
Citation: Xiao, Y.; Yu, H.; Song, Y.

Influences of Anthropogenic

Pollution on the Dynamics of

Sedimentary Fulvic Acid Fractions as

Revealed via Spectroscopic

Techniques Combined with

Two-Dimensional Correlation

Spectroscopy. Water 2023, 15, 2256.

https://doi.org/10.3390/

w15122256

Academic Editor: Luisa Bergamin

Received: 22 May 2023

Revised: 12 June 2023

Accepted: 14 June 2023

Published: 16 June 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Influences of Anthropogenic Pollution on the Dynamics of
Sedimentary Fulvic Acid Fractions as Revealed via
Spectroscopic Techniques Combined with Two-Dimensional
Correlation Spectroscopy
Yanchun Xiao 1, Huibin Yu 2,* and Yonghui Song 2,*

1 Institute of Agricultural Engineering Technology, Fujian Academy of Agricultural Sciences,
Fuzhou 350003, China; FAASHJKXGroup@163.com

2 Watershed Research Center for Comprehensive Treatment of Water Environmental Pollution,
Chinese Research Academy of Environmental Sciences, Beijing 100012, China

* Correspondence: yhbybx@163.com (H.Y.); songyh@craes.org.cn (Y.S.)

Abstract: To identify the influences of anthropogenic activities on the composition, spatial distribu-
tion, sources, and transformation mechanism of sedimentary fulvic acid (FA) fractions from different
reaches of an urban river were tracked via excitation-emission matrix (EEM) fluorescence spec-
troscopy with parallel factor (PARAFAC) analysis and two-dimensional correlation spectroscopy
(2D-COS). Sediment samples were collected from Baitapu River (BR) along gradients with human
activities (e.g., rural, town, and urban sections) in Shenyang, northeast China, from which FA frac-
tions were extracted and then determined via EEM fluorescence spectroscopy. According to optical
indices, the autochthonous sources of sedimentary FA fractions in BR were more significant than
the terrestrial sources. Among the sections, the contribution from autochthonous sources decreased
in the following order: Rural > Urban > Town. Six components of sedimentary FA fractions were
identified via EEM–PARAFAC: C1 comprised tryptophan-like (TRL) compounds; C2 was associated
with microbial humic-like (MHL) compounds; C3, C4, and C5 were associated with FA-like (FAL)
compounds; and C6 comprised humic acid-like (HAL) compounds. The proportion of sedimentary
FA fractions decreased in the following order: MHL + FAL + HAL (humus, 77.37–88.90%) > TRL
(protein, 11.10–22.63%) for the three sections, showing that humus dominated. The town section
exhibited the highest sedimentary FA fractions (5328.87 ± 1315.82 Raman unit [R.U.]), followed
by the urban (4146.49 ± 535.75 R.U.) and rural (2510.56 ± 611.00 R.U.) sections. Three pollution
sources were determined via principal component analysis (i.e., the dominant industrial source,
domestic wastewater, and agricultural effluent). Additionally, the results from 2D-COS revealed
that sedimentary FA fractions tended to stabilize as the protein-like component was transformed
into the HAL component. Furthermore, we used the structural equation model to validate the
critical environmental variables affecting the FA fraction transformation. The results can elucidate
the influences of human activities on the dynamics of sedimentary FA fractions in urban rivers.

Keywords: river sediment; fulvic acid fractions; variation; parallel factor analysis; structural equa-
tion model

1. Introduction

River sediments are an important part of the river ecosystem and function as the
main carriers and significant heterogeneous adsorbents for migrating, transforming, and
accumulating environmental pollutants [1,2]. Thus, they can significantly influence the
water quality and ecological functions of river ecosystems [3,4]. Fulvic acid (FA) fractions
are black substances enriched in sediments, which present a strong adsorption capacity
with contaminants [5,6]. Previous studies have reported that sedimentary FA fractions play
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an important role in governing the environmental geochemistry behavior of heavy metal
pollutants, which is attributed to the active functional groups such as phenolic, carboxyl,
and nitrogen-containing groups [7,8]. Nevertheless, few studies have been conducted on
the dynamics of sedimentary FA fractions. The external input of sedimentary FA fractions is
mainly influenced by anthropogenic activities (e.g., agriculture practices, industrialization,
and urbanization) [9]. They usually show spatial variations, and the dynamics of the
fractions are closely linked to environmental variables [10,11]. Therefore, it is necessary to
further elucidate the effects of environmental variables and transformation mechanisms of
sedimentary FA fractions, which is crucial for managing urban rivers.

The interactive mechanism of FA fractions and fluorophore groups can be described
via excitation–emission matrix (EEM) fluorescence spectroscopy [12]. Furthermore, paral-
lel factor (PARAFAC) analysis can mathematically decompose an EEM spectrogram into
individual fluorescent components and quantify its relative content by weakening the inter-
ference from overlapping fluorophores [13,14]. Two-dimensional correlation spectroscopy
(2D-COS) proved an effective technique in spectrum analysis, and it was generally used to
improve the resolution of spectra, establish unambiguous assignments, and determine the
sequence of the spectra [15]. Cui et al. [7] identified three components from the FA EEM,
each component with two ligands, and assessed the interaction of different FA ligands and
heavy metals via EEM-PARAFAC and 2D-COS combined technology; that is, high humifica-
tion FA ligand with more metal-binding sites had the strong metal-binding ability and low
metal-binding speed, whereas, low humification FA ligand presented high metal-binding
speed. Structural equation models (SEM) can be used to identify underlying processes or
unmeasured “latent” variables and explore the theoretical and empirical relationships of
variables in a network form [16]. In this study, we employed EEM-PARAFAC, 2D-COS,
and SEM to reveal the dynamic changes and transformation mechanisms of sedimentary
FA fractions affected by multiple anthropogenic activities.

