Scaling Up Indigenous Rainwater Harvesting: A Preliminary Assessment in Rajasthan, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Area
2.2. Conceptual Workflow
2.3. Defining Assessment Criteria
2.3.1. Soil Texture
2.3.2. Slope
2.3.3. Land Use Land Cover (LULC)
2.3.4. Rainfall
2.3.5. Normalized Difference Vegetation Index (NDVI)
2.3.6. Drainage Density
2.4. GIS Analysis and Production of Suitability Maps
2.5. Criteria Classification
2.6. Evaluation and Validation of the Suitable Potential RWH Sites
2.7. An OAT-Based Sensitivity Analysis
3. Results
3.1. Identification of Potential Chauka Sites
3.2. Validation of Identified Suitable Sites
3.3. Evaluation of RWH Sites for Identifying the Environmental Impact of Chauka Sites
3.4. Sensitivity Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Contreras, S.M.; Sandoval, T.S.; Tejada, S.Q. Rainwater Harvesting, Its Prospects and Challenges in the Uplands of Talugtog, Nueva Ecija, Philippines. Int. Soil Water Conserv. Res. 2013, 1, 56–67. [Google Scholar] [CrossRef]
- Haile Wondimu, G.; Shiferaw Jote, D. Selection of Rainwater Harvesting Sites by Using Remote Sensing and GIS Techniques: A Case Study of Dawa Sub Basin Southern Ethiopia. Am. J. Mod. Energy 2020, 6, 84. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the Projections of the World Water Development Report. npj Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Ziadat, F.; Bruggeman, A.; Oweis, T.; Haddad, N.; Mazahreh, S.; Sartawi, W.; Syuof, M. A Participatory GIS Approach for Assessing Land Suitability for Rainwater Harvesting in an Arid Rangeland Environment. Arid L. Res. Manag. 2012, 26, 297–311. [Google Scholar] [CrossRef]
- Adham, A.; Riksen, M.; Ouessar, M.; Ritsema, C.J. A Methodology to Assess and Evaluate Rainwater Harvesting Techniques in (Semi-) Arid Regions. Water 2016, 8, 198. [Google Scholar] [CrossRef]
- Al-Adamat, R.; AlAyyash, S.; Al-Amoush, H.; Al-Meshan, O.; Rawajfih, Z.; Shdeifat, A.; Al-Harahsheh, A.; Al-Farajat, M. The Combination of Indigenous Knowledge and Geo-Informatics for Water Harvesting Siting in the Jordanian Badia. J. Geogr. Inf. Syst. 2012, 4, 366–376. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Singh, P.K.; Mahnot, S.C.; Gupta, A. Planning and Design of Cost-Effective Water Harvesting Structures for Efficient Utilization of Scarce Water Resources in Semi-Arid Regions of Rajasthan, India. Water Resour. Manag. 2004, 18, 219–235. [Google Scholar] [CrossRef]
- Mugo, G.M.; Odera, P.A. Site Selection for Rainwater Harvesting Structures in Kiambu County-Kenya. Egypt. J. Remote Sens. Sp. Sci. 2019, 22, 155–164. [Google Scholar] [CrossRef]
- Al-Adamat, R. GIS as a Decision Support System for Siting Water Harvesting Ponds in the Basalt Aquifer/NE Jordan. J. Environ. Assess. Policy Manag. 2008, 10, 189–206. [Google Scholar] [CrossRef]
- Aziz, S.F.; Abdulrahman, K.Z.; Ali, S.S.; Karakouzian, M. Water Harvesting in the Garmian Region (Kurdistan, Iraq) Using GIS and Remote Sensing. Water 2023, 15, 507. [Google Scholar] [CrossRef]
- Radwan, F.; Ali, A. Suitable Sites Identification for Potential Rainwater Harvesting (PRWH) Using a Multi—Criteria Decision Support System (MCDSS). Acta Geophys. 2023, 71, 449–468. [Google Scholar] [CrossRef]
- Murugesan, A. Traditional Water Harvesting Systems of Rajasthan. In Ecological Traditions of India; Krishna, N., Singh, A., Eds.; C.P.R. Environmental Education Centre: Chennai, India, 2017; ISBN 978-81-86901-21-2. Available online: https://www.researchgate.net/publication/312799247_Traditional_Water_harvesting_systems_of_Rajasthan (accessed on 20 May 2023).
