ET0 and
Reanalysis-Estimated ET0

The spatial and frequency distribution of the annual mean values of ET0 calculated
from the station observations, ET0 estimated by CLDAS and ET0 estimated by ERA5 in
China were analyzed. It was found that the frequency distribution and spatial distribution
of different intervals of annual mean evapotranspiration estimated by CLDAS and ERA5 are
similar to the observed ET0, but in most cases, the reanalysis ET0 is slightly overestimated.
The overestimation of the reference evapotranspiration derived from reanalysis has been
discovered in many relevant studies. Betts et al. (2009) [62] compared ET0 at the watershed
scale using ERA-Interim reanalysis data and observations, and found that the reference crop
evapotranspiration from reanalysis data was significantly larger than the observed value.
Moreover, other studies using ERA-Interim reanalysis products also reported an overall
overestimation bias for ET0 [28]. Dee and Uppala (2009, 2011) [44,63] considered that the
overestimation of reanalysis data is mainly related to the utilization of small timescale
(daily or smaller timescale) reanalysis products, water vapor movement processes and
variational bias correction.

4.3. Analysis of the Accuracy of ET0 Estimated by CLDAS and ERA5 across Different Climatic Regions

Comparing the accuracy of ET0 estimation across different climatic regions, it was
found that the variability of ET0 in humid and semi-humid areas is higher than that in
arid and semi-arid areas. The RMSE of ET0 CLDAS ranged from 0.78 to 0.82 in climate zones
1–3, the RMSE ranged from 0.89 to 0.91 in climate zones 4–6, the RMSE of ET0ERA5 ranged
from 1.12 to 1.33 in climate zones 1–3 and the RMSE ranged from 1.42 to 1.59 in climate
zones 4–6. Su et al. (2015) [64] also found that the reanalysis estimates of ET0 in arid
and extremely cold regions are more consistent with the site observations of ET0. The
same trend was found by Zhang et al. (2018) [65] when they used ERA-Interim reanalysis
data to study the characteristics of ET0 in global arid and semi-arid regions. Furthermore,
Paredes et al. (2018) [57], using the ERA-Interim reanalysis product for the daily estimation
of grass reference evapotranspiration, also found that the higher values of RMSE were
mostly concentrated in coastal areas of Portugal. These findings are consistent with the
conclusions of this paper. This can be attributed to the meteorological factors related to the
estimation of ET0 in result Section 2.1. We also reported that the accuracy of reanalysis Rs
in arid and semi-arid regions is higher than that in humid regions, which is partly because
the calculation of solar radiation is a complex task in itself, and the high uncertainty
of atmospheric turbidity in humid climatic conditions, which further exacerbates errors
between the reanalysis of solar radiation data and station observations, Rs is the most
significant meteorological factor affecting ET0 [66]. The high error of the reanalysis Rs leads
to a high variability of ET0 in humid and semi-humid climate zones.

5. Summary and Conclusions

It is difficult to obtain long timeseries meteorological variables required for PM-
ET0 calculation from ground stations. The reanalysis datasets provide all the weather
variables required for calculating ET0, but needs to be evaluated for accuracy. In this
paper, meteorological factors such as Tmin and Tmax, Rs, RH and U2 derived from CLDAS
and ERA5 are statistically analyzed. Moreover, based on the daily meteorological data
of 689 surface meteorological stations covering seven different climatic regions in China,
ET0 CLDAS and ET0 ERA5 at different timescales are compared and evaluated.

The quality of meteorological factors for calculating PM-ET0 obtained from CLDAS
and ERA5 reanalysis products is acceptable, and the correlation between reanalysis temper-
ature and station observation temperature is high, with R2 > 0.90 for Tmin CLDAS, Tmax CLDAS,
and R2 > 0.84 for Tmin ERA5, Tmax ERA5; however, there is a tendency for an underestimation
of Tmax, and conversely, a tendency for an overestimation of Tmin. Rs and RH can be
accurately estimated from reanalysis datasets, but reanalysis Rs has a slight overestimation
trend for site observation Rs and an underestimation trend for site observation RH. Com-
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pared with the ERA5 reanalysis products, Tmin, Tmax, Rs and RH derived from the CLDAS
products are closer to the site observations, and the overall RMSE and MAE values are
smaller. In contrast, the accuracy of both U2 CLDAS and U2 ERA5 is coarser, but the reanalysis
of wind speed does not cause a large variability in ET0.

Two reanalysis products capture the seasonal cycle and monthly time evolution based
on the observed ET0. During the year, 75–80% of ET0 is concentrated in April–October,
but the monthly mean ET0 in different climate zones shows single-peak and double-peak
type variations, with different peak occurrence times. In addition, the agreement between
the reanalysis estimated ET0 and site-observed ET0 is high in arid and semi-arid areas,
with the lowest value of ET0 CLDAS correlation coefficient being 0.90 and ET0 ERA5 0.85. The
consistency is slightly worse in wet and semi-humid areas, with the R2 variation range
of 0.69–0.88 for ET0 CLDAS and 0.54–0.79 for ET0 ERA5. CLDAS reanalyzed meteorological
variables which are used to compute the PM-ET0, and estimated ET0 closer to the site
observation ET0 Obs, comparing the corresponding values of ERA5.

These results suggest that reanalysis weather products (Rs, Tmax, Tmin, RH and U2)
can be used to estimate ET0 when the observed weather data are unavailable. However,
the causes of the impact of errors in each weather variable on the accuracy of the estimated
ET0 are not clear, and further studies are required to clarify the quantitative sensitivity of
the errors in the reanalysis weather variables on the estimated ET0 as a way to decrease
the reanalysis product estimation errors obtained when using daily time steps. Moreover,
studies are needed to combine long past series data with forecasts, to achieve the real-time
operation of irrigation scheduling models.
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