Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates
Abstract
:1. Introduction
2. Water Scarcity
2.1. Water Scarcity in the Middle East and North Africa (MENA) Region
2.2. Water Scarcity in the UAE
3. Wastewater and Its Treatment
3.1. Wastewater
3.2. Wastewater Treatment
3.2.1. Primary Treatment
3.2.2. Secondary Treatment
3.2.3. Tertiary Treatment Methods
4. Treated Wastewater in Agriculture
4.1. Global Scenario of Wastewater Use for Crop Irrigation
4.2. Benefits of Using Wastewater Reuse in Agriculture
4.3. Risks of Irrigation with Untreated Wastewater
4.4. Health and Environmental Risks of Waste Water Irrigation
4.5. Recent Guidelines for the Safe Reuse of Wastewater Irrigation
5. Challenges for Sustainable Agriculture in the UAE
6. Wastewater in UAE
7. Treated Wastewater Irrigation in UAE
8. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bringezu, S. Toward science-based and knowledge-based targets for global sustainable resource use. Resources 2019, 8, 140. [Google Scholar] [CrossRef] [Green Version]
- Xia, R.; Zhang, Y.; Critto, A.; Wu, J.; Fan, J.; Zheng, Z.; Zhang, Y. The potential impacts of climate change factors on freshwater eutrophication: Implications for research and countermeasures of water management in China. Sustainability 2016, 8, 229. [Google Scholar] [CrossRef] [Green Version]
- Sofroniou, A.; Bishop, S. Water scarcity in Cyprus: A review and call for integrated policy. Water 2014, 6, 2898–2928. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. World water resources and achieving water security. Agron. J. 2015, 107, 1526–1532. [Google Scholar] [CrossRef] [Green Version]
- Postel, S.L. Entering an era of water scarcity: The challenges ahead. Ecol. Appl. 2000, 10, 941–948. [Google Scholar] [CrossRef]
- Gude, V.G. Desalination and water reuse to address global water scarcity. Rev. Environ. Sci. Bio/Technol. 2017, 16, 591–609. [Google Scholar] [CrossRef]
- Hoekstra, A.Y. Water footprint assessment: Evolvement of a new research field. Water Resour. Manag. 2017, 31, 3061–3081. [Google Scholar] [CrossRef] [Green Version]
- Massoud, E.C.; Purdy, A.J.; Miro, M.E.; Famiglietti, J.S. Projecting groundwater storage changes in California’s Central Valley. Sci. Rep. 2018, 8, 12917. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Tapley, B.D.; Bettadpur, S.; Ries, J.C.; Thompson, P.F.; Watkins, M.M. GRACE measurements of mass variability in the Earth system. Science 2004, 305, 503–505. [Google Scholar] [CrossRef] [Green Version]
- Lenzen, M.; Moran, D.; Bhaduri, A.; Kanemoto, K.; Bekchanov, M.; Geschke, A.; Foran, B. International trade of scarce water. Ecol. Econ. 2013, 94, 78–85. [Google Scholar] [CrossRef]
- Karn, S.K.; Harada, H. Surface water pollution in three urban territories of Nepal, India, and Bangladesh. Environ. Manag. 2001, 28, 483–496. [Google Scholar]
- World Bank. Making the Most of Scarcity: Accountability for Better Water Management Results in the Middle East and North Africa; MENA Development Report; World Bank: Washington, DC, USA, 2007. [Google Scholar]
- Seckler, D.; Barker, R.; Amarasinghe, U. Water scarcity in the twenty-first century. Int. J. Water Resour. Dev. 1999, 15, 29–42. [Google Scholar] [CrossRef]
- Qadir, M.; Bahri, A.; Sato, T.; Al-Karadsheh, E. Wastewater production, treatment, and irrigation in Middle East and North Africa. Irrig. Drain. Syst. 2010, 24, 37–51. [Google Scholar] [CrossRef]
- Shihab, M. Economic Development in the UAE. In United Arab Emirates: A New Perspective; Trident Press: Cape Town, South Africa, 2001; pp. 249–259. [Google Scholar]
- Dakkak, A. Water Management in UAE. Glossary | Databank. 2020. Available online: https://www.ecomena.org/water-management-uaDatabank.worldbank.org (accessed on 12 March 2020).
