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Abstract: The pier scour process is normally intensified in the presence of an ice cover, which poses
risks to the longevity and safety of bridges. In the present study, the impact of the densimetric Froude
number, locations, and pier spacing of side-by-side piers on the local scour depth under ice-covered
flow conditions were investigated based on clear water scour experiments in an S-shaped laboratory
flume. The results demonstrated that the local scour at piers along the convex bank was more
substantial than that along the concave bank when other factors stayed identical. The densimetric
Froude number clearly has more impact on local scour at piers along the convex bank than that along
the concave bank. Different from the mechanism of the pier scour in a straight channel, the scour
depth around a pier along the convex bank in the S-shaped flume increases as the distance between
two piers (or pier spacing) increases, while it decreases around the piers along the concave bank.
Similar scour patterns were observed when the side-by-side piers were installed at different bend
apex cross-sections. The maximum local scour depths at piers along the convex bank measured at
different bend apex cross-sections were relatively unchanged when other influencing factors were
held constant. However, the maximum scour depth around piers along the concave bank decreased
as the bends increased toward downstream.

Keywords: bend flume; ice cover; side-by-side piers; pier spacing; local scour

1. Introduction

Severe local scour at piers can lead to bridge collapses. In cold regions, ice covers
appear frequently in rivers during winter [1], and the presence of piers in rivers affect the
formation process of ice cover [2]. Meanwhile, the local scour process at piers is exacerbated
by the presence of an ice cover, which doubles the channel’s wetted perimeter, alters the
velocity distribution, and shifts the location of the maximum velocity toward the channel
bed [3,4]. As a consequence, the depth of scour holes around piers increases due to the
increase in the velocity gradient near the bed. Therefore, it is crucial for the safety and
longevity of bridges to accurately predict the depth of scour holes at piers.

Numerous studies have been conducted on the pier scour in open channel flows, and
most of them are based on laboratory experiments around a single pier [5–9]. In other
words, few research works have been carried out to investigate the local scour process
around multiple piers in channels. Ataie-Ashtiani and Beheshti [10] conducted local scour
experiments at piers with different arrangements under clear water scour conditions. Their
results demonstrated that the maximum depth of scour holes in the vicinity of side-by-
side double piers increased as the pier spacing decreased. This may be partly due to the
increased size of the horseshoe vortex for a smaller pile spacing distance and partly due to
a very strong flow between two neighboring piles. Kim et al. [11] conducted a numerical
simulation on local scour around both tandem and side-by-side piers. It was found that
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the maximum scour depth around side-by-side double piers decreased with increases in
pier spacing, since the jet-like flow between piers, which leads to an acceleration of the
flow and elevated turbulence, was weakened. Malik and Setia [12] investigated the local
scour around side-by-side double piers and found that the scour depth around double piers
reached the maximum, which was approximately 54% greater than that around a single pier,
when the pier spacing was 0. The scour holes around the double piers would not interfere
with one another when the pier spacing was greater than 1.5 times the pier diameter.
Bordbar et al. [13] numerically simulated local scour around side-by-side double piers and
stated that the characteristics of the flow between piers were similar to jet flow. Further,
the impact of such flows would diminish with increases in pier spacing. Experimental
studies of local scour around double square piers in various arrangements were conducted
by Mamoon et al. [14]. The results revealed that the scour process was slowed down due to
sediments deposited between piers, and the maximum scour depth was slightly greater
than that around a single pier when the two square piers were placed side by side and the
distance between piers was 1 or 2 times the pier diameter.

