Risk-Based Design Optimization of Contamination Detection Sensors in Water Distribution Systems: Application of an Improved Whale Optimization Algorithm
Abstract
:1. Introduction
- A hybrid algorithm called the WOA-SCSO algorithm was proposed to improve the exploration, exploitation, and convergence rates.
- The hybrid WOA-SCSO performance was validated over ten CEC’20 benchmark problems and a real-world water engineering problem.
- The performance of the hybrid WOA-SCO algorithm was compared with four recent meta-heuristic algorithms.
2. Materials and Method
2.1. Simulation Model
2.2. Mathematical Formulation
3. Optimization
3.1. Whale Optimization Algorithm
- Shrinking the encircling mechanism: This behavior is achieved by decreasing the value of in Equation (14). It should be noted that the fluctuation range of is reduced to a.
- Spiral updating position: First, the distance between the position of the whale and the target prey is calculated, and then the spiral equation between them to imitate the spiral-shaped movement of the whale is defined on the basis of Equations (16) and (17).
3.2. Sand Cat Swarm Optimization
3.3. Hybrid WOA-SCSO
Algorithm 1. The pseudocode of WOA-SCSO |
Generate Initial the whale population Xi where (I = 1, 2, 3, ---, n) Compute the fitness of each solution X* represents the best search agent While (t < Maximum number of Iterations) for each solution Update WOA parameters (a, A, c, L, and p) If 1 (p < 0.5) If 2 (|A| < I) Update the position of the current search agent by the Equations (23)–(26) Else If2 (|A| > 1) Randomly choose search agent (XRand) Update the position of the current search agent by the Equations (23)–(26) End If 2 Else If l (p > 0.5) Update the position of the current search agent by the Equation (19) End If l End for Check the space limits (if any search agent goes beyond the search phase, then amend it) Compute the fitness of each search agent Update X if there is a better solution in the population (t = t + 1) End while Return X* |
4. Results and Discussion
4.1. Case study of Benchmark Functions
4.2. Case Study of Anytown WDS
4.3. Case Study of Baghmalek WDS
- The time steps of the hydraulic and quality simulations were 1 h and 15 min, respectively.
- All of the demand nodes had the potential for sensor installation.
- Inflow of contamination from all demand nodes was possible at all hours of the first day of simulation.
- Inflow of contamination was possible from only one node, and the duration of contamination was 2 h.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Iqbal, M.M.; Li, L.; Hussain, S.; Lee, J.L.; Mumtaz, F.; Elbeltagi, A.; Waqas, M.S.; Dilawar, A. Analysis of Seasonal Variations in Surface Water Quality over Wet and Dry Regions. Water 2022, 14, 1058. [Google Scholar] [CrossRef]
- Ohadi, S.; Hashemi Monfared, S.A.; Azhdary Moghaddam, M.; Givehchi, M. Feasibility of a Novel Predictive Model Based on Multilayer Perceptron Optimized with Harris Hawk Optimization for Estimating of the Longitudinal Dispersion Coefficient in Rivers. Neural. Comput. Appl. 2022, 35, 7081–7105. [Google Scholar] [CrossRef]