- CARRIERE, M. Impact of Rainwater Harvesting in Rural Rajasthan: An Assessment. Master’s Thesis, School of Water, Energy and Environment, Cranfield University, Cranfield, UK, 2018. Available online: https://www.gvnml.org/wp-content/uploads/2021/03/Thesis-CARRIERE.pdf (accessed on 20 May 2023).
- Yadav, B.; Patidar, N.; Sharma, A.; Panigrahi, N.; Sharma, R.K.; Loganathan, V.; Krishan, G.; Singh, J.; Kumar, S.; Parker, A. Assessment of Traditional Rainwater Harvesting System in Barren Lands of a Semi-Arid Region: A Case Study of Rajasthan (India). J. Hydrol. Reg. Stud. 2022, 42, 101149. [Google Scholar] [CrossRef]
- Everard, M.; West, H. Livelihood Security Enhancement Though Innovative Water Management in Dryland India. Water Int. 2021, 46, 59–82. [Google Scholar] [CrossRef]
- de Winnaar, G.; Jewitt, G.P.W.; Horan, M. A GIS-Based Approach for Identifying Potential Runoff Harvesting Sites in the Thukela River Basin, South Africa. Phys. Chem. Earth 2007, 32, 1058–1067. [Google Scholar] [CrossRef]
- Preeti, P.; Shendryk, Y.; Rahman, A. Identification of Suitable Sites Using GIS for Rainwater Harvesting Structures to Meet Irrigation Demand. Water 2022, 14, 3480. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K.; Mal, B.C. Assessment of Groundwater Potential in a Semi-Arid Region of India Using Remote Sensing, GIS and MCDM Techniques. Water Resour. Manag. 2011, 25, 1359–1386. [Google Scholar] [CrossRef]
- Yeh, H.F.; Cheng, Y.S.; Lin, H.I.; Lee, C.H. Mapping Groundwater Recharge Potential Zone Using a GIS Approach in Hualian River, Taiwan. Sustain. Environ. Res. 2016, 26, 33–43. [Google Scholar] [CrossRef]
- Salar, S.G.; Othman, A.A.; Hasan, S.E. Identification of Suitable Sites for Groundwater Recharge in Awaspi Watershed Using GIS and Remote Sensing Techniques. Environ. Earth Sci. 2018, 77, 701. [Google Scholar] [CrossRef]
- Waghaye, A.M.; Singh, D.K.; Sarangi, A.; Sena, D.R.; Sahoo, R.N.; Sarkar, S.K. Identification of Suitable Zones and Sites for Rainwater Harvesting Using GIS and Multicriteria Decision Analysis. Environ. Monit. Assess. 2023, 195, 279. [Google Scholar] [CrossRef] [PubMed]
- Gebre, S.L.; Cattrysse, D.; Van Orshoven, J. Multi-Criteria Decision-Making Methods to Address Water Allocation Problems: A Systematic Review. Water 2021, 13, 125. [Google Scholar] [CrossRef]
- Mengistu, T.D.; Chang, S.W.; Kim, I.; Kim, M.; Chung, I. Determination of Potential Aquifer Recharge Zones Using Geospatial Techniques for Proxy Data of Gilgel Gibe. Water 2022, 14, 1362. [Google Scholar] [CrossRef]
- Jenifer, M.A.; Jha, M.K. A Novel GIS-Based Modeling Approach for Evaluating Aquifer Susceptibility to Anthropogenic Contamination. Sustainability 2022, 14, 4538. [Google Scholar] [CrossRef]
- Khan, A.; Govil, H.; Taloor, A.K.; Kumar, G. Identification of Artificial Groundwater Recharge Sites in Parts of Yamuna River Basin India Based on Remote Sensing and Geographical Information System. Groundw. Sustain. Dev. 2020, 11, 100415. [Google Scholar] [CrossRef]
- IGRAC Artificial Recharge of Groundwater in the World. Int. Groundw. Resour. Assess. Cent. 2007, 1–92.