The local scour process around in-stream infrastructure becomes complicated when
an ice cover is present on the water surface. Ackermann et al. [15] and Hains and Zabilan-
sky [16,17] studied the scour process around cylindrical piers when an ice cover appears
on the water surface and noted that velocity distribution profiles appear in a “parabolic”
shape under an ice cover. The presence of an ice cover caused the maximum to be located
closer to the bed, along with a steeper velocity gradient near the bed and the associated
increased shear stresses along the bed. Consequently, the scour depth around piers under
ice-covered conditions was greater than that under open flow conditions. The impact of ice
cover roughness on local scour around semi-circular bridge abutments was investigated
by Wu et al. [18]. According to Wu et al. [18], the maximum scour depth under a rough
covered condition increased by approximately 35% compared to that under a smooth
covered condition. In addition, large particles impede the scour process and dissipate some
of the kinetic energy in the scour area; the maximum scour depth is reduced with increases
in the median grain size of the bed material. Wu et al. [19] further investigated the local
scour around a single cylindrical pier under ice-covered conditions. The scour radius was
included as an indicator, which offered a fresh viewpoint on scour estimation. Additionally,
empirical formulas for the scour depth and scour radius were derived for ice-covered flows
compared to those in open channel flows. Wang et al. [20,21] studied the temporal variation
in the scour depth around a cylindrical pier when an ice cover appears on the water surface.
Their findings demonstrated that the rate of the pier scour with the appearance of an
ice cover on the water surface was greater compared to that in open channel flows. It is
reported that the local scour process under an ice cover needs an additional 10% of time
to reach the equilibrium state. An equation describing the temporal variation of scour
depth around a cylindrical pier under an ice-covered flow condition was derived based
on data collected from laboratory experiments. Both the area and volume of scour holes
increased by 40~50% under a sheet of ice cover compared to those in an open channel flow.
Wang et al. [22] conducted experiments to study local scour at bridge piers when an ice jam
occurs on the water surface. It is reported that the local scour depth under an ice jam was
greater than that under conditions of both sheet ice-covered flow and open channel flow.
Furthermore, the flow cross-sectional area decreased with increases in the thickness of an
ice jam, and the flow velocity increased correspondingly. This caused a stronger horseshoe
vortex, so the maximum depth of the scour holes increased. Hu et al. [23] studied the
interaction between local scour and the evolution of an ice jam around bridge piers and
claimed that the scour hole developed faster under an ice-jammed flow condition.

Research works have also investigated the scouring process in the vicinity of multiple
bridge piers in a straight channel under an ice-covered flow condition. Sang et al. [24]
assessed the effect of the distance between piers on the scour depth in the vicinity of double
piers placed in a tandem arrangement under an ice cover. Their findings demonstrated
the dependence of the scour depth around tandem double piers on the pier spacing under
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a sheet ice cover. As the pier spacing increased, the maximum scour depth around piers
increased by approximately 10% in comparison to that in an open channel flow. The scour
depth around the rear pier was the lowest when the pier spacing equated to 9 times the pier
diameter. Additionally, formulas for calculating the maximum scour depths around tandem
double piers under an ice cover flow condition were proposed based on the experimental
data. Namaee and Sui [25] investigated the characteristics of the scour process at side-by-
side double piers in ice-covered flow by comparing the results to an open channel flow.
Their results demonstrated that the maximum scour depth at side-by-side bridge double
piers in flows under an ice cover always occurred at the upstream front face of bridge piers,
analogous to the local scour under open flow conditions. They claimed that the strength of
the horseshoe vortex is a function of the pier Reynolds number (Reb), which is defined as
follows [25]:

Reb =
UD

υ
(1)

where U is the average velocity of the approaching flow, D is the diameter of the bridge pier,
and υ is the kinematic viscosity of water. The pier Reynolds number Reb and the strength of
the horseshoe vortex decreased as the pier diameter decreased and pier spacing increased.
Therefore, the bed shear stress decreased, and the scour depth decreased correspondingly.
Based on experimental data, formulas were established to determine the maximum scour
depth around side-by-side double piers under ice-covered flow conditions compared to
that under open channel flow conditions. Additionally, a numerical simulation was carried
out by Namaee et al.to assess the local scour process around side-by-side double piers
under an ice-covered condition [26]. It was found that the sediment transport models
employing the Meyer-Peter and Müller equation could roughly reflect the transport of
sediment particles under an ice-covered flow condition, and the simulated results were in
good agreement with the experimental results.

Overall, the local scour around multiple bridge piers in both open channel flows and
ice-covered flows has been investigated under various flow conditions with different pier
layouts. However, almost all these investigations were conducted in straight channels. In
the present study, local scour experiments were conducted around side-by-side double
piers in an S-shaped flume under ice-covered flow conditions. Different flow conditions as
well as different pier spacings and positions were considered to determine the effects of
these factors on the local scour around side-by-side double piers in an S-shaped channel.