- Iqbal, M.M.; Hussain, S.; Cheema, M.; Jehanzeb, M.; Lee, J.L.; Waqas, M.S.; Aslam, M.A. Seasonal Effect of Agricultural Pollutants on Coastline Environment: A Case Study of the Southern Estuarine Water Ecosystem of the Boseong County Korea. Pak. J. Agric. Sci. 2022, 59, 117–124. [Google Scholar]
- Rizvi, F.F.; Ahmed, B.; Hussain, S.; Khan, A.; Raza, M.; Shahid, M. Assessment of Climate Extremes from Historical Data (1960–2013) of Soan River Basin in Pakistan. Int. J. Glob. Warm. 2021, 25, 1–37. [Google Scholar] [CrossRef]
- Moosavian, N.; Lence, B.J. Fittest Individual Referenced Differential Evolution Algorithms for Optimization of Water Distribution Networks. J. Comput. Civ. Eng. 2019, 33, 4019036. [Google Scholar] [CrossRef]
- Adedoja, O.S.; Hamam, Y.; Khalaf, B.; Sadiku, R. A State-of-the-Art Review of an Optimal Sensor Placement for Contaminant Warning System in a Water Distribution Network. Urban Water J. 2018, 15, 985–1000. [Google Scholar] [CrossRef]
- Shokoohi, M.; Tabesh, M.; Nazif, S.; Dini, M. Water Quality Based Multi-Objective Optimal Design of Water Distribution Systems. Water Resour. Manag. 2017, 31, 93–108. [Google Scholar] [CrossRef]
- Afshar, A.; Mariño, M.A. Multi-Objective Coverage-Based ACO Model for Quality Monitoring in Large Water Networks. Water Resour. Manag. 2012, 26, 2159–2176. [Google Scholar] [CrossRef]
- He, G.; Zhang, T.; Zheng, F.; Zhang, Q. An Efficient Multi-Objective Optimization Method for Water Quality Sensor Placement within Water Distribution Systems Considering Contamination Probability Variations. Water Res. 2018, 143, 165–175. [Google Scholar] [CrossRef]
- Lee, B.H.; Deininger, R.A. Optimal Locations of Monitoring Stations in Water Distribution System. J. Environ. Eng. 1992, 118, 4–16. [Google Scholar] [CrossRef]
- Nace, A.; Kiené, L.; Fotoohi, F. Optimal Supervision of Drinking Water Distribution Network. In Proceedings of the WRPMD’99: 26th Annual Water Resources Planning and Management Conference, Tempe, Arizona, 6–9 June 1999. [Google Scholar]
- Salomons, E.; Ostfeld, A. A Multi-Objective Approach for Minimizing Water Network Disinfection Time and Disinfectant Quantity. Procedia Eng. 2015, 119, 347–351. [Google Scholar] [CrossRef] [Green Version]
- Shafiee, M.E.; Zechman, E.M. An Agent-Based Modeling Framework for Sociotechnical Simulation of Water Distribution Contamination Events. J. Hydroinformatics 2013, 15, 862–880. [Google Scholar] [CrossRef] [Green Version]
- Rathi, S.; Gupta, R. A Simple Sensor Placement Approach for Regular Monitoring and Contamination Detection in Water Distribution Networks. KSCE J. Civ. Eng. 2016, 20, 597–608. [Google Scholar] [CrossRef]
- Shen, H.; McBean, E. Diminishing Marginal Returns for Sensor Networks in a Water Distribution System. J. Water Supply Res. Technol.—AQUA 2011, 60, 286–293. [Google Scholar] [CrossRef]
- Weickgenannt, M.; Kapelan, Z.; Blokker, M.; Savic, D.A. Risk-Based Sensor Placement for Contaminant Detection in Water Distribution Systems. J. Water Resour. Plan Manag. 2010, 136, 629–636. [Google Scholar] [CrossRef]