- Shadmehri Toosi, A.; Ghasemi Tousi, E.; Ghassemi, S.A.; Cheshomi, A.; Alaghmand, S. A Multi-Criteria Decision Analysis Approach towards Efficient Rainwater Harvesting. J. Hydrol. 2020, 582, 124501. [Google Scholar] [CrossRef]
- Balkhair, K.S.; Ur Rahman, K. Development and Assessment of Rainwater Harvesting Suitability Map Using Analytical Hierarchy Process, GIS and RS Techniques. Geocarto Int. 2021, 36, 421–448. [Google Scholar] [CrossRef]
- Nasiri, H.; Boloorani, A.D.; Sabokbar, H.A.F.; Jafari, H.R.; Hamzeh, M.; Rafii, Y. Determining the Most Suitable Areas for Artificial Groundwater Recharge via an Integrated PROMETHEE II-AHP Method in GIS Environment (Case Study: Garabaygan Basin, Iran). Environ. Monit. Assess. 2013, 185, 707–718. [Google Scholar] [CrossRef]
- Arulbalaji, P.; Padmalal, D.; Sreelash, K. GIS and AHP Techniques Based Delineation of Groundwater Potential Zones: A Case Study from Southern Western Ghats, India. Sci. Rep. 2019, 9, 2082. [Google Scholar] [CrossRef] [PubMed]
- Russo, T.A.; Fisher, A.T.; Lockwood, B.S. Assessment of Managed Aquifer Recharge Site Suitability Using a GIS and Modeling. Groundwater 2015, 53, 389–400. [Google Scholar] [CrossRef] [PubMed]
- Fuentes, I.; Vervoort, R.W. Site Suitability and Water Availability for a Managed Aquifer Recharge Project in the Namoi Basin, Australia. J. Hydrol. Reg. Stud. 2020, 27, 100657. [Google Scholar] [CrossRef]
- Central Ground Water Board. Ground Water Year Book, Rajasthan. 2022. Available online: http://cgwb.gov.in/Regions/WR/Reports/GWY%20Book%20Rajasthan%202021-22%20English.pdf (accessed on 20 May 2023).
- Sharma, S.K.; Sharma, D.P.; Sharma, M.K.; Gaur, K.; Manohar, P. Trend Analysis of Temperature and Rainfall of Rajasthan, India. J. Probab. Stat. 2021, 2021, 6296709. [Google Scholar] [CrossRef]
- Mehta, D.J.; Yadav, S.M. Long-Term Trend Analysis of Climate Variables for Arid and Semi-Arid Regions of an Indian State Rajasthan. Int. J. Hydrol. Sci. Technol. 2022, 13, 191–214. [Google Scholar] [CrossRef]
- Critchley, W.; Siegert, K.; Chapman, C.; Finkel, M. Water Harvesting. A Manual for the Design and Construction of Water Harvesting Schemes for Plant Production; Scientific Publishers: Jodhpur, India, 2013; ISBN 978-81-7233-801-5. [Google Scholar]
- Kahinda, J.M.; Lillie, E.S.B.; Taigbenu, A.E.; Taute, M.; Boroto, R.J. Developing Suitability Maps for Rainwater Harvesting in South Africa. Phys. Chem. Earth 2008, 33, 788–799. [Google Scholar] [CrossRef]
- Khudhair, M.A.; Sayl, K.N.; Darama, Y. Locating Site Selection for Rainwater Harvesting Structure Using Remote Sensing and GIS. IOP Conf. Ser. Mater. Sci. Eng. 2020, 881, 012170. [Google Scholar] [CrossRef]
- ICAR-NBSS & LUP. Available online: https://nbsslup.icar.gov.in/about-institute/ (accessed on 25 February 2023).