Considering the unique geological features of the Baitapu River (BR) in Shenyang,
northeastern China, and the related human activities, we investigated the effects of anthro-
pogenic activities on the transformation of sedimentary FA fractions. Numerous farmlands,
industrial parks, and residential communities exist along the banks of BR, which can be
divided into different ecosystem compartments (i.e., rural, town, and urban sections). Thus,
it is ideal for studying the dynamic changes in sedimentary FA fractions derived from
different anthropogenic activities. In recent years, sewage emission caused by increased
agricultural activities, industrial manufacturing, and population has deteriorated water
quality [17]. Moreover, the Chinese Environmental Quality Standards for Surface Water
(GB-3838-2002) has classified the water environment of BR to be below grade V, which
necessitates urgent treatment. Consequently, identifying pollution sources and tracking
the variation of sedimentary FA fractions to facilitate pollution control is vital. The main
objectives of this study are: (1) to investigate the occurrence and spatial distributions
of sedimentary FA fractions in different ecosystem compartments of BR; (2) to identify
potentially anthropogenic pollution sources of sedimentary FA fractions through combined
statistical analysis models; (3) to compare the variations in FA fractions in different ecosys-
tem compartments and establish the differences and similarities; and (4) to explore the
potential mechanisms of transformation of sedimentary FA fractions from urban rivers,
which is important to reveal the fate of sedimentary FA fractions in aquatic systems. The
results can provide a theoretical basis and support for preventing anthropogenic pollutants
in urban rivers.

2. Materials and Methods
2.1. Sampling and Processing

BR (41◦37′–41◦43′ N, 123◦39′–123◦20′ E) is a level-one tributary of the Hunhe River in
Shenyang, Liaoning, China, with a total length of 51.5 km and a basin area of 182 km2. BR
belongs to a continental semi-humid climate zone with a mean annual average precipitation
of 600 to 800 mm and a mean annual average temperature of 6.2 ◦C to 9.7 ◦C. It comprises
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the central area of Shenyang City, including Hunnan District and Heping District, and
flows from southeast to northwest through different geological units (Figure 1). The runoff
is associated with agriculture; livestock and poultry breeding; and industrial, domestic,
and natural activities. In addition, its annual mean runoff volume is 227.2 million m3/year,
which is its main source of water supply [17]. Owing to the low flow rate in BR, which
plays a vital role in pollutant retention, BR is divided into three ecosystem compartments:
agricultural, industrial, and urban.
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To cover the three major ecosystem compartments, potential pollution sources, and
hydraulic characteristics, 14 sampling sites along BR were selected (Figure 1). Among
them, sites S1 to S4 are located in the upper reach covering the rural region, where rural
domestic sewage, effluent from livestock and poultry farms, and agriculture sewage are
discharged. S5 to S8 is situated in the middle reach covering the town region, where
industrial wastewater and domestic sewage are discharged through sewage pipes. S9 to
S14 are located in the lower reach covering the urban region, which is affected by effluent
from wastewater treatment plants. In April 2016, surface sediments of 0–10 cm were
collected using a Peterson grab sampler (ETC200, Shanghai, China). To avoid potential bias
caused by accidental sampling, five surface sediments (~1.0 kg) were collected from the
center point of the sampling site and four positive directions toward the east, west, south,
and north according to the BR section width. Seventy sediment samples were collected
from these sites and refrigerated for transport to the laboratory within 12 h of sampling.
All sediment samples were freeze-dried, crushed, and sieved through a 0.2 mm mesh sieve
before analysis.

2.2. Sedimentary FA Fraction Extraction

Sedimentary FA fraction extraction was performed following the International Humic
Substances Society (IHSS) recommendations. In short, 10-g freeze-dried, crushed, and
sieved sediment was suspended in 100-mL mixed solution (50 mL of 0.1 M Na4P2O7·10H2O
and 50 mL of 0.1 M NaOH) to maintain the dry sediment to liquid ratio at 1:10. Subsequently,
the suspension was shaken for 24 h (200 rpm) at 25 ◦C in the absence of light. The
supernatant was collected by settling the sediment after centrifugation at 8500 rpm for
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l0 min. This process was repeated in triplicate, and the supernatant was pooled together to
filter through a 0.45-µm Millipore membrane to obtain a humus solution. Then, 6 M HCl
was added into the humus solution to adjust the pH value to 1–2, and the supernatant was
collected after precipitation at 4 ◦C for 12 h to obtain the FA fractions.

2.3. Physicochemical Analysis

The pH and electrical conductivity (EC) of the sediment were determined in a sed-
iment/water suspension (sediment/water ratio = 1:2.5) using a multifunctional water
analyzer (Hydrolab DS5, HACH, USA). The DO concentration of overlying bottom water
(5 ± 1 cm above the sediment) was recorded at the time of sampling in the field using
the Hydrolab DS5 water analyzer. The total nitrogen (TN) content of the sediment was
measured with a continuous-flow automated analyzer (FUTURA, Alliance, France) after
digestion with H2SO4-H2O2 [18]. The total phosphorus (TP) content of the sediment was
analyzed using the Murphy-Riley method after digestion with H2SO4-HClO4 [19]. The
combustion oxidation nondispersive infrared absorption method (HJ 501-2009) was used
to measure the total organic carbon (TOC) content of sedimentary FA fractions with a TOC
analyzer (TOC-LCPH, Shimadzu, Japan).