2. Materials and Methods
2.1. Experimental Setup

In the present study, laboratory experiments were conducted in an S-shaped bend
flume. The S-shaped bend flume was 25.17 m long, 0.6 m wide, and 0.6 m deep. The layout
plan of the flume is shown in Figure 1. In total, 27 cross-sections (CS) with equal spacing
distances from upstream to downstream were set up. At the beginning of each experimental
run, the entire flume bed was covered by a layer of sediment with a thickness of 15 cm. The
median particle diameter (d50) of the bed material was 0.713 mm, the mass density of the
sediment ρs was 1.423 kg/m3, and the non-uniformity coefficient η was 1.61. According to
Chiew [27], the flume side wall has no appreciable impact on flow characteristics or the
scour profile if the ratio of flume width (B) to pier diameter (D) is more than 10 (B/D > 10).
In this study, the model pier (which is prepared by Shushan Ruifuxiang building materials
business department, Hefei, China) diameter was 2cm, and, thus, the B/D ratio = 30. So,
the side-wall effect could be ignored. Two cylindrical piers were placed side by side at the
cross-section of bend apexes of the S-shaped flume (CS-8, CS-13, or CS-18). Figure 2 depicts
the pier arrangement. The flow depth (H) and velocity (V) measured at the upstream CS-3
were used to describe the experiment control variables. As suggested by other researchers,
Styrofoam panels (manufactured by Jiujiang Boling Trading Co. Ltd., Jiangxi, China) were
used to model the ice cover [15–21,24–26].
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the spacing distance between the piers.).

2.2. Experiment Procedures

All experiment runs were conducted by following the steps below:

(1) Before each experimental run, the model bridge piers were installed at the bend apex
cross-sections. Then, the channel bed was filled with sediment and leveled carefully
before each experimental run. By adjusting the upstream weir head, the flume was
then slowly filled with water to avoid the initial scour. The incoming flow to the flume
was then gradually adjusted to the designated flow rate.

(2) At each cross-section, three pressure gauges were installed to check the water level
in the flume. To reach the specified water depth in the flume, the tailgate at the
downstream end of the flume was gradually adjusted.

(3) Under an ice-covered flow condition, the Reynolds number Re was calculated using
Equation (2).

Re =
ρwVd

µ
(2)

where ρw = the mass density of the water; µ = the dynamic viscosity of the water; and
d = the characteristic length. The hydraulic radius is used under an ice-covered condi-
tion. For all experimental runs, the Reynolds number was higher than 11,250. There-
fore, the flows for all experimental runs can be considered fully developed turbulence.

(4) The model ice cover was placed on the water surface along the bend channel from
CS-3 to CS-26. Then, the experiment under this condition began. The depth of the
scour holes around side-by-side double piers was measured once every five minutes
during the first half hour then once every ten minutes during the 2nd half-hour, and,
finally, once every 30 min until the end of each experiment run.

(5) After the experiment achieved the equilibrium condition, the maximum depth of
the scour hole was reached. The Acoustic Doppler Velocimeter (ADV) was used to
measure flow velocities in front of the piers, as shown in Figure 3. After all the data
for the flow velocity were acquired, both the ADV and model ice cover around the
piers were carefully removed. Then, the bathymetry of the scour holes and deposition
dunes around the piers was measured carefully using a point gauge with an accuracy
of 0.1 mm.
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In total, 19 experimental runs were conducted under conditions of both ice-covered
and open channel flows. It is considered that the scour process around piers reaches
an equilibrium condition when the depth and area of scour holes stop changing. It has
been observed from experiments that scour holes hardly change after approximately 10 h,
indicating that the scour process reaches a quasi-equilibrium condition. However, all
experiments lasted 24 h to make sure the scour process achieved an equilibrium state.
Table 1 summarizes the experimental setups: “A” represents the ice-covered condition and
“B” represents the open channel condition.

Table 1. Summary of experimental setups.