- Mahnot, S.C.; Singh, P.K.; Chaplot, P.C. Chauka System–An Innovative Technique. Soil and Water Conservation and Watershed Management; Apex Publishing House: Udaipur, India, 2012; ISBN 9788130100739; 8130100738. [Google Scholar]
- Ibrahim, G.R.F.; Rasul, A.; Hamid, A.A.; Ali, Z.F.; Dewana, A.A. Suitable Site Selection for Rainwater Harvesting and Storage Case Study Using Dohuk Governorate. Water 2019, 11, 864. [Google Scholar] [CrossRef]
- U.S. Environmental Protection Agency (USEPA). Storm Water Technology Fact Sheet. In Fact Sheet; EPA: Washington, DC, USA, 1999; Volume 7. [Google Scholar]
- Kadam, A.K.; Kale, S.S.; Pande, N.N.; Pawar, N.J.; Sankhua, R.N. Identifying Potential Rainwater Harvesting Sites of a Semi-Arid, Basaltic Region of Western India, Using SCS-CN Method. Water Resour. Manag. 2012, 26, 2537–2554. [Google Scholar] [CrossRef]
- Kadam, A.; Kale, S.; Umrikar, B.; Sankhua, R.; Pawar, N. Identifying Possible Locations to Construct Soil Water Conservation Structures by Using Hydrogeological and Geospatial Analysis. Hydrospatial. Anal. 2017, 1, 18–27. [Google Scholar] [CrossRef]
- Selvam, S.; Sivasubramanian, P. Groundwater potential zone identification using geoelectrical survey: A case study from Medak district, Andhra Pradesh, India. Int. J. Geomat. Geosci. 2012, 3, 55–62. [Google Scholar]
- Ammar, A.; Riksen, M.; Ouessar, M.; Ritsema, C. Identification of Suitable Sites for Rainwater Harvesting Structures in Arid and Semi-Arid Regions: A Review. Int. Soil Water Conserv. Res. 2016, 4, 108–120. [Google Scholar] [CrossRef]
- Garg, K.K.; Akuraju, V.; Anantha, K.H.; Singh, R.; Whitbread, A.M.; Dixit, S. Identifying Potential Zones for Rainwater Harvesting Interventions for Sustainable Intensification in the Semi-Arid Tropics. Sci. Rep. 2022, 12, 3882. [Google Scholar] [CrossRef]
- Saaty Thomas, L. The Analytic Hierarchy Process; McGraw-Hill International Book Company: New York, NY, USA, 1980; ISBN 978-0070543713; 0070543712. [Google Scholar]
- Adamcsek, E. The Analytic Hierarchy Process and Its Generalizations. Thesis, Eotvos Lorand University, Budapest, Hungary, 2008; pp. 1–43. Available online: https://web.cs.elte.hu/blobs/diplomamunkak/alkmat/2008/adamcsek_edit.pdf (accessed on 20 May 2023).
- Boroushaki, S.; Malczewski, J. Implementing an Extension of the Analytical Hierarchy Process Using Ordered Weighted Averaging Operators with Fuzzy Quantifiers in ArcGIS. Comput. Geosci. 2008, 34, 399–410. [Google Scholar] [CrossRef]
- Haghshenas, E.; Gholamalifard, M.; Mahmoudi, N.; Kutser, T. Developing a Gis-Based Decision Rule for Sustainable Marine Aquaculture Site Selection: An Application of the Ordered Weighted Average Procedure. Sustainability 2021, 13, 2672. [Google Scholar] [CrossRef]
- Aghaloo, K.; Chiu, Y.R. Identifying Optimal Sites for a Rainwater-Harvesting Agricultural Scheme in Iran Using the Best-Worst Method and Fuzzy Logic in a GIS-Based Decision Support System. Water 2020, 12, 1913. [Google Scholar] [CrossRef]
- Lapworth, D.J.; Boving, T.B.; Kreamer, D.K.; Kebede, S.; Smedley, P.L. Groundwater Quality: Global Threats, Opportunities and Realising the Potential of Groundwater. Sci. Total Environ. 2022, 811, 152471. [Google Scholar] [CrossRef] [PubMed]