- Alsharhan, A.S.; Rizk, Z.E. Water Resources and Integrated Management of the United Arab Emirates; Springer Nature: Berlin, Germany, 2020; Volume 3. [Google Scholar]
- Tenaiji, A.; Kulaib, A.A. The Food–Water Dilemma of Agriculture in Arid Regions: Assessing Abu Dhabi Water Options for Domestic Agriculture. Doctoral Dissertation, Brunel University, London, UK, 2019. [Google Scholar]
- Paul, P.; Tenaiji, A.; Kulaib, A.; Braimah, N. A review of the water and energy sectors and the use of a nexus approach in Abu Dhabi. Int. J. Environ. Res. Public Health 2016, 13, 364. [Google Scholar] [CrossRef] [Green Version]
- Klemeš, J.J. Industrial water recycle/reuse. Curr. Opin. Chem. Eng. 2012, 1, 238–245. [Google Scholar] [CrossRef]
- Majdalawi, M.I. A Preliminary Assessment of Subsidies of Water Consumption: A Case Study United Arab Emirates. Jordan J. Agric. Sci. 2012, 173, 1–32. [Google Scholar]
- Ma, H.; Allen, H.E.; Yin, Y. Characterization of isolated fractions of dissolved organic matter from natural waters and a wastewater effluent. Water Res. 2001, 35, 985–996. [Google Scholar] [CrossRef]
- Jetten, M.S.; Horn, S.J.; van Loosdrecht, M.C. Towards a more sustainable municipal wastewater treatment system. Water Sci. Technol. 1997, 35, 171–180. [Google Scholar] [CrossRef]
- Gray, N.F. Biology of Wastewater Treatment; Imperial College Press: London, UK, 2004. [Google Scholar]
- Mutengu, S.; Hoko, Z.; Makoni, F.S. An assessment of the public health hazard potential of wastewater reuse for crop production. A case of Bulawayo city, Zimbabwe. Phys. Chem. Earth Parts A/B/C 2007, 32, 1195–1203. [Google Scholar] [CrossRef]
- Birley, M.H.; Lock, K. Health and peri-urban natural resource production. Environ. Urban. 1998, 10, 89–106. [Google Scholar] [CrossRef]
- Grant, S.B.; Saphores, J.D.; Feldman, D.L.; Hamilton, A.J.; Fletcher, T.D.; Cook, P.L.; Stewardson, M.; Sanders, B.F.; Levin, L.A.; Ambrose, R.F.; et al. Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 2012, 337, 681–686. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iroegbu, A.O.; Sadiku, R.E.; Ray, S.S.; Hamam, Y. Plastics in municipal drinking water and wastewater treatment plant effluents: Challenges and opportunities for South Africa—A review. Environ. Sci. Pollut. Res. 2020, 27, 12953–12966. [Google Scholar] [CrossRef]
- Iglesias Esteban, R.; Ortega de Miguel, E. Present and future of wastewater reuse in Spain. Desalination 2008, 218, 105–119. [Google Scholar] [CrossRef]
- Davis, M.L. Water and Wastewater Engineering: Design Principles and Practice; McGraw-Hill Education: New York, NY, USA, 2010. [Google Scholar]
- Hill, M.K. Understanding Environmental Pollution; Cambridge University Press: Cambridge, UK, 2020. [Google Scholar]
- Akpor, O.B.; Muchie, M. Remediation of heavy metals in drinking water and wastewater treatment systems: Processes and applications. Int. J. Phys. Sci. 2010, 5, 1807–1817. [Google Scholar]
- Van Voorthuizen, E.; Zwijnenburg, A.; van der Meer, W.; Temmink, H. Biological black water treatment combined with membrane separation. Water Res. 2008, 42, 4334–4340. [Google Scholar] [CrossRef]
- Andreadakis, A.; Noutsopoulos, C.; Mantziaras, I.D.; Kouris, N. Greywater Characterization and Treatment. In Proceedings of the IWA Balkan Young Water Professionals 2015, Thessaloniki, Greece, 10–12 May 2015. [Google Scholar]