2.4. Fluorescence Measurements and PARAFAC Analysis

The fluorescence EEM spectra of sedimentary FA fractions were obtained using a
fluorescence spectrometer (Hitachi F-7000, Tokyo, Japan). Wavelengths of the excitation
(Ex) and emission (Em) were at 200–450 (step 5 nm) and 260–550 (step 5 nm), respectively,
with a scan rate of 2400 nm·min−1 [20]. Each measured EEM was corrected for the inner-
filter effect according to the absorption spectra of the same sample, and the blank signals
of Milli-Q water were subtracted to eliminate the influence of Raman scattering. Rayleigh
scattering was eliminated using an interpolation technique. The Rayleigh scattering and
spectrum data of the upper side were set to zero to eliminate the Rayleigh scattering
effect [21]. Then, the corrected EEM was modeled with PARAFAC using MATLAB R2019a
software with the DOMFluor toolbox (www.models.life.ku.dk, version 1.7) [22]. The correct
number of identified fluorescent components was determined via residual analysis, split-
half analysis, and visual inspection. Fluorescence intensity was normalized to Raman units
(R.U.), and the relative concentrations of each component were estimated using maximum
fluorescence intensity (Fmax). The contribution of each component to the total fluorescence
(%C1–%C6) was used as indices for the composition of sedimentary FA fractions.

Three optical indices, namely, fluorescence index (FI), biological index (BIX), and hu-
mification index (HIX) were used to infer the aromaticity, source, and humification degree
of sedimentary FA fractions, respectively, which could be calculated using EEM data [23].
Higher (>1.9) and lower (<1.4) values of FI indicate weak and strong aromaticity, respec-
tively [24]. Higher BIX (>1) and HIX (>10) are associated with a stronger biological/aquatic
bacterial contribution and a higher humic content. In comparison, lower BIX (<0.8) and
HIX (<4) are associated with a weaker contribution from autochthonous sources and a
lower humification degree [25]. The three indices are calculated and interpreted using the
following formulas:

FI =
I370/450

I370/500
, (1)

BIX =
I310/380

I310/430
, (2)

HIX =
∑ I254/435→480

∑ I254/300→345
, (3)

where I indicates the fluorescence intensity at each specific Ex/Em wavelength pair or range.

www.models.life.ku.dk
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2.5. Two-Dimensional Correlation Spectroscopy (2D-COS) Analysis

Two-dimensional COS analysis using 2D Shige software version 1.3 (Kwansei–Gakuin
University, XiGong, Japan) can provide specific orders of component variation information
under external perturbations. The variation in sedimentary FA fractions can be investigated
via 2D-COS analysis according to the Ex loadings of the PARAFAC components [26]. Noda
et al. [27] summarized the rules for analyzing synchronous and asynchronous maps. If
the signs of the two maps are the same in a given wavelength range, the event at the x-
coordinate is precedent to that at the y-axis, while if the signs are opposite, the preferential
changes are reversed with respect to the coordinates [28].

2.6. Statistical Analysis

Principal component analysis (PCA) is an excellent statistical tool for handling multi-
variate data with minimum loss of information [29]. PCA was performed to identify the
possible sources and compositions of sedimentary FA fractions from BR using pH, EC, DO,
TN, TP, TOC, FI, BIX, HIX, and the Fmax of C1–C6.

Path analysis based on a structural equation model (SEM) was used to predict inter-
active relationships between observed and latent variables and causality among latent
variables [30]. The applicability and overall goodness-of-fit test for SEM were determined
using the ratio of Chi-square, degrees of freedom, and significance coefficient (i.e., Chi-
square/df is less than 5, and the p-value is less than 0.05) [31].

3. Results and Discussion
3.1. Physicochemical Parameters

The three sections exhibited variations in physicochemical parameters (Table S1 and
Figure S1). The average pH of the sediments gradually increased from the rural (7.62 ± 0.28)
to town (7.85 ± 0.35) sections, and the pH of the urban section (6.77 ± 0.69) was signifi-
cantly lower than those of the rural and town sections. Zhang et al. [12] reported that the
relative abundance of Anaerolineae in sediment from the urban section was higher than
those in sediments from the rural and town sections, which facilitated protein degrada-
tion, accompanied by the production of a large amount of organic acid, resulting in a
weakly acidic environment in the sediment from the urban section. The urban section
exhibited the highest mean EC value (511.50 ± 330.95 µS·cm−1), followed by the rural
(400.44 ± 58.87 µS·cm−1) and town (357.47 ± 98.34 µS·cm−1) sections, consistent with the
results of Mahabeer et al. [32]. The urban dominant zones exhibited the highest EC value,
and agricultural activities increased the EC value through the enrichment of pollutants
from the associated anthropogenic activities. The DO concentration of the overlying bottom
water from BR varied significantly from 0.15 to 1.67 mg·L−1, which was lower than the
monitoring threshold (DO < 2 mg·L−1) according to the guidelines for the treatment of
rural black and black-odorous water (trial) (China 2019). This indicates that the sediments
in the whole river were all in a hypoxic state [33].