- Kayastha, V.; Patel, J.; Kathrani, N.; Varjani, S.; Bilal, M.; Show, P.L.; Kim, S.H.; Bontempi, E.; Bhatia, S.K.; Bui, X.T. New Insights in Factors Affecting Ground Water Quality with Focus on Health Risk Assessment and Remediation Techniques. Environ. Res. 2022, 212, 113171. [Google Scholar] [CrossRef] [PubMed]
- Mukherjee, I.; Singh, U.K.; Chakma, S. Evaluation of Groundwater Quality for Irrigation Water Supply Using Multi-Criteria Decision-Making Techniques and GIS in an Agroeconomic Tract of Lower Ganga Basin, India. J. Environ. Manage. 2022, 309, 114691. [Google Scholar] [CrossRef]
- Varjani, S.J.; Upasani, V.N. Critical Review on Biosurfactant Analysis, Purification and Characterization Using Rhamnolipid as a Model Biosurfactant. Bioresour. Technol. 2017, 232, 389–397. [Google Scholar] [CrossRef]
- Rahman, A.; Tiwari, K.K.; Mondal, N.C. Assessment of Hydrochemical Backgrounds and Threshold Values of Groundwater in a Part of Desert Area, Rajasthan, India. Environ. Pollut. 2020, 266, 115150. [Google Scholar] [CrossRef]
- Shaji, E.; Santosh, M.; Sarath, K.V.; Prakash, P.; Deepchand, V.; Divya, B.V. Arsenic Contamination of Groundwater: A Global Synopsis with Focus on the Indian Peninsula. Geosci. Front. 2021, 12, 101079. [Google Scholar] [CrossRef]
- Suthar, S.; Garg, V.K.; Jangir, S.; Kaur, S.; Goswami, N.; Singh, S. Fluoride Contamination in Drinking Water in Rural Habitations of Northern Rajasthan, India. Environ. Monit. Assess. 2008, 145, 1–6. [Google Scholar] [CrossRef]
- Mukherjee, I.; Singh, U.K. Groundwater Fluoride Contamination, Probable Release, and Containment Mechanisms: A Review on Indian Context; Springer: Amsterdam, The Netherlands, 2018; Volume 40, ISBN 0123456789. [Google Scholar]
- WHO World Health Organisation. Guidelines for Drinking Water Quality, 3rd ed.; WHO: Geneva, Switzerland, 2004; Volume 1, ISBN 9241546387. Available online: https://www.google.co.in/books/edition/Guidelines_for_Drinking_water_Quality/SJ76COTm-nQC?hl=en&gbpv=1&dq=Guidelines+for+drinking-water+quality,+3rd+edition:+Volume+1+-+Recommendations+incorporating+the+first+and+second+addenda,+2004&pg=PR15&printsec=frontcover (accessed on 20 May 2023).
- Kathik, J.; Kathal, P.; Trivedi, R. Fluoride Contamination in Ground Water in a Part of The Tribal Belt in Chhindwara District. Madhya Pradesh, India. Bhu-Jal 2020, Q-7, 27. [Google Scholar]
- Schafer, D.; Sun, J.; Jamieson, J.; Siade, A.; Atteia, O.; Seibert, S.; Higginson, S.; Prommer, H. Fluoride Release from Carbonate-Rich Fluorapatite during Managed Aquifer Recharge: Model-Based Development of Mitigation Strategies. Water Res. 2021, 193, 116880. [Google Scholar] [CrossRef] [PubMed]
- Yadav, B.; Malav, L.C.; Jangir, A.; Kharia, S.K.; Singh, S.V.; Yeasin, M.; Nogiya, M.; Meena, R.L.; Meena, R.S.; Tailor, B.L.; et al. Application of Analytical Hierarchical Process, Multi-Influencing Factor, and Geospatial Techniques for Groundwater Potential Zonation in a Semi-Arid Region of Western India. J. Contam. Hydrol. 2023, 253, 104122. [Google Scholar] [CrossRef] [PubMed]
- Rahman, M.A.; Rusteberg, B.; Gogu, R.C.; Lobo Ferreira, J.P.; Sauter, M. A New Spatial Multi-Criteria Decision Support Tool for Site Selection for Implementation of Managed Aquifer Recharge. J. Environ. Manage. 2012, 99, 61–75. [Google Scholar] [CrossRef]