- Lazarova, Z.; Spendlingwimmer, R. Treatment of yellow water by membrane separations and advanced oxidation methods. Water Sci. Technol. 2008, 58, 419–426. [Google Scholar] [CrossRef]
- Wang, S.; Li, H.; Xie, S.; Liu, S.; Xu, L. Physical and chemical regeneration of zeolitic adsorbents for dye removal in wastewater treatment. Chemosphere 2006, 65, 82–87. [Google Scholar] [CrossRef]
- Bhuptawat, H.; Folkard, G.K.; Chaudhari, S. Innovative physico-chemical treatment of wastewater incorporating Moringa oleifera seed coagulant. J. Hazard. Mater. 2007, 142, 477–482. [Google Scholar] [CrossRef]
- Verlicchi, P.; Al Aukidy, M.; Zambello, E. Occurrence of pharmaceutical compounds in urban wastewater: Removal, mass load and environmental risk after a secondary treatment-a review. Sci. Total Environ. 2012, 429, 123–155. [Google Scholar] [CrossRef]
- Montazeri, N.; Goettert, D.; Achberger, E.C.; Johnson, C.N.; Prinyawiwatkul, W.; Janes, M.E. Pathogenic enteric viruses and microbial indicators during secondary treatment of municipal wastewater. Appl. Environ. Microbiol. 2015, 81, 6436–6445. [Google Scholar] [CrossRef] [Green Version]
- Rosso, D.; Larson, L.E.; Stenstrom, M.K. Aeration of large-scale municipal wastewater treatment plants: State of the art. Water Sci. Technol. 2008, 57, 973–978. [Google Scholar] [CrossRef] [PubMed]
- Butler, E.; Hung, Y.T.; Al Ahmad, M.S.; Yeh, R.Y.L.; Liu, R.L.H.; Fu, Y.P. Oxidation pond for municipal wastewater treatment. Appl. Water Sci. 2017, 7, 31–51. [Google Scholar] [CrossRef] [Green Version]
- Høibye, L.; Clauson-Kaas, J.; Wenzel, H.; Larsen, H.F.; Jacobsen, B.N.; Dalgaard, O. Sustainability assessment of advanced wastewater treatment technologies. Water Sci. Technol. 2008, 58, 963–968. [Google Scholar] [CrossRef] [PubMed]
- Petala, M.; Tsiridis, V.; Samaras, P.; Zouboulis, A.; Sakellaropoulos, G.P. Wastewater reclamation by advanced treatment of secondary effluents. Desalination 2006, 195, 109–118. [Google Scholar] [CrossRef]
- Malkawi, H.I.; Mohammad, M.J. Survival and accumulation of microorganisms in soils irrigated with secondary treated wastewater. J. Basic Microbiol. Int. J. Biochem. Physiol. Genet. Morphol. Ecol. Microorg. 2003, 43, 47–55. [Google Scholar] [CrossRef]
- Livermore, D.M. beta-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 1995, 8, 557–584. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, T.; Zhang, X.X.; Liang, D.W.; Zhang, M.; Gao, D.W.; Zhu, H.G.; Huang, Q.G.; Fang, H.H. Quantification and characterization of β-lactam resistance genes in 15 sewage treatment plants from East Asia and North America. Appl. Microbiol. Biotechnol. 2012, 95, 1351–1358. [Google Scholar] [CrossRef]
- Oliveri, E.; Manta, D.S.; Bonsignore, M.; Cappello, S.; Tranchida, G.; Bagnato, E.; Sabatino, N.; Santisi, S.; Sprovieri, M. Mobility of mercury in contaminated marine sediments: Biogeochemical pathways. Mar. Chem. 2016, 186, 1–10. [Google Scholar] [CrossRef]
- Quach-Cu, J.; Herrera-Lynch, B.; Marciniak, C.; Adams, S.; Simmerman, A.; Reinke, R.A. The effect of primary, secondary, and tertiary wastewater treatment processes on antibiotic resistance gene (ARG) concentrations in solid and dissolved wastewater fractions. Water 2018, 10, 37. [Google Scholar] [CrossRef] [Green Version]