Additionally, the average content of TN increased from the rural
(2283.33 ± 880.83 mg·kg−1) to town (3176.80 ± 547.94 mg·kg−1) sections and then de-
creased in the urban (2554.68 ± 1089.90 mg·kg−1) section. The town section exhibited the
highest TN, which may be related to the industrial activities in this region. A large fertilizer
factory, identified in the industrial park along the town section, was possibly one of the
leading contributors to the elevated TN level in this section. The average TN content in
the rural section was comparable to that in the urban section, which may be related to
non-point sources from the predominant farming across the rural region, where nitrogen-
containing fertilizers could be leached into BR owing to surface runoff. Furthermore, the
mean TP content in the rural (842.22 ± 436.98 mg·kg−1) section was approximately half
of those in the town (1777.62 ± 643.39 mg·kg−1) and urban (1870.12 ± 1086.19 mg·kg−1)
sections. Phosphorous is relatively immobile in soils, and given its application as fertilizer
in farming activities in rural areas, phosphorus uptake by biota increases its retention
in the area [32]. In contrast, in the town and urban areas, phosphorus could enter the
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river system through impervious structures in the anthropogenic zones. According to
the sediment pollution evaluation criteria proposed by the United States Environmental
Protection Agency (EPA), over 90% of the 14 sampling sites were heavily contaminated
(TN > 2000 mg·kg−1, TP > 600 mg·kg−1), indicating that river ecosystems were destroyed by
human activities, leading to eutrophication. Moreover, the average TOC content of sedimen-
tary FA fractions decreased in the following order: Town (65.18 ± 31.36 mg·L−1) > Urban
(30.98 ± 13.20 mg·L−1) > Rural (20.57 ± 6.38 mg·L−1), which showed that the town section
exhibited the highest TOC, related to the industrial and residential activities. The effluent
from the industrial park with 20,000 m3·days−1 entered into the river at site S8; conse-
quently, it exhibited a higher TOC content than the other sampling sites. Specifically, the
TOC content significantly varied throughout the sedimentary FA fractions, with a coeffi-
cient of variation (CV) of 69.38% (Table S1), indicating that the distributions of sedimentary
FA fractions were strongly affected by multiple anthropogenic inputs and that significant
spatial differences occurred.

3.2. Fluorescence Spectroscopy Characteristics of Sedimentary FA Fractions

Through visual inspection, three representative pollution source types were obtained
in sedimentary FA fractions with six fluorescence peaks (Figure S2): peak tryptophan-like
(TRL, Ex/Em = 225–237 nm/340–381 nm); peak microbial humic-like (MHL, Ex/Em = 290–
310 nm/370–410 nm); peak soil-derived FA-like (FAL1, Ex/Em = 260–300 nm/400–500 nm);
peak ultraviolet FA-like (FAL2, Ex/Em = 237–260 nm/400–500 nm); peak visible FA-like
(FAL3, Ex/Em = 300–370 nm/400–500 nm); and peak terrestrial humic acid-like (HAL,
Ex/Em = 370–390 nm/480–500 nm) [20]. Sediments affected by different pollution sources
were measured and plotted as an EEM spectrum with various advantageous peaks. In the
spectrum of the sediments affected by agricultural effluent, peak FAL2 was the predominant
fluorophore of FA fractions (Figure S2a). The sedimentary FA fractions dominated by peak
MHL, FAL2, and FAL3 were mainly affected by industrial effluent (Figure S2b). Untreated
sewage effluent was raw sewage in municipal pipes, which flowed into BR owing to the
overloading of wastewater treatment plants that increased the fluorescence intensity of
peak FAL2 and MHL (Figure S2c).

The FI values of sedimentary FA fractions from BR were 1.55–2.03, with an average
value of 1.76 ± 0.09 (Figure S3a). Generally, FI values greater than 1.55 were associated
with microbial-derived sources [34]. This shows that the biological source of sedimentary
FA fractions was more significant than the terrestrial source in BR. The FI mean value in
the rural section (1.85 ± 0.07) was significantly higher than those in the urban (1.74 ± 0.05)
and town (1.69 ± 0.07) sections, indicating that the sedimentary FA fractions in the town
and urban sections exhibited stronger aromaticity than those in the rural section.

The BIX values were positively correlated with FA fractions formed from biological
activity [30]. The BIX values of sedimentary FA fractions from BR ranged from 0.67 to 1.23,
with an average value of 0.93 ± 0.11, indicating that most sediment samples of BR were
dominated by FA fractions from mixed sources (Figure S3a). The rural section exhibited a
higher mean BIX value (1.04 ± 0.10) than the urban (0.92 ± 0.06) and town (0.84 ± 0.09)
sections. This indicates that the contribution from autochthonous sources decreased in the
following order: Rural > Urban > Town.

The HIX values of sedimentary FA fractions from BR ranged from 2.14 to 9.23, with
a mean value of 5.93 ± 1.91, exhibiting a wide range of variation (Figure S3b). The town
section exhibited a slightly higher mean HIX value (7.00 ± 1.75) than the urban section
(6.44 ± 1.45). The rural section (4.08± 1.25) exhibited the lowest average value of HIX. This
indicates that the sedimentary FA fractions from the town and urban sections contained
higher amounts of condensed polyaromatic structures than that from the rural section.
Additionally, several sediment samples from the rural section exhibited low humification
levels, which may be associated with relatively low human and strong microbial activities;
thus, more endogenous FA fractions were released [23]. Furthermore, all sedimentary
FA fractions from the town and urban sections exhibited moderate humification levels
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(4 < HIX < 10), indicating that they were partly from exogenous input and biogeochemical
processes.