- Sallwey, J.; Bonilla Valverde, J.P.; Vásquez López, F.; Junghanns, R.; Stefan, C. Suitability Maps for Managed Aquifer Recharge: A Review of Multi-Criteria Decision Analysis Studies. Environ. Rev. 2019, 27, 138–150. [Google Scholar] [CrossRef]
- Jadav, K.; Yadav, B. Assessing the Suitability of Agricultural Managed Aquifer Recharge (AgMAR) Strategy in the Overexploited and Contaminated Hindon River Basin (HRB), India. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2022. [Google Scholar]
- Buraihi, F.H.; Shariff, A.R.M. Selection of Rainwater Harvesting Sites by Using Remote Sensing and GIS Techniques: A Case Study of Kirkuk, Iraq. J. Teknol. 2015, 76, 75–81. [Google Scholar] [CrossRef]
- Singh, L.K.; Jha, M.K.; Chowdary, V.M. Multi-Criteria Analysis and GIS Modeling for Identifying Prospective Water Harvesting and Artificial Recharge Sites for Sustainable Water Supply. J. Clean. Prod. 2017, 142, 1436–1456. [Google Scholar] [CrossRef]
- Srivalli, C.R.; Singh, M. Identification of Potential Sites for Water Harvesting Structures in Gadela Watershed Using Remote Sensing and GIS. Environ. Conserv. J. 2019, 20, 125–130. [Google Scholar] [CrossRef]
- Ghayoumian, J.; Mohseni Saravi, M.; Feiznia, S.; Nouri, B.; Malekian, A. Application of GIS Techniques to Determine Areas Most Suitable for Artificial Groundwater Recharge in a Coastal Aquifer in Southern Iran. J. Asian Earth Sci. 2007, 30, 364–374. [Google Scholar] [CrossRef]
- Mahmoud, S.H.; Alazba, A.A.; Amin, M.T. Identification of Potential Sites for Groundwater Recharge Using a GIS-Based Decision Support System in Jazan Region-Saudi Arabia. Water Resour. Manag. 2014, 28, 3319–3340. [Google Scholar] [CrossRef]
- Jacks, G.; Bhattacharya, P.; Chaudhary, V.; Singh, K.P. Controls on the Genesis of Some High-Fluoride Groundwaters in India. Appl. Geochem. 2005, 20, 221–228. [Google Scholar] [CrossRef]
- Chaudhary, V.; Satheeshkumar, S. Assessment of Groundwater Quality for Drinking and Irrigation Purposes in Arid Areas of Rajasthan, India. Appl. Water Sci. 2018, 8, 218. [Google Scholar] [CrossRef]
- Coyte, R.M.; Singh, A.; Furst, K.E.; Mitch, W.A.; Vengosh, A. Co-Occurrence of Geogenic and Anthropogenic Contaminants in Groundwater from Rajasthan, India. Sci. Total Environ. 2019, 688, 1216–1227. [Google Scholar] [CrossRef] [PubMed]
- Tanwer, N.; Deswal, M.; Khyalia, P.; Laura, J.S.; Khosla, B. Fluoride and Nitrate in Groundwater: A Comprehensive Analysis of Health Risk and Potability of Groundwater of Jhunjhunu District of Rajasthan, India. Environ. Monit. Assess. 2023, 195, 267. [Google Scholar] [CrossRef]
- Krishna, A.K.; Govil, P.K. Heavy Metal Contamination of Soil around Pali Industrial Area, Rajasthan, India. Environ. Geol. 2004, 47, 38–44. [Google Scholar] [CrossRef]
- Ray, P.; Datta, S.P.; Dwivedi, B.S. Long-Term Irrigation with Zinc Smelter Effluent Affects Important Soil Properties and Heavy Metal Content in Food Crops and Soil in Rajasthan, India. Soil Sci. Plant Nutr. 2017, 63, 628–637. [Google Scholar] [CrossRef]
Criteria | Variable | Resolution/Scale | Data Source |
---|---|---|---|
Climate | Rainfall | 0.25° × 0.25° | Indian Meteorological Department https://www.imdpune.gov.in/Clim_Pred_LRF_New/Grided_Data_Download.html (accessed on 22 October 2022) |
Hydrology and topography | Drainage density and slope | 30 m | Both layers are derived from ASTER (DEM with 30 m resolution) https://appeears.earthdatacloud.nasa.gov/task/area (accessed on 06 November 2022) |