- Hook, J.E. Movement of phosphorus and nitrogen in soil following application of municipal wastewater. Chem. Mobil. React. Soil Syst. 1983, 11, 241–255. [Google Scholar]
- Sidle, R.C.; Kardos, L.T. Aqueous release of heavy metals from two sewage sludges. Water Air Soil Pollut. 1977, 8, 453–459. [Google Scholar] [CrossRef]
- Appels, R.; Andrews, N.; Appelqvist, I.A.; Arcot, J.; Arkle, P.; Archibald, D.C.; Batt, P.J.; Barton, M.; Bartlett, R.; Blight, D. Food and Water Security: Our Global Challenge: FDI Landmark Study; Future Directions International: Nedlands, WA, USA, 2014. [Google Scholar]
- Jimenez, B.; Asano, T. Water reclamation and reuse around the world. In Water Reuse: An International Survey of Current Practice, Issues and Needs; IWA Publishing: London, UK, 2008; Volume 14, pp. 3–26. [Google Scholar]
- Nsheiwat, Z.B. Wastewater use in Jordan: An introduction. In Wastewater Reuse-Risk Assessment, Decision-Making and Environmental Security; Springer: Dordrecht, The Netherlands, 2007; pp. 73–79. [Google Scholar]
- Angelakis, A.N.; Gikas, P. Water reuse: Overview of current practices and trends in the world with emphasis on EU states. Water Util. J. 2014, 8, e78. [Google Scholar]
- Tzanakakis, V.E.; Paranychianaki, N.V.; Angelakis, A.N. Soil as a wastewater treatment system: Historical development. Water Sci. Technol. Water Supply 2007, 7, 67–75. [Google Scholar] [CrossRef]
- Tak, H.I.; Inam, A.; Inam, A. Effects of urban wastewater on the growth, photosynthesis and yield of chickpea under different levels of nitrogen. Urban Water J. 2010, 7, 187–195. [Google Scholar] [CrossRef]
- Bastian, R. The future of water reuse. BioCycle 2006, 47, 25–27. [Google Scholar]
- Tzanakakis, V.; Koo-Oshima, S.; Haddad, M.; Apostolidis, N.; Angelakis, A.; Angelakis, A.; Rose, J. The history of land application and hydroponic systems for wastewater treatment and reuse. In Evolution of Sanitation and Wastewater Technologies through the Centuries; IWA Publishing: London, UK, 2014; Volume 1, p. 457. [Google Scholar]
- Van der Hoek, W.; Hassan, M.U.; Ensink, J.H.; Feenstra, S.; Raschid-Sally, L.; Munir, S.; Aslam, R.; Ali, N.; Hussain, R.; Matsuno, Y. Urban Wastewater: A Valuable Resource for Agriculture: A Case Study from Haroonabad, Pakistan; IWMI: Colombo, Sri Lanka, 2002; Volume 63. [Google Scholar]
- Amoah, P.; Drechsel, P.; Henseler, M.; Abaidoo, R.C. Irrigated urbanvegetableproduction in Ghana: Microbiological contamination in farms and markets and associated consumer risk groups. J. Water Health 2007, 5, 455–466. [Google Scholar] [CrossRef] [Green Version]
- Dawoud, M.A. Treated wastewater reuse for food production in Arab region. Arab Water Counc. J. 2017, 8, 55–86. [Google Scholar]
- Angelakis, A.N.; Snyder, S.A. Wastewater treatment and reuse: Past, present, and future. Water 2015, 7, 4887–4895. [Google Scholar] [CrossRef] [Green Version]
- Takashi, A.; Franklin, B.; Harold, L. Water Reuse: Issues, Technologies, and Applications; McGraw Hill: New York, NY, USA, 2007. [Google Scholar]
- Asano, T.; Levine, A.D. Wastewater reclamation, recycling and reuse: Past, present, and future. Water Sci. Technol. 1996, 33, 1–14. [Google Scholar] [CrossRef]