- Yoo, D.G.; Chung, G.; Sadollah, A.; Kim, J.H. Applications of Network Analysis and Multi-Objective Genetic Algorithm for Selecting Optimal Water Quality Sensor Locations in Water Distribution Networks. KSCE J. Civ. Eng. 2015, 19, 2333–2344. [Google Scholar] [CrossRef]
- Berry, J.; Hart, W.E.; Phillips, C.A.; Uber, J.G.; Watson, J.-P. Sensor Placement in Municipal Water Networks with Temporal Integer Programming Models. J. Water Resour. Plan Manag. 2006, 132, 218–224. [Google Scholar] [CrossRef] [Green Version]
- Housh, M.; Ohar, Z. Integrating Physically Based Simulators with Event Detection Systems: Multi-Site Detection Approach. Water Res. 2017, 110, 180–191. [Google Scholar] [CrossRef]
- Aral, M.M.; Guan, J.; Maslia, M.L. Optimal Design of Sensor Placement in Water Distribution Networks. J. Water Resour. Plan Manag. 2010, 136, 5–18. [Google Scholar] [CrossRef]
- Kim, J.H.; Tran, T.V.T.; Chung, G. Optimization of Water Quality Sensor Locations in Water Distribution Systems Considering Imperfect Mixing. In Water Distribution Systems Analysis 2010; ASCE Library: Reston, VA, USA, 2010; pp. 317–326. [Google Scholar]
- Afshar, A.; Miri Khombi, S.M. Multiobjective Optimization of Sensor Placement in Water Distribution Networks Dual Use Benefit Approach. Iran Univ. Sci. Technol. 2015, 5, 315–331. [Google Scholar]
- Jafari-Asl, J.; Azizyan, G.; Monfared, S.A.H.; Rashki, M.; Andrade-Campos, A.G. An Enhanced Binary Dragonfly Algorithm Based on a V-Shaped Transfer Function for Optimization of Pump Scheduling Program in Water Supply Systems (Case Study of Iran). Eng. Fail. Anal. 2021, 123, 105323. [Google Scholar] [CrossRef]
- Poojitha, S.N.; Jothiprakash, V. Hybrid Differential Evolution and Krill Herd Algorithm for the Optimal Design of Water Distribution Networks. J. Comput. Civ. Eng. 2022, 36, 4021032. [Google Scholar] [CrossRef]
- Rad, M.J.G.; Ohadi, S.; Jafari-Asl, J.; Vatani, A.; Ahmadabadi, S.A.; Correia, J.A.F.O. GNDO-SVR: An Efficient Surrogate Modeling Approach for Reliability-Based Design Optimization of Concrete Dams. In Proceedings of the Structures; Elsevier: Amsterdam, The Netherlands, 2022; Volume 35, pp. 722–733. [Google Scholar]
- Zheng, F.; Zecchin, A.C.; Simpson, A.R. Self-Adaptive Differential Evolution Algorithm Applied to Water Distribution System Optimization. J. Comput. Civ. Eng. 2013, 27, 148–158. [Google Scholar] [CrossRef] [Green Version]
- Forestiero, A. Heuristic Recommendation Technique in Internet of Things Featuring Swarm Intelligence Approach. Expert. Syst. Appl. 2022, 187, 115904. [Google Scholar] [CrossRef]
- Dahou, A.; Abd Elaziz, M.; Chelloug, S.A.; Awadallah, M.A.; Al-Betar, M.A.; Al-qaness, M.A.A.; Forestiero, A. Intrusion Detection System for IoT Based on Deep Learning and Modified Reptile Search Algorithm. Comput. Intell. Neurosci. 2022, 2022, 4748528. [Google Scholar] [CrossRef]
- Rahmanshahi, M.; Jafari-Asl, J.; Shafai Bejestan, M.; Mirjalili, S. A Hybrid Model for Predicting the Energy Dissipation on the Block Ramp Hydraulic Structures. Water Resour. Manag. 2023, 1–23. [Google Scholar] [CrossRef]