Agronomy | NDVI | 30 m | Calculated using 8 years of Landsat 8 data obtained from google earth engine https://earthengine.google.com (accessed on 14 November 2022) |
LULC-2020 | 10 m × 10 m | ESRI Sentinel-2 10 m Land Use/Land Cover https://www.arcgis.com/apps/instant/media/index.html?appid=fc92d38533d440078f17678ebc20e8e2 (accessed on 14 November 2022) | |
Soils | Soil texture | 1:250,000 | Derived by taking reference of National Bureau of Soil Survey and Land Use Planning (NBSS and LUP) data. https://www.arcgis.com/apps/mapviewer/index.html?layers=d6642f8a4f6d4685a24ae2dc0c73d4ac (accessed on 05 December 2022) |
Groundwater quality | EC and fluoride | N/A | Groundwater Authority of India http://cgwb.gov.in/wqreports.html (accessed on 18 January 2023) |
Infrastructure | Roads | N/A | The main roadways were downloaded from Open Street Map, https://www.openstreetmap.org (accessed on 20 December 2022) |
Relative Importance | Degree of Preferences |
---|---|
1 | Equally |
3 | Moderately |
5 | Strongly |
7 | Very Strongly |
9 | Extremely |
2,4,6,8 | Intermediate |
Reciprocals 1/9, 1/7, 1/5, 1/3, 1,3,5,7, 9 | Less importance |
Less Importance More |
Criteria | LULC | Soil Texture | Drainage Density | Rainfall | Slope | NDVI |
---|---|---|---|---|---|---|
LULC | 1.00 | 3.00 | 4.00 | 5.00 | 7.00 | 9.00 |
Soil Texture | 0.33 | 1.00 | 2.00 | 3.00 | 5.00 | 7.00 |
Drainage Density | 0.25 | 0.5 | 1.00 | 3.00 | 5.00 | 7.00 |
Rainfall | 0.2 | 0.33 | 0.33 | 1.00 | 3.00 | 5.00 |
Slope | 0.14 | 0.2 | 0.2 | 0.33 | 1.00 | 3.00 |
NDVI | 0.11 | 0.14 | 0.14 | 0.2 | 0.33 | 1.00 |
Criteria | Sub-Criteria | Rating | Weight |
---|---|---|---|
LULC | Cropland | 1 | 43 |
Scrubland | 3 | ||
Forest | 2 | ||
Built-up areas | 1 | ||
Bare land | 3 | ||
Waterbodies | 1 | ||
Flooded vegetation | 1 | ||
Soil texture | Sandy | 2 | 22 |
Loamy | 3 | ||
Clayey | 1 | ||
Clay skeletal | 1 | ||
Loamy skeletal | 1 | ||
Rocky outcrop | 1 | ||
Water | 1 | ||
Drainage density | 0–0.17 | 1 | 17 |
0.17–0.31 | 2 | ||
0.31–0.65 | 3 | ||
Rainfall | <400 mm | 1 | 10 |
400–600 mm | 2 | ||
600–700 mm | 2 | ||
700–800 mm | 3 | ||
>800 mm | 3 | ||
Slope | 0–3 | 3 | 05 |
3–7 | 2 | ||
>7 | 1 | ||
NDVI | −0.2–0 | 1 | 03 |
0–0.1 | 2 | ||
0.1–0.2 | 3 | ||
>0.2 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rawat, A.; Panigrahi, N.; Yadav, B.; Jadav, K.; Mohanty, M.P.; Khouakhi, A.; Knox, J.W. Scaling Up Indigenous Rainwater Harvesting: A Preliminary Assessment in Rajasthan, India. Water 2023, 15, 2042. https://doi.org/10.3390/w15112042
Rawat A, Panigrahi N, Yadav B, Jadav K, Mohanty MP, Khouakhi A, Knox JW. Scaling Up Indigenous Rainwater Harvesting: A Preliminary Assessment in Rajasthan, India. Water. 2023; 15(11):2042. https://doi.org/10.3390/w15112042
Chicago/Turabian StyleRawat, Akanksha, Niranjan Panigrahi, Basant Yadav, Kartik Jadav, Mohit Prakash Mohanty, Abdou Khouakhi, and Jerry W. Knox. 2023. "Scaling Up Indigenous Rainwater Harvesting: A Preliminary Assessment in Rajasthan, India" Water 15, no. 11: 2042. https://doi.org/10.3390/w15112042
APA StyleRawat, A., Panigrahi, N., Yadav, B., Jadav, K., Mohanty, M. P., Khouakhi, A., & Knox, J. W. (2023). Scaling Up Indigenous Rainwater Harvesting: A Preliminary Assessment in Rajasthan, India. Water, 15(11), 2042. https://doi.org/10.3390/w15112042