- World Health Organization. Health Guidelines for the Use of Wastewater in Agriculture and Aquaculture: Report of a WHO Scientific Group (Meeting Held in Geneva from 18 to 23 November 1987); World Health Organization: Geneva, Switzerland, 1989. [Google Scholar]
- Carr, R. WHO guidelines for safe wastewater use-more than just numbers. Irrig. Drain. J. Int. Comm. Irrig. Drain. 2005, 54, S103–S111. [Google Scholar] [CrossRef]
- Kamizoulis, G. Setting health based targets for water reuse (in agriculture). Desalination 2008, 218, 154–163. [Google Scholar] [CrossRef]
- Mara, D.D.; Sleigh, P.A.; Blumenthal, U.J.; Carr, R.M. Health risks in wastewater irrigation: Comparing estimates from quantitative microbial risk analyses and epidemiological studies. J. Water Health 2007, 5, 39–50. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mara, D.; Kramer, A. The 2006 WHO guidelines for wastewater and greywater use in agriculture: A practical interpretation. In Efficient Management of Wastewater; Springer: Berlin/Heidelberg, Germany, 2008; pp. 1–17. [Google Scholar]
- USPEA (United States. Environmental Protection Agency). Office of Wastewater Management. Municipal Support Division, National Risk Management Research Laboratory (US). Technology Transfer, & Support Division. Guidelines for Water Reuse; US Environmental Protection Agency: Washington, DC, USA, 2014. [Google Scholar]
- Pedersen, J.A.; Soliman, M.; Suffet, I.H. Human pharmaceuticals, hormones, and personal care product ingredients in runoff from agricultural fields irrigated with treated wastewater. J. Agric. Food Chem. 2005, 53, 1625–1632. [Google Scholar] [CrossRef]
- Venglovsky, J.; Sasakova, N.; Placha, I. Pathogens and antibiotic residues in animal manures and hygienic and ecological risks related to subsequent land application. Bioresour. Technol. 2009, 100, 5386–5391. [Google Scholar] [CrossRef]
- Massoud, M.A.; Tarhini, A.; Nasr, J.A. Decentralized approaches to wastewater treatment and management: Applicability in developing countries. J. Environ. Manag. 2009, 90, 652–659. [Google Scholar] [CrossRef]
- Hanjra, M.A.; Drechsel, P.; Mateo-Sagasta, J.; Otoo, M.; Hernández-Sancho, F. Assessing the finance and economics of resource recovery and reuse solutions across scales. In Wastewater; Springer: Dordrecht, The Netherlands, 2015; pp. 113–136. [Google Scholar]
- Becerra-Castro, C.; Lopes, A.R.; Vaz-Moreira, I.; Silva, E.F.; Manaia, C.M.; Nunes, O.C. Wastewater reuse in irrigation: A microbiological perspective on implications in soil fertility and human and environmental health. Environ. Int. 2015, 75, 117–135. [Google Scholar] [CrossRef] [Green Version]
- Winpenny, J.; Heinz, I.; Koo-Oshima, S.; Salgot, M.; Collado, J.; Hérnandez, F.; Torricelli, R. Reutilización del Agua en la Agricultura:¿ Beneficios Para Todos; Informe Sobre Temas Hidricos FAO.124; FAO: Roma, Italy, 2013. [Google Scholar]
- Gomiero, T.; Paoletti, M.G.; Pimentel, D. Energy and environmental issues in organic and conventional agriculture. Crit. Rev. Plant Sci. 2008, 27, 239–254. [Google Scholar] [CrossRef]
- El-Nahhal, Y.; Awad, Y.; Safi, J.M. Bioremediation of acetochlor in soil and water systems by cyanobacterial mat. Int. J. Geosci. 2013, 4, 880–890. [Google Scholar] [CrossRef] [Green Version]