Experiment Runs Pier Location
Cross-Section

Approach Flow
Depth H (m)

Approach Flow
Velocity V (m/s)

Pier Diameter
D (m)

Pier Spacing
L (m)

A1 CS-8 0.2 0.18 0.02 0.15
A2 CS-8 0.2 0.18 0.02 0.20
A3 CS-8 0.2 0.18 0.02 0.25
A4 CS-13 0.2 0.18 0.02 0.15
A5 CS-13 0.2 0.18 0.02 0.20
A6 CS-13 0.2 0.18 0.02 0.25
A7 CS-18 0.2 0.18 0.02 0.06
A8 CS-18 0.2 0.18 0.02 0.08
A9 CS-18 0.2 0.18 0.02 0.11
A10 CS-18 0.2 0.18 0.02 0.15
A11 CS-18 0.2 0.18 0.02 0.20
A12 CS-18 0.2 0.18 0.02 0.25
A13 CS-18 0.2 0.15 0.02 0.15
A14 CS-18 0.2 0.16 0.02 0.15
A15 CS-18 0.2 0.17 0.02 0.15
A16 CS-18 0.2 0.20 0.02 0.10
B1 CS-8 0.2 0.18 0.02 0.15
B2 CS-8 0.2 0.18 0.02 0.20
B3 CS-8 0.2 0.18 0.02 0.25

As stated by Sheppard et al. [28], the critical velocity for the incipient of sediment (Vc)
can be estimated from the Shields diagram, using Equations (3)–(6).

u∗ =
(

16.2d50

{
9.09× 10−6

d50
− d50[38.76 + 9.6 ln(d50)]− 0.005

})1/2

(3)

R =
u∗d50

2.32× 10−7 (4)
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For 5 ≤ R ≤ 70,

Vc = 2.5u∗ ln
(

73.5H
d50{R[2.85− 0.58 ln(R) + 0.002R] + 111/R− 6}

)
(5)

For R > 70,

Vc = 2.5u∗ ln
(

2.21H
d50

)
(6)

The results of the calculations reveal that the approach flow intensity (V/Vc) in this
study was between 0.5 and 0.6.

3. Results
3.1. Temporal Variation of Scour Holes

There are some discrepancies in the scour mechanisms at piers near the convex bank
compared to those near the concave bank because of the flume’s sinuosity. Sediment
particles were eroded and transported by vortexes and exhibited a circular motion in
front of piers near the convex bank (hereinafter referred to as the convex bank pier), and
only a small number of sediment particles were disturbed at the rear side of the pier
due to the blockage of the structure. Meanwhile, the scouring process around the pier
near the concave bank (hereinafter referred to as the concave bank pier) underwent a
similar scouring process, but the circular motion of the sediment particles was clearly weak
compared to that around the convex bank pier. The sediments transported by the flow
around both piers were deposited downstream of the piers where the influence of the
vortex was not prominent. Once the scouring process around bridge piers was initiated, the
depth and area of the scour hole expanded with time. This pattern was also observed for
the height and the expanse of the deposition dunes, whose direction followed the sinuosity
of the flume. It was observed that the scour holes around the convex bank piers were
deeper and wider than those around the concave bank piers, and the deposition dunes
behind the convex bank piers were also higher, as shown in Figures 4 and 5.
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Figure 4. Temporal variation of scour holes around side-by-side double piers at CS-8: (a) after 30 min
time elapsed; (b) after 60 min time elapsed; (c) after 300 min time elapsed.

The temporal variation in the scour depth around side-by-side double piers at CS-18
is shown in Figure 6 for two different pier spacings. One can see from Figure 6 that the
slope of the variation curve of the scour depth at the convex bank pier was steeper during
the initial scouring stage compared to that of the concave bank pier, indicating that the
scour intensity around the convex bank pier was greater. As the experiments continued,
the changes in the depth and area of scour holes became noticeably slow. Gradually, the
scouring process achieved an equilibrium state, and the scour depth reached the maximum
(ym represents the maximum scour depth). One can see from Figure 6 that about 80–90% of
the maximum scour depth was reached after approximately 5 h and 3 h around the convex
and concave bank piers, respectively.
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3.2. Comparison of Local Scour under Open Channel and Ice-Covered Flow Conditions

As demonstrated in Figure 7, the velocity gradient in front of the piers under an
ice-covered flow condition is larger than that under an open flow condition. One can obtain
from Equation (1) that the Reb is larger under an ice-covered condition, and the strength
of the horseshoe vortex is also more violent, exacerbating the local scour at the piers.
Additionally, greater approaching velocity gradients will be yielded along the convex bank
compared to those around the concave bank pier under the same conditions. Therefore, the
Reb around the convex bank pier is larger, which could produce stronger horseshoe vortices.
As a result, one can see from Figure 8 that the scour depths around the convex bank pier
are substantially greater than those around the concave bank pier. The relative local scour
depth (calculated as ym/D) under ice-covered conditions is about 10~20% greater than that
under open channel conditions, as shown in Figure 8, similar to the results for a single pier
proposed by Ackermann et al. [15].