3.3. Identification of PARAFAC Analysis

To characterize the composition and distribution of sedimentary FA fractions, all
EEM data from the three sections were modeled using PARAFAC, and six independent
components were analyzed (Figure 2 and Table S2). The six components can be grouped
into two categories: one protein-like (C1) and five humus-like (C2, C3, C4, C5, and C6)
components. C1 (Ex/Em of 225 nm/380 nm) was identified as tryptophan-like (peak TRL)
associated with plankton production [30]. C2 (Ex/Em of 285 nm/390 nm) was identified as
microbial humic-like (peak MHL), related to biological products from the release of algae
and bacteria leachate [35]. C3 (Ex/Em of 260 nm/470 nm) was similar to soil-derived FA-like
(peak FAL1) [36]. C4 (Ex/Em of 240 nm/435 nm) represented the UV FA-like (peak FAL2),
which was usually derived from the breakdown of plant substances [35]. C5 (Ex/Em of
335 nm/420 nm) was identified as visible FA-like (peak FAL3), which was usually derived
from the breakdown of animal substances [35]. The broad and long wavelength peak of C6
(Ex/Em of 360 nm/480 nm) was categorized as terrestrial HAL compounds (peak HAL)
with a high molecular weight [14].
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(a) C1; (b) C2; (c) C3; (d) C4; (e) C5; (f) C6.

3.4. Distribution in Fluorescence Components

To investigate the variations in sedimentary FA fractions from different sections,
the variations in fluorescence intensity and proportion (%) of each component of the six
PARAFAC components were evaluated in detail (Figure 3). The total fluorescence inten-
sities in the town (5328.87 ± 1315.82 R.U.) and urban (4146.49 ± 535.75 R.U.) sections
were significantly higher than that in the rural (2510.56 ± 611.00 R.U.) section (Figure 3a).
This indicates that the town and urban sections faced heavier pollution of sedimentary
FA fractions than the rural section, which may be related to the large amounts of indus-
trial wastewater and urban domestic sewage occurring in the town and urban sections,
respectively. The rural section was surrounded by sparse villages and farmlands, asso-
ciated with a low intensity of anthropogenic activities, resulting in a low fluorescence
intensity of sedimentary FA fractions. The proportion of each component varied owing to
the different pollution source inputs (Figure 3b). For the rural section, %C4 (26.35 ± 1.36%)
exhibited the highest mean value of Fmax proportion, followed by %C1 (22.63 ± 2.47%),
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%C2 (17.61 ± 0.19%), %C3 (16.82 ± 2.33%), %C5 (11.85 ± 0.82%), and %C6 (4.74 ± 0.95%).
Peak FAL2 (C4) exhibited the strongest signal of sedimentary FA fractions in the rural
section, which is likely associated with the agricultural catchments in that region [25]. Peak
TRL (C1) exhibited the second-strongest signal of sedimentary FA fraction, which was a pre-
dominant biologically derived component associated with high primary production. The
mean values of Fmax proportion in the town section decreased in the following order: %C3
(21.05± 1.34%) > %C4 (19.16± 3.03%) > %C2 (18.79± 1.18%) > %C5 (17.92 ± 3.33%) > %C6
(11.98 ± 3.14%) > %C1 (11.10 ± 4.84%). The mean values of Fmax in the urban section
decreased as follows: %C4 (23.81 ± 0.89%) > %C3 (19.85 ± 0.94%) > %C1 (18.03 ± 1.90%)
> %C2 (17.67 ± 0.75%) > %C5 (13.42 ± 0.94%) > %C6 (7.22 ± 0.75%). A high protein
tryptophan-like (C1) abundance of sedimentary FA fractions was found in the rural and
urban sections, consistent with previous studies [37,38]. The percentages of sedimentary
FA fractions for the three sections decreased as follows: %C2 +%C3 +%C4 +%C5 +%C6
(humus-like, 77.37–88.90%) > %C1 (protein-like, 11.10–22.63%). As described, humus-like
compounds dominated the FA fraction because the terrestrial substances were the dominant
inputs, and labile protein-like compounds were rapidly consumed by microorganisms,
thus contributing a lower amount of protein-like fluorescence for sedimentary FA fractions.
In contrast, relatively stable humus-like compounds were preferentially preserved in the
sediments under hypoxic or anoxic conditions.
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Figure 3. Plots of maximum fluorescence intensity (a) and proportion of six components (b) from the
PARAFAC model in different sections.

3.5. Identification and Apportionment of Sedimentary FA Fractions Sources

The variations in sedimentary FA fractions and the influences of human activities
were further investigated via PCA. Figure 4 summarizes the PCA results, including the
factor loading and score plot. The loading whose absolute value was greater than 0.6 of
the total variance was highlighted. The first two principal components explained 62.15%
(PC1) and 23.84% (PC2) of the total variance. PC1 was positively correlated with TOC
(r = 0.868), C2 (r = 0.818), C3 (r = 0.877), C5 (r = 0.756), and C6 (r = 0.908), but PC1 was
negatively correlated with FI (r = −0.610). This indicates that higher PC1 was related to the
terrestrial sources with condensed polyaromatic structures and humus content associated
with industrial sources [29]. PC2 exhibited a strong positive correlation with TP (r = 0.910)
and C4 (r = 0.653), indicating that PC2 was mainly associated with the emission of domestic
sewage and agricultural effluent [39].
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Figure 4. PCA results show the interrelation between physicochemical parameters, optical indices,
and PARAFAC components. Samples are color-coded to represent the rural (green), town (red), and
urban (black) groups; The green ellipse is the sedimentary FA fractions with a 95% confidence level
in rural section; The red ellipse is the sedimentary FA fractions with a 95% confidence level in town
section; The black ellipse is the sedimentary FA fractions with a 95% confidence level in urban section;
Arrows (blue) represent the factor loadings.

The sedimentary FA fractions with a 95% confidence level formed a cluster for each
ellipse in the score plot. The rural and town groups were assigned to different sides of
PC1 and had different PC1 values. Sedimentary FA fraction signals of the rural group
were identified by FI and BIX. In contrast, those of the town group were identified by a
greater number of humus-like compounds (C2, C3, C5, and C6), which indicates a higher
autochthonous feature in the rural section and a higher humification degree in the town
section [40–42]. However, the urban group was located on the positive loading of PC2. It
was positively correlated with C1, which may be related to the stimulated growth of phyto-
plankton owing to the increased nutrient level and decreased pH level in the urban section
sediments. The combined results reveal that the properties of sedimentary FA fractions
were affected by long-term external input, which possibly promoted autochthonous pro-
duction owing to the decomposition and mineralization of terrestrial material by microbial
activity and phytoplankton production.