- Safary, S.; Hajrasoliha, S. Effects of North Isfahan sewage effluent on the soils of Borkhar region and composition of alfalfa. In 5th Soil Science Congress; Agricultural Vocational School: Karaj, Iran, 1995. [Google Scholar]
- Rattan, R.K.; Datta, S.P.; Chhonkar, P.K.; Suribabu, K.; Singh, A.K. Long-term impact of irrigation with sewage effluents on heavy metal content in soils, crops and groundwater-a case study. Agric. Ecosyst. Environ. 2005, 109, 310–322. [Google Scholar] [CrossRef]
- Singh, J.; Upadhyay, S.K.; Pathak, R.K.; Gupta, V. Accumulation of heavy metals in soil and paddy crop (Oryza sativa), irrigated with water of Ramgarh Lake, Gorakhpur, UP, India. Toxicol. Environ. Chem. 2011, 93, 462–473. [Google Scholar] [CrossRef]
- Wang, Y.; Qiao, M.; Liu, Y.; Zhu, Y. Health risk assessment of heavy metals in soils and vegetables from wastewater irrigated area, Beijing-Tianjin city cluster, China. J. Environ. Sci. 2012, 24, 690–698. [Google Scholar] [CrossRef]
- Khan, N.; Bano, A. Role of plant growth promoting rhizobacteria and Ag-nano particle in the bioremediation of heavy metals and maize growth under municipal wastewater irrigation. Int. J. Phytoremediation 2016, 18, 211–221. [Google Scholar] [CrossRef]
- Aziz, F.; Farissi, M. Reuse of treated wastewater in agriculture: Solving water deficit problems in arid areas. Ann. West Univ. Timisoara. Ser. Biol. 2014, 17, 95. [Google Scholar]
- Salati, S.; Moore, F. Assessment of heavy metal concentration in the Khoshk River water and sediment, Shiraz, Southwest Iran. Environ. Monit. Assess. 2010, 164, 677–689. [Google Scholar] [CrossRef]
- Balkhair, K.S.; El-Nakhlawi, F.S.; Ismail, S.M.; Al-Solimani, S.G. Treated wastewater use and its effect on water conservation, vegetative yeild, yield components and water use efficiency of some vegetable crops grown under two different irrigation systems in western region, Saudi Arabia. Eur. Sci. J. 2013, 9, 395–402. [Google Scholar]
- Odhiambo, G.O. Water scarcity in the Arabian Peninsula and socio-economic implications. Appl. Water Sci. 2017, 7, 2479–2492. [Google Scholar] [CrossRef] [Green Version]
- Al-Dhaheri, S.; Al-Cibahy, A.; Javed, S.; Grandcourt, E.; Bin-Kulaib, R.; Al-Mazrouei, S. Abu Dhabi State of Environment Report 2017—Biodiversity; Environment Agency Abu Dhabi: Abu Dhabi, United Arab Emirates, 2017; p. 18. [Google Scholar]
- Al-Mulla, M. UAE State of the Water Report. In Proceedings of the 2nd Arab Water Forum, Cairo, Egypt, 20–23 November 2011. [Google Scholar]
- Qadir, M.; Sharma, B.R.; Bruggeman, A.; Choukr-Allah, R.; Karajeh, F. Non-conventional water resources and opportunities for water augmentation to achieve food security in water scarce countries. Agric. Water Manag. 2007, 87, 2–22. [Google Scholar] [CrossRef]
- Henze, M.; Ledin, A. Types, characteristics and quantities of classic, combined domestic wastewaters. In Decentralised Sanitation and Reuse; Concepts, Systems and Implementation; Lens, P., Zeeman, G., Lettinga, G., Eds.; IWA Publishing: London, UK, 2001. [Google Scholar]
- Srinivasan, J.T.; Reddy, V.R. Impact of irrigation water quality on human health: A case study in India. Ecol. Econ. 2009, 68, 2800–2807. [Google Scholar] [CrossRef]