Water 2023, 15, 2317 8 of 14

Water 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

of the horseshoe vortex is also more violent, exacerbating the local scour at the piers. Ad-
ditionally, greater approaching velocity gradients will be yielded along the convex bank 
compared to those around the concave bank pier under the same conditions. Therefore, 
the Reb around the convex bank pier is larger, which could produce stronger horseshoe 
vortices. As a result, one can see from Figure 8 that the scour depths around the convex 
bank pier are substantially greater than those around the concave bank pier. The relative 
local scour depth (calculated as ym/D) under ice-covered conditions is about 10%~20% 
greater than that under open channel conditions, as shown in Figure 8, similar to the re-
sults for a single pier proposed by Ackermann et al. [15].  

 
Figure 7. Streamwise velocity distribution under open flow condition compared to that under ice-
covered flow conditions at CS-8. 

 
Figure 8. Relative scour depth under open flow condition compared to that under ice-covered con-
dition at CS-8. 

3.3. Effect of Densimetric Froude Number on Local Scour 
The densimetric Froude number (Frd) is one of the crucial factors affecting local scour 

at piers. The Frd can be calculated using the following formula [29]: 

d
s w

50
w

=
-

VFr
ρ ρ gd
ρ

 
(7) 

in which g is the gravitational acceleration. 

0.12 0.14 0.16 0.18 0.20 0.22 0.24
0

5

10

15

20

 Ice-concave bank  Ice-convex bank
 Open-concave bank  Open-convex bank

W
at

er
 d

ep
th

 (c
m

)

Flow velocity (m/s)

H=0.2m
V=0.18m/s
L/D=10

6 8 10 12 14
0.8

1.0

1.2

1.4

1.6

 Ice-convex bank  Ice-concave bank
 Open-convex bank  Open-concave bank

y m
/D

L/D

H=0.2m
V=0.18m/s
CS-8

Figure 7. Streamwise velocity distribution under open flow condition compared to that under
ice-covered flow conditions at CS-8.

Water 2023, 15, x FOR PEER REVIEW 8 of 14 
 

 

of the horseshoe vortex is also more violent, exacerbating the local scour at the piers. Ad-
ditionally, greater approaching velocity gradients will be yielded along the convex bank 
compared to those around the concave bank pier under the same conditions. Therefore, 
the Reb around the convex bank pier is larger, which could produce stronger horseshoe 
vortices. As a result, one can see from Figure 8 that the scour depths around the convex 
bank pier are substantially greater than those around the concave bank pier. The relative 
local scour depth (calculated as ym/D) under ice-covered conditions is about 10%~20% 
greater than that under open channel conditions, as shown in Figure 8, similar to the re-
sults for a single pier proposed by Ackermann et al. [15].  

 
Figure 7. Streamwise velocity distribution under open flow condition compared to that under ice-
covered flow conditions at CS-8. 

 
Figure 8. Relative scour depth under open flow condition compared to that under ice-covered con-
dition at CS-8. 

3.3. Effect of Densimetric Froude Number on Local Scour 
The densimetric Froude number (Frd) is one of the crucial factors affecting local scour 

at piers. The Frd can be calculated using the following formula [29]: 

d
s w

50
w

=
-

VFr
ρ ρ gd
ρ

 
(7) 

in which g is the gravitational acceleration. 

0.12 0.14 0.16 0.18 0.20 0.22 0.24
0

5

10

15

20

 Ice-concave bank  Ice-convex bank
 Open-concave bank  Open-convex bank

W
at

er
 d

ep
th

 (c
m

)

Flow velocity (m/s)

H=0.2m
V=0.18m/s
L/D=10

6 8 10 12 14
0.8

1.0

1.2

1.4

1.6

 Ice-convex bank  Ice-concave bank
 Open-convex bank  Open-concave bank

y m
/D

L/D

H=0.2m
V=0.18m/s
CS-8

Figure 8. Relative scour depth under open flow condition compared to that under ice-covered
condition at CS-8.