3.6. Dynamic Variations in Sedimentary FA Fractions from Different Sections

Sedimentary FA fractions are heterogeneous and influenced by environmental factors
such as pH, EC, and DO. These factors play a vital role in the dynamic variations of
sedimentary FA fractions. The transformation order of the sedimentary FA fractions from
different sections was further explored via 2D COS analysis.

Peak TRL was negatively correlated with FAL1 in the synchronous and asynchronous
maps (Figure 5a1,a2), while peak FAL1 was positively correlated with FAL2 in the two
maps (Figure 5b1,b2). Moreover, peak FAL3 was positively correlated with FAL2 in the syn-
chronous map but negatively correlated with FAL2 in the asynchronous map (Figure 5c1,c2).
The correlations between peak MHL and peak FAL3 were similar to those between peak
FAL3 and peak FAL2 (Figure 5d1,d2). According to Noda’s rule [27], the sequential changes
followed the order: TRL→FAL1→ FAL2→FAL3→MHL. Studies have shown a competitive
relationship between biodegradation and photodegradation when the primary source was
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endogenous [43]. Consequently, labile tryptophan-like substances in the rural section may
be first transformed into relatively high concentrations of nitrogenous precursors for the
formation of the FAL materials [39]. Under conditions of light radiation, microorganisms,
particularly Actinobacteria, participated in the utilization of FAL components, and several
complex FAL components were degraded into simple compounds, followed by the pro-
duction of MHL components [44]. Particularly, the degradation order of FAL components
(FAL1, FAL2, and FAL3) was arranged by decreasing Em wavelength, possibly because light
destroyed and degraded the more resistant structure of FAL components into usable sub-
strates. Peak MHL was positively correlated with peak HAL in both the synchronous and
asynchronous spectra (Figure 5e1,e2), showing the order of MHL→HAL, which indicates
that MAL compounds could form a stable HAL compound through microbial polymer-
ization [45]. The sequential changes followed the order of TRL→FAL→MHL→HAL for
sedimentary FA fractions in the rural section.
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Figure 5. Synchronous and asynchronous maps from 2D-COS analysis in the rural section. Red
and yellow represent positive correlations, and blue and green represent negative correlations.
(a1) Synchronous map, C1 vs. C3; (a2) asynchronous map, C1 vs. C3; (b1) synchronous map, C3 vs.
C4; (b2) asynchronous map, C3 vs. C4; (c1) synchronous map, C5 vs. C4; (c2) asynchronous map, C5
vs. C4; (d1) synchronous map, C2 vs. C5; (d2) asynchronous map, C2 vs. C5; (e1) synchronous map,
C2 vs. C6; and (e2) asynchronous map, C2 vs. C6.

The synchronous and asynchronous maps for the town section are shown in Figure 6.
Peaks TRL and FAL2 exhibited the same relationship (Figure 6a1,a2), while peaks FAL3
and FAL2 exhibited opposite relationships (Figure 6b1,b2) in the two maps, indicating
that the change order was TRL→FAL2→FAL3. The correlation between peaks FAL3 and
FAL1 (Figure 6c1,c2) showed the same signals, while peaks MHL and FAL1 exhibited
opposite signals (Figure 6d1,d2) in the two maps, which shows that the variation order was
FAL3→FAL1→MHL. Peaks MHL and HAL exhibited the same relationships (Figure 6e1,e2)
in the two maps, indicating that the variation order was MHL→HAL. Overall, the se-
quence variation of sedimentary FA fractions for the town section followed the order of
TRL→FAL2→FAL3→FAL1→MHL→HAL, similar to the variation trend of the rural section.
The variation is probably related to the same controlling factors in the rural section, such as
pH (Section 3.7). However, FAL1 degraded later than FAL2 and FAL3, attributable to two
factors, according to the reports by Yao et al. [46]: The first is physicochemical factors (e.g.,
pH, DO, TN, and TP), which were the most significant contributor to the river sediment
bacterial community (49.50%). The second factor is the occurrence of heavy metals, which
significantly contributed to the sediment fungal community (48.00%). The highest TN con-
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centration in the town section could significantly increase enzyme activity, facilitating the
conversion of active lignin and cellulose and promoting the degradation process of FAL2
derived from the breakdown of plant substances, consistent with the findings of Saiya-Cork
et al. [47], who observed that N addition increased βG (cellulolytic enzyme) activity. In our
previous study of heavy metals, the Naoxiao River near the town section of BR was proven
to undergo heavy metal pollution, particularly by Cd and Zn [48]. The presence of heavy
metals in the town section caused by exogenous input, such as through industrial sewage
and domestic sewage discharge, may alter the fungal community structure and properties.
For example, the heavy metals Cd and Zn can significantly affect the distribution and
microbial functions of saprotrophs, which were the dominant trophic mode of the fungal
community in sediment, mainly responsible for the decomposition of plant and animal
residues (FAL2 and FAL3) [49].
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Figure 6. Synchronous and asynchronous maps from 2D-COS analysis in the town section. Red
and yellow represent positive correlations, and blue and green represent negative correlations.
(a1) Synchronous map, C1 vs. C4; (a2) asynchronous map, C1 vs. C4; (b1) synchronous map, C5 vs.
C4; (b2) asynchronous map, C5 vs. C4; (c1) synchronous map, C5 vs. C3; (c2) asynchronous map, C5
vs. C3; (d1) synchronous map, C2 vs. C3; (d2) asynchronous map, C2 vs. C3; (e1) synchronous map,
C2 vs. C6; and (e2) asynchronous map, C2 vs. C6.