- Jafari-Asl, J.; Ben Seghier, M.E.A.; Ohadi, S.; Correia, J.; Barroso, J. Reliability Analysis Based Improved Directional Simulation Using Harris Hawks Optimization Algorithm for Engineering Systems. Eng. Fail. Anal. 2022, 135, 106148. [Google Scholar] [CrossRef]
- Ben Seghier, M.E.A.; Corriea, J.A.F.O.; Jafari-Asl, J.; Malekjafarian, A.; Plevris, V.; Trung, N.-T. On the Modeling of the Annual Corrosion Rate in Main Cables of Suspension Bridges Using Combined Soft Computing Model and a Novel Nature-Inspired Algorithm. Neural. Comput. Appl. 2021, 33, 15969–15985. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The Whale Optimization Algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Ezzeldin, R.M.; Djebedjian, B. Optimal Design of Water Distribution Networks Using Whale Optimization Algorithm. Urban Water J. 2020, 17, 14–22. [Google Scholar] [CrossRef]
- Reddy, P.D.P.; Reddy, V.C.V.; Manohar, T.G. Whale Optimization Algorithm for Optimal Sizing of Renewable Resources for Loss Reduction in Distribution Systems. Renew. Wind Water Sol. 2017, 4, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Jafari-Asl, J.; Ben Seghier, M.E.A.; Ohadi, S.; van Gelder, P. Efficient Method Using Whale Optimization Algorithm for Reliability-Based Design Optimization of Labyrinth Spillway. Appl. Soft. Comput. 2021, 101, 107036. [Google Scholar] [CrossRef]
- Guo, W.; Liu, T.; Dai, F.; Xu, P. An Improved Whale Optimization Algorithm for Forecasting Water Resources Demand. Appl. Soft. Comput. 2020, 86, 105925. [Google Scholar] [CrossRef]
- Zhang, X.; Wen, S. Hybrid Whale Optimization Algorithm with Gathering Strategies for High-Dimensional Problems. Expert. Syst. Appl. 2021, 179, 115032. [Google Scholar] [CrossRef]
- Mohammed, H.; Rashid, T. A Novel Hybrid GWO with WOA for Global Numerical Optimization and Solving Pressure Vessel Design. Neural. Comput. Appl. 2020, 32, 14701–14718. [Google Scholar] [CrossRef] [Green Version]
- Eliades, D.G.; Kyriakou, M.; Polycarpou, M.M. Sensor Placement in Water Distribution Systems Using the S-PLACE Toolkit. Procedia Eng. 2014, 70, 602–611. [Google Scholar] [CrossRef] [Green Version]
- Sabzkouhi, A.M.; Haghighi, A. Uncertainty Analysis of Pipe-Network Hydraulics Using a Many-Objective Particle Swarm Optimization. J. Hydraul. Eng. 2016, 142, 4016030. [Google Scholar] [CrossRef]
- Jafari-Asl, J.; Sami Kashkooli, B.; Bahrami, M. Using Particle Swarm Optimization Algorithm to Optimally Locating and Controlling of Pressure Reducing Valves for Leakage Minimization in Water Distribution Systems. Sustain. Water Resour. Manag. 2020, 6, 1–11. [Google Scholar] [CrossRef]
- Geranmehr, M.; Yousefi-Khoraem, M. Optimal Quality Sensor Placement in Water Distribution Networks under Temporal and Spatial Uncertain Contamination. J. Water Wastewater Ab Va Fazilab (Persian) 2020, 31, 143–155. [Google Scholar]
- Kessler, A.; Ostfeld, A.; Sinai, G. Detecting Accidental Contaminations in Municipal Water Networks. J. Water Resour. Plan Manag. 1998, 124, 192–198. [Google Scholar] [CrossRef]
- Seyyedabbasi, A.; Kiani, F. Sand Cat Swarm Optimization: A Nature-Inspired Algorithm to Solve Global Optimization Problems. Eng. Comput. 2022, 1–25. [Google Scholar] [CrossRef]