3.3. Effect of Densimetric Froude Number on Local Scour

The densimetric Froude number (Frd) is one of the crucial factors affecting local scour
at piers. The Frd can be calculated using the following formula [29]:

Frd =
V√

ρs−ρw
ρw

gd50

(7)

in which g is the gravitational acceleration.
Based on the experimental data of Namaee and Sui [29], the relationship between the

relative maximum local scour depth (relative MSD, calculated as ym/H) and densimetric
Froude number in a straight channel was plotted, as shown in Figure 9a. Their results
demonstrated that the relative MSD increased with increases in the densimetric Froude
number under open channel, smooth ice-covered, and rough ice-covered conditions. The
relationship between the maximum scour depth and the densimetric Froude number in the
bend channel under ice-covered conditions is demonstrated in Figure 9b. Analogous to
the scour deposition patterns in a straight channel, the relative local scour depth around
side-by-side double piers in the bend flume increases with increases in the Frd. The slope
of the fitting line between the scour depth and Frd and relative local scour depth around
the convex bank pier is steeper compared to that for the concave bank pier, as illustrated in
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Figure 9b, suggesting that the local scour depth at the convex bank pier is more affected by
the Frd.
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3.4. Effect of the Pier Spacing on Local Scour

Namaee and Sui [25] investigated the relationship between the ym/H and the relative
pier spacing (L/D) of side-by-side double piers in an ice-covered straight flume. It can
be observed from Figure 10a that the ym/H decreased as the L/D increased. It is worth
noting that the results in the bend channel were different from those acquired in the straight
channel when the side-by-side double piers were placed at the bend apex cross-section
of the S-shaped flume. Figure 10b shows the relationship between the maximum relative
local scour depth and the pier spacing at CS-18. It can be seen from Figure 10b that the
relative local scour depth is greater around the convex bank pier than that around the
concave bank pier under the same experimental setups. Different from the mechanism of
local scour at piers in a straight channel, the relative scour depth around the convex bank
pier in the S-shaped flume increases as the pier spacing increases, but it decreases around
the concave bank pier as the pier spacing increases. As can be seen from Figure 11, the
depth of scour holes around the convex bank pier increases with increases in the L/D at
the bend apex section because the velocity gradient in front of the pier increases, which
subsequently increases the shear force of the flow, leading to more accessible transportation
of the sediments by water. In contrast, the depth of scour holes around the concave bank
pier decreases as the L/D increases because the velocity gradient decreases, leading to a
weak horseshoe vortex strength in front of the piers.
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3.5. Local Scour at Different Locations of the Side-by-Side Piers

A comparison was conducted regarding the variations in scour depth when side-by-
side double piers were placed at different bend apex cross-sections of the S-shaped flume.
As illustrated in Figure 12, the relative local scour depths around the convex bank pier
are much greater than those around the concave bank pier when the experiment setup is
the same. Additionally, the relative scour depth shows an increasing trend with increases
in the L/D at the convex bank and a decreasing trend with increases in the L/D at the
concave bank. As shown in Figure 12, the further toward the downstream (namely, as
the bends increase toward downstream), the shallower the scour hole around the concave
bank pier. In contrast, the local scour depths around the convex bank pier remain virtually
constant at different bend apex cross-sections. The quasi-constant scour depths around
the convex bank pier are caused by energy dissipation due to the friction as the water
travels downstream of the S-shaped flume. The flow velocity in front of the concave bank
pier gradually decreases as the flow approaches further downstream (namely, the bend
increases toward downstream), as illustrated in Figure 13a. As a result, the flow’s shear
force decreases, the scouring process becomes weak, and the equilibrium scour depth
decreases. The velocity distribution in front of the convex bank pier at different bend
apex cross-sections is nearly identical, as depicted in Figure 13b, despite some losses in
flow kinetic energy. The velocity distributions in front of the convex bank pier at different
cross-sections are congruent in all cases. Therefore, the local scour depths around the
convex bank pier at different bend apex cross-sections are also congruous.
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cross-sections: (a) the concave bank piers; (b) the convex bank piers.

3.6. Formulas for Determining the Maximum Local Scour Depth

The maximum depth of scour holes around side-by-side double piers in an S-shaped
bend flume under an ice-covered condition can be expressed as follows:

ym = f (V, ρs, ρw, d50, g, L, D, α, β) (8)

in which ym is the maximum local scour depth, V is the initial approaching flow velocity, ρs
is the density of bed material, ρw is density of water, d50 is the median particle diameter, g
is the gravitational acceleration, L is the pier spacing distance between side-by-side double
piers, D is the diameter of the piers, α is the cumulative turning angle of the flow from the
upstream control cross-section (CS-3) to the cross-section where the side-by-side piers are
located, and β is the angle of the bend where the piers are located.