Figure 7 shows the synchronous and asynchronous maps for the urban section. The
relationship between peaks MHL and TRL (Figure 7a1,a2) exhibited opposite signals
in the two maps. In contrast, peaks MHL and FAL3 (Figure 7b1,b2), FAL3 and FAL2
(Figure 7c1,c2) and FAL2 and FAL1 (Figure 7d1,d2) exhibited the same signals, indicating
that the variation followed the order of TRL→MHL→FAL3→FAL2→FAL1. The correla-
tion between peaks HAL and FAL1 (Figure 7e1,e2) showed opposite signals in the two
maps, indicating that the variation order was FAL1→HAL. Hence, the sequential change
order was TRL→MHL→FAL3→FAL2→FAL1→ HAL for the urban section, which follows
increasing Em wavelength. Generally, it has been reported that the fluorescence features at
longer Em could be linked with larger-size and higher-density structures [22]. This indi-
cates that the formation and transformation of sedimentary FA fractions tend to be more
complex and stable [50–52], consistent with the normal composting owing to the lowest
DO concentration (close to anoxia state) in the urban section (Table S1). The sequential
change order of sedimentary FA fractions differed among the three sections, and the effects
of environmental variables and terrestrial inputs on the decomposition and polymeriza-
tion of sedimentary FA fractions remain unclear. Thus, further exploring the influencing
mechanism is vital.
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Figure 7. Synchronous and asynchronous maps from 2D-COS analysis in the urban section. Red
and yellow represent positive correlations, and blue and green represent negative correlations.
(a1) Synchronous map, C2 vs. C1; (a2) asynchronous map, C2 vs. C1; (b1) synchronous map, C2 vs.
C5; (b2) asynchronous map, C2 vs. C5; (c1) synchronous map, C5 vs. C4; (c2) asynchronous map, C5
vs. C4; (d1) synchronous map, C4 vs. C3; (d2) asynchronous map, C4 vs. C3; (e1) synchronous map,
C6 vs. C3; (e2) asynchronous map, C6 vs. C3.

3.7. Environmental Factors Affecting the Transformation of Sedimentary FA Fractions

IBM SPSS AMOS 22 was employed to further explore the causal relationships between
environmental factors, nutrients, and sedimentary FA fractions from BR [53]. For Chi-
square/df = 4.647 and p = 0.000, the SEM model revealed the correlation of environmental
factors with the transformation of sedimentary FA fractions [30]. “Protein” and “Humus”
were latent variables (in ovals) (Figure 8), while the others were observed variables (in
rectangles). The path coefficients of TOC with pH, DO, and EC were 0.78, −0.64, and
0.28, respectively, which may be related to the conducive effect of the environmental
variables on the biological processes of sedimentary FA fractions through the influence of
the variables on microbial communities and functions. Particularly, pH showed the most
significant direct correlation with nutrients, which was consistent with the previous reports
that pH could significantly influence the environmental behavior of the sedimentary FA
fractions by altering nitrogen-related functions [4,46]. Zhang et al. [12] found that phylum
Proteobacteria and Chloroflexi were the dominant phyla in the river sediment, preferring
the degradation of aromatic compounds and protein-like substances. Moreover, Wang
et al. [54] reported that Actinomycetes and Planctomycetes in the sediments could be
potentially involved in organic matter degradation and methane and nitrogen cycling
processes, and the higher abundance of Limnohabitans was related to the lower pH and its
sensitivity to acid. The path coefficients of TOC with protein and humus were −0.59 and
0.65, respectively, indicating that TRL materials were mainly derived from autochthonous
sources, and humic-like materials were mainly derived from allochthonous sources [21].
Moreover, protein exhibited a significant negative effect (−0.21) on the humus, and the
factor loading decreased in the following order: FI (1.00) > BIX (0.98) > C1 (−0.05). Thus,
FI and BIX exhibited significant indirect negative effects on humus, mediated by the
latent variable of protein, particularly FI. This can be attributed to the transformation
of large amounts of allochthonous FA fractions in the sediments into autochthonous FA
fractions through microbial metabolism, which indicates that the autochthonous origins
were dominant in BR. Additionally, the path coefficient (0.37) of TP with humus was
positive, possibly because the nutrients from terrestrial input could facilitate microbial
transformation or humus production [55]. All TN/TP values were <20 (Table S1), which
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confirms previous reports that for TN/TP values less than 20, TN is deficient, and TP is the
limiting factor [56]. TP as the prominent driver of the bacterial community, is considered
closely related to chemoheterotrophy and fermentation [57]. In the humus measurement
model, the factor loadings decreased in the following order: C5 (1.00) > C2 (0.99) > C3
(0.98) > C6 (0.94) > C4 (0.80). This indicates that the C5 and C2 exhibited a significant
direct correlation with the latent variable of humus, related to the exogenous input and the
diverse microorganisms existing in the sediment. With a higher TOC concentration and
lower DO content, the bacteria in the sediment became more active, which caused a release
of bacterial metabolizing FA fractions [58]. In Figure 8, doubled-headed arrows indicate
correlations between variables (e.g., C1 and C2; C1 and C4), revealing that sedimentary FA
fractions tended to stabilize as protein-like components were transformed into humus-like
components [59], which was consistent with the results of Section 3.6.
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4. Conclusions