- Houssein, E.H.; Çelik, E.; Mahdy, M.A.; Ghoniem, R.M. Self-Adaptive Equilibrium Optimizer for Solving Global, Combinatorial, Engineering, and Multi-Objective Problems. Expert. Syst. Appl. 2022, 195, 116552. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with Simulated Annealing for Feature Selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems. Neural. Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowl. Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Minaei, A.; Haghighi, A.; Ghafouri, H.R. Computer-Aided Decision-Making Model for Multiphase Upgrading of Aged Water Distribution Mains. J. Water Resour. Plan Manag. 2019, 145, 4019008. [Google Scholar] [CrossRef]
- Marquez Calvo, O.O.; Quintiliani, C.; Alfonso, L.; Di Cristo, C.; Leopardi, A.; Solomatine, D.; de Marinis, G. Robust Optimization of Valve Management to Improve Water Quality in WDNs under Demand Uncertainty. Urban Water J. 2018, 15, 943–952. [Google Scholar] [CrossRef] [Green Version]
- Ohadi, S.; Jafari-Asl, J. Multi-Objective Reliability-Based Optimization for Design of Trapezoidal Labyrinth Weirs. Flow Meas. Instrum. 2021, 77, 101787. [Google Scholar] [CrossRef]
Algorithm | Parameter | Value |
---|---|---|
WOA | [2, 0] | |
[2, 0] | ||
C | 2.rand (0, 1) | |
L | [−1, 1] | |
B | 1 | |
SCSO | [2, 0] | |
R | [−, ] | |
DA | 0.01 | |
0.99 | ||
SA | Crossover | 0.4 |
Mutation | 0.7 | |
MFO | B | 1 |
R | [−1, −2] | |
T | [r, 1] |
F | WOA-SCSO | WOA | SCSO | |||
---|---|---|---|---|---|---|
Average | STD | Average | STD | Average | STD | |
1 | 4630.923 | 3865.641 | 29,622,854 | 14,996,437 | 4451.761 | 3723.702 |
2 | 1354.157 | 153.8788 | 3861.19 | 570.506 | 1843.399 | 358.4839 |
3 | 747.1492 | 9.955987 | 936.4858 | 65.65286 | 754.0862 | 16.86232 |
4 | 1904.242 | 2.295859 | 1948.024 | 22.28444 | 1904.749 | 2.079524 |
5 | 205,961.7 | 101,493.9 | 1,786,564 | 1,423,187 | 397,673.7 | 311,695 |
6 | 1624.441 | 6.94 × 1013 | 1624.441 | 6.94 × 1013 | 1629.656 | 6.94 × 1013 |
7 | 67,541.59 | 48,168.43 | 1,089,934 | 999,417.5 | 185,219 | 190,155.1 |
8 | 2303.807 | 16.63077 | 3946.46 | 1686.991 | 2827.785 | 1038.077 |
9 | 2823.531 | 17.51626 | 2998.875 | 66.33284 | 2850.618 | 28.56 |
10 | 2942.926 | 28.33319 | 3030.829 | 39.80924 | 2946.545 | 32.49808 |
Best | 5 | 0 | 0 | |||
F | WOA-SA | DA | MFO | |||
Average | STD | Average | STD | Average | STD | |
1 | 4103.168 | 2959.42 | 4,319,673.969 | 1,107,564.075 | 19,258,630 | 13,458,488 |
2 | 2509.475 | 723.7819 | 3090.541577 | 461.1967984 | 3170.614 | 600.27 |
3 | 770.379 | 16.60193 | 906.0590205 | 29.61939612 | 840.4546 | 24.32494 |
4 | 1903.312 | 1.427191 | 1923.549656 | 5.342737287 | 1925.495 | 8.438489 |
5 | 74,101.39 | 49,371.8 | 426,743.4619 | 247,660.423 | 460,340.8 | 393,982.6 |
6 | 1624.441 | 6.94 × 1013 | 2005.250739 | 6.94 × 1013 | 1919.427 | 6.94 × 1013 |
7 | 23,614.48 | 20,063.03 | 326,989.7085 | 298,768.1618 | 372,906.1 | 296,250.6 |
8 | 2381.877 | 444.3796 | 3500.107678 | 1598.297395 | 2317.165 | 3.214768 |
9 | 2927.662 | 95.72872 | 3052.300783 | 79.92431871 | 2914.178 | 38.58321 |