- Mateo-Sagasta, J.; Burke, J. Agriculture and Water Quality Interactions: A Global Overview; SOLAW Background Thematic Report-TR08; FAO: Roma, Italy, 2012; p. 46. [Google Scholar]
- World Health Organization. WHO Guidelines for the Safe Use of Wastewater Excreta and Greywater; World Health Organization: Geneva, Switzerland, 2006; Volume 1. [Google Scholar]
- Bazza, M. Policies for water management and food security under water-scarcity conditions: The case of GCC countries. In Proceedings of the 7th Gulf Water Conference, Kuwait City, Kuwait, 19–23 November 2005; pp. 19–23. [Google Scholar]
- Saif, O.; Mezher, T.; Arafat, H.A. Water security in the GCC countries: Challenges and opportunities. J. Environ. Stud. Sci. 2014, 4, 329–346. [Google Scholar] [CrossRef]
- Ghaly, A.E.; Farag, H.A.; Verma, M. A hydroponic system for purification of anaerobically treated dairy manure and production of wheat as a nutritional forage crop. Am. J. Agric. Biol. Sci. 2007, 2, 206–217. [Google Scholar] [CrossRef] [Green Version]
Wastewater Constituents | Weak | Strong |
---|---|---|
All mg_L_1 Expect Settleable Solids | ||
Alkalinity (as CaCO2) | 50 | 200 |
BOD (as O2) | 100 | 300 |
Chlorine | 30 | 100 |
COD (as O2) | 250 | 1000 |
Suspended Solids (SS) | 100 | 350 |
Settleable Solids (mg_L_1) | 5 | 20 |
Total Dissolved Solids (TDS) | 200 | 1000 |
Total Kjeldahl Nitrogen (TKN) (as N) | 20 | 80 |
Total Organic Carbon (TOC) (as C) | 75 | 300 |
Total Phosphorous | 5 | 20 |
Material | Source | Effects |
---|---|---|
Microorganisms | Pathogenic bacteria, virus and worms eggs | Risk when bathing and eating |
Biodegradable organic materials | Oxygen depletion in rivers, lakes, and fjords | Fish death, odors |
Other organic materials | Detergents, pesticides, fat, oil and grease, coloring, solvents, phenols, cyanide | The toxic effect, aesthetic inconveniences, bioaccumulation in the food chain |
Nutrients | Nitrogen, phosphorus, ammonium | Eutrophication |
Metals | Hg, Pb, Cd, Cr, Cu, Ni | The toxic effect, bioaccumulation |
Other inorganic materials | Acids, for example, hydrogen sulfide, bases | Corrosion, toxic effect |
Thermal effects | Hot water | Changing living conditions for flora and fauna |
Odor (and taste) | Hydrogen sulfide | Aesthetic inconveniences, toxic effect Radioactivity Toxic effect, accumulation |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Hamedi, F.H.; Kandhan, K.; Liu, Y.; Ren, M.; Jaleel, A.; Alyafei, M.A.M. Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates. Water 2023, 15, 2284. https://doi.org/10.3390/w15122284
Al Hamedi FH, Kandhan K, Liu Y, Ren M, Jaleel A, Alyafei MAM. Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates. Water. 2023; 15(12):2284. https://doi.org/10.3390/w15122284
Chicago/Turabian StyleAl Hamedi, Fatima Hasan, Karthishwaran Kandhan, Yongming Liu, Maozhi Ren, Abdul Jaleel, and Mohammed Abdul Muhsen Alyafei. 2023. "Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates" Water 15, no. 12: 2284. https://doi.org/10.3390/w15122284
APA StyleAl Hamedi, F. H., Kandhan, K., Liu, Y., Ren, M., Jaleel, A., & Alyafei, M. A. M. (2023). Wastewater Irrigation: A Promising Way for Future Sustainable Agriculture and Food Security in the United Arab Emirates. Water, 15(12), 2284. https://doi.org/10.3390/w15122284