Variations in sedimentary FA fractions in three sections of an urban river were ex-
plored. In the sediments, the biological source of FA fractions was more significant than
the terrestrial source, particularly in the rural section. The results of PCA revealed that the
sedimentary FA fractions were mainly affected by the discharge of industrial wastewater,
domestic wastewater, and agricultural effluent. Six components were identified from the
sedimentary FA fractions: C1 comprised TRL compounds; C2 was associated with MHL
compounds; C3, C4, and C5 were related to FAL compounds; and C6 comprised HAL
compounds. The sequential variation of sedimentary FA fractions for the rural and town
sections followed the order of TRL→FAL→MHL→HAL. In contrast, that of sedimentary
FA fractions for the urban section followed the order of TRL→MHL→FAL→HAL. Ac-
cording to SEM, the pH and TP were the critical environmental variables that influenced
the transformation of sedimentary FA fractions, labile protein-like component (C1) was
transformed into a stable HAL component (C6), and the stable HAL component might
persist for a long time in the environment and promote the internal release. Consequently,
the strict control of external source discharge and the adoption of remedial measures to
improve the river ecosystem is highly recommended.
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52. Łomińska-Płatek, D.; Anielak, A.M. Quantitative balance and analysis of fulvic acids changes in the process of municipal sewage
treatment. Water Resour. Ind. 2021, 26, 100155. [CrossRef]

53. Igolkina, A.A.; Meshcheryakov, G. semopy: A python package for structural equation modeling. Struct. Equ. Model. Multidiscip. J.
2020, 27, 952–963. [CrossRef]

54. Wang, H.J.; Liu, X.C.; Wang, Y.L.; Zhang, S.Q.; Zhang, G.M.; Han, Y.Y.; Li, M.X.; Liu, L. Spatial and temporal dynamics of
microbial community composition and factors influencing the surface water and sediments of urban rivers. J. Environ. Sci. 2023,
124, 187–197. [CrossRef]

55. Williams, C.J.; Yamashita, Y.; Wilson, H.F.; Jaffé, R.; Xenopoulos, M.A. Unraveling the role of land use and microbial activity in
shaping dissolved organic matter characteristics in stream ecosystems. Limnol. Oceanogr. 2010, 55, 1159–1171. [CrossRef]

56. Guildford, S.J.; Hecky, R.E. Total nitrogen, total phosphorus, and nutrient limitation in lakes and oceans: Is there a common
relationship. Limnol. Oceanogr. 2000, 45, 1213–1223. [CrossRef]

57. Jiao, C.; Zhao, D.; Zeng, J.; Guo, L.; Yu, Z. Disentangling the seasonal co-occurrence patterns and ecological stochasticity of
planktonic and benthic bacterial communities within multiple lakes. Sci. Total Environ. 2020, 740, 140010. [CrossRef]

58. Cao, J.X.; Sun, Q.; Zhao, D.H.; Xu, M.Y.; Shen, Q.S.; Wang, D.; Wang, Y.; Ding, S.M. A critical review of the appearance of
black-odorous waterbodies in China and treatment methods. J. Hazard. Mater. 2020, 385, 18. [CrossRef]

59. Zhu, L.J.; Zhao, Y.; Bai, S.C.; Zhou, H.X.; Chen, X.M.; Wei, Z.M. New insights into the variation of dissolved organic matter
components in different latitudinal lakes of northeast China. Limnol. Oceanogr. 2020, 65, 471–481. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1038/ngeo391
https://doi.org/10.1016/j.biortech.2018.11.084
https://doi.org/10.1016/j.marchem.2020.103854
https://doi.org/10.1016/j.envres.2021.111022
https://doi.org/10.1016/j.watres.2016.05.021
https://www.ncbi.nlm.nih.gov/pubmed/27192356
https://doi.org/10.1046/j.1461-0248.2001.00245.x
https://doi.org/10.1016/j.jhydrol.2022.127792
https://doi.org/10.1016/j.wasman.2015.02.010
https://www.ncbi.nlm.nih.gov/pubmed/25736580
https://doi.org/10.1016/j.envpol.2022.119129
https://doi.org/10.1016/S0038-0717(02)00074-3
https://doi.org/10.13227/j.hjkx.202107215
https://doi.org/10.1016/j.scitotenv.2019.136295
https://doi.org/10.1038/srep08723
https://doi.org/10.1016/j.chemosphere.2008.08.012
https://doi.org/10.1016/j.wri.2021.100155
https://doi.org/10.1080/10705511.2019.1704289
https://doi.org/10.1016/j.jes.2021.10.016
https://doi.org/10.4319/lo.2010.55.3.1159
https://doi.org/10.4319/lo.2000.45.6.1213
https://doi.org/10.1016/j.scitotenv.2020.140010
https://doi.org/10.1016/j.jhazmat.2019.121511
https://doi.org/10.1002/lno.11316

	Introduction 
	Materials and Methods 
	Sampling and Processing 
	Sedimentary FA Fraction Extraction 
	Physicochemical Analysis 
	Fluorescence Measurements and PARAFAC Analysis 
	Two-Dimensional Correlation Spectroscopy (2D-COS) Analysis 
	Statistical Analysis 

	Results and Discussion 
	Physicochemical Parameters 
	Fluorescence Spectroscopy Characteristics of Sedimentary FA Fractions 
	Identification of PARAFAC Analysis 
	Distribution in Fluorescence Components 
	Identification and Apportionment of Sedimentary FA Fractions Sources 
	Dynamic Variations in Sedimentary FA Fractions from Different Sections 
	Environmental Factors Affecting the Transformation of Sedimentary FA Fractions 

	Conclusions 
	References