10 | 2950.737 | 32.63042 | 2987.917673 | 24.86867008 | 2997.8 | 33.16372 |
Best | 4 | 0 | 0 |
Algorithms | ||||||
---|---|---|---|---|---|---|
WOA-SA | SCSO | WOA-SCSO | WOA | MFO | DA | |
1 | 131,754 | 137,728.5 | 131,754 | 347,665.5 | 1. × 1018 | 201,211.5 |
2 | 131,754 | 204,361.5 | 131,754 | 211,827 | 1.39 × 1018 | 234,097.5 |
3 | 131,754 | 211,827 | 131,754 | 234,097.5 | 131754 | 201,211.5 |
4 | 131,754 | 207,732 | 131,754 | 204,361.5 | 1.39 × 1018 | 234,097.5 |
5 | 131,754 | 211,827 | 131,754 | 488,260.5 | 1.39 × 1018 | 207,732 |
6 | 204,361.5 | 201,211.5 | 131,754 | 211,827 | 131754 | 201,211.5 |
7 | 131,754 | 207,732 | 131,754 | 211,827 | 1.39 × 1018 | 234,097.5 |
8 | 131,754 | 201,211.5 | 131,754 | 211,827 | 131754 | 201,211.5 |
9 | 131,754 | 218,263.5 | 131,754 | 218,263.5 | 1.39 × 1018 | 131,754 |
10 | 131,754 | 211,827 | 131,754 | 599,739 | 1.39 × 1018 | 211,827 |
Average | 139,014.75 | 201,372.2 | 131,754 | 293,969.55 | 9.71656× 1017 | 205,845.2 |
STD | 21,782.25 | 21,802.81 | 0 | 133,589.8387 | 6.36098× 1017 | 28,300.72 |
Number of Sensors | Maximum Impact Risk (l) | Sensor Nodes |
---|---|---|
1 | 24,912.95 | 49. |
2 | 12,697.64 | 61. |
3 | 10,263.17 | 22, 54, 51. |
4 | 7942.65 | 36, 51, 27, 67. |
5 | 7129.02 | 19, 51, 3, 37, 48. |
6 | 6342.94 | 12,66, 48, 24,51, 37. |
7 | 5913.10 | 51, 6, 67, 37, 23, 12, 47. |
8 | 5212.26 | 67, 51, 18, 61, 39, 3, 42, 27. |
10 | 4855.10 | 53, 31, 33,19, 51, 45,37, 9, 36, 47. |
12 | 4237.19 | 42,23,51,29,66,4,62,69,46,24,58, 32. |
15 | 3856.85 | 48, 53, 51, 46, 16, 14, 52, 30, 27, 41, 19, 3, 66, 27, 11. |
20 | 2992.93 | 20, 5, 61, 51, 24, 5, 53, 63, 42, 3, 56, 68, 28, 44, 33,39, 19, 54, 24, 47, 8, 21, 37, 9, 18. |
25 | 2680.61 | 61, 12, 62, 60, 7, 40, 65, 48, 39, 22, 42, 54, 5, 49, 33, 51, 50, 32, 29,65, 41, 19, 27, 1, 19, 53, 10, 22, 47, 15. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Afzali Ahmadabadi, S.; Jafari-Asl, J.; Banifakhr, E.; Houssein, E.H.; Ben Seghier, M.E.A. Risk-Based Design Optimization of Contamination Detection Sensors in Water Distribution Systems: Application of an Improved Whale Optimization Algorithm. Water 2023, 15, 2217. https://doi.org/10.3390/w15122217
Afzali Ahmadabadi S, Jafari-Asl J, Banifakhr E, Houssein EH, Ben Seghier MEA. Risk-Based Design Optimization of Contamination Detection Sensors in Water Distribution Systems: Application of an Improved Whale Optimization Algorithm. Water. 2023; 15(12):2217. https://doi.org/10.3390/w15122217
Chicago/Turabian StyleAfzali Ahmadabadi, Sanaz, Jafar Jafari-Asl, Elham Banifakhr, Essam H. Houssein, and Mohamed El Amine Ben Seghier. 2023. "Risk-Based Design Optimization of Contamination Detection Sensors in Water Distribution Systems: Application of an Improved Whale Optimization Algorithm" Water 15, no. 12: 2217. https://doi.org/10.3390/w15122217
APA StyleAfzali Ahmadabadi, S., Jafari-Asl, J., Banifakhr, E., Houssein, E. H., & Ben Seghier, M. E. A. (2023). Risk-Based Design Optimization of Contamination Detection Sensors in Water Distribution Systems: Application of an Improved Whale Optimization Algorithm. Water, 15(12), 2217. https://doi.org/10.3390/w15122217