Based on of Equation (8), using dimensional analysis, the relative maximum depth of
scour holes around side-by-side double piers can be described as follows:

ym

D
= k(Frd)

a(
L
D
)

b
(

α

β
)

c
(9)

in which k, a, b, and c are empirical constants.
The empirical constants in Equation (9) for calculating the maximum local scour

depth around the side-by-side double piers in the bend flume under an ice-covered flow
condition have been determined through regression analysis based on data collected from
laboratory experiments.

The depth of scour holes around the convex bank pier is as follows:

ym

D
= 0.01(Frd)

3.982(
L
D
)

0.115
(

α

β
)
−0.024

, R2 = 0.98 (10)

The depth of scour holes around the concave bank pier is as follows:

ym

D
= 0.095(Frd)

2.795(
L
D
)
−0.359

(
α

β
)
−0.562

, R2 = 0.91 (11)

The calculated maximum scour depths have been compared to those of measurements
around both the convex bank piers and the concave bank piers in the bend flume under
ice-covered flow conditions, as shown in Figure 14. It is clear from Equations (10) and (11)
that the power for the densimetric Froude number (Frd) is significantly higher than other
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factors. A greater index value demonstrates that the local scour depth is mainly influenced
by the densimetric Froude number, which is consistent with the findings of Namaee and
Sui [29]. In addition, the index of the Frd in formula for the convex bank piers is larger
than that for the concave bank piers, which indicates that the densimetric Froude number
has a greater effect on scour depth around the convex bank piers. One can see from
Equations (10) and (11) that the power for the relative pier spacing (L/D) is positive for the
convex bank piers but negative for the concave bank piers. This means that the relative
scour depth around side-by-side double piers in the bend flume shows an increasing trend
at the convex bank and decreasing trend at the concave bank as the L/D increases. It can
also be seen from Equations (10) and (11) that the power for “α/β” for piers is negative.
However, the power for the convex bank piers is close to “0”. One can conclude that the
further toward the downstream bend, the shallower the scour hole around the concave
bank pier. On the other side, the scour depth around the convex bank piers is less affected
by the pier arrangement cross-sections.
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Figure 14. Comparison of the calculated scour depths to those of measurements around the side-by-
side double piers: (a) convex bank pier; (b) concave bank pier.

4. Conclusions

Based on laboratory experiments, the local scour around side-by-side double piers in
an S-shaped bend flume under ice-covered conditions has been investigated. Comparing
the results of local scour around side-by-side double piers in the bend flume under ice-
covered conditions to those of acquired from a straight flume, some noticeable differences
have been noticed. The following findings are drawn from this experimental study:

(1) The maximum depth of scour holes around the convex pier is more substantial than
that around the concave pier. The densimetric Froude number clearly has prominent
effects on the maximum depth of scour holes around the convex pier. The relative
local scour depth around side-by-side double piers in the bend flume increases with
increase in the Frd. The slope of the fitting line between the scour depth and Frd and
relative local scour depth around the convex bank pier is steeper compared to that for
the concave bank pier, suggesting that the local scour depth at the convex bank pier is
more affected by the Frd.

(2) In a straight channel, the relative maximum scour depth around piers decreased as
the pier spacing increased. However, results in a bend channel were different from
those acquired in the straight channel when the side-by-side double piers were placed
at the bend apex cross-section. The relative scour depth around the convex bank pier
in the S-shaped flume increases as the pier spacing increases, but it decreases around
the concave bank pier as the pier spacing increases.
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(3) The maximum depth of scour holes around the convex bank pier at different bend
apex cross-sections did not change much when all other factors were constant. In
contrast, the maximum depth of scour holes around the concave bank pier decreased
as the bend increased toward downstream.

(4) The formula for determining the maximum scour depth around both convex bank
piers and concave bank piers has been established considering the densimetric Froude
number, pier spacing, and the ratio of the cumulative turning angle of the flow from
the upstream control cross-section to the cross-section where the piers are located (α)
to the angle of the bend where the piers are located (β). The results calculated using
the proposed equations agree well with those of laboratory experiments.
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