Study on an Equilibrium Water Price System Based on Cooperative Game Technology
Abstract
:1. Introduction
2. Methodology
3. Basic Equations
3.1. Payoff Function
3.2. Utility Function
3.3. Model Iteration
4. Case Study
4.1. Basic Parameters
4.2. Local Public’s Willingness to Pay
4.3. Effectiveness and Payment Method of the Game Model
5. Conclusions and Policy Recommendation
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hanemann, W.M. The economic conception of water. Water Crisis Myth Real. 2006, 61, 74–76. [Google Scholar]
- Brelsford, C.; Abbott, J.K. Growing into Water Conservation? Decomposing the Drivers of Reduced Water Consumption in Las Vegas, NV. Ecol. Econ. 2017, 133, 99–110. [Google Scholar] [CrossRef]
- Brent, D.A.; Ward, M.B. Price perceptions in water demand. J. Environ. Econ. Manag. 2019, 98, 102266. [Google Scholar] [CrossRef]
- Momeni, M.; Zakeri, Z.; Esfandiari, M.; Behzadian, K.; Zahedi, S.; Razavi, V. Comparative analysis of agricultural water pricing between Azarbaijan Provinces in Iran and the state of California in the US: A hydro-economic approach. Agric. Water Manag. 2019, 223, 11. [Google Scholar] [CrossRef]
- Griffin, R.C.; Mjelde, J.W. Distributing water’s bounty. Ecol. Econ. 2011, 72, 116–128. [Google Scholar] [CrossRef]
- Charness, G.; Gneezy, U.; Kuhn, M.A. Experimental methods: Between-subject and within-subject design. J. Econ. Behav. Organ. 2012, 81, 1–8. [Google Scholar] [CrossRef]
- Grafton, R.Q. Policy review of water reform in the Murray-Darling Basin, Australia: The “do’s” and “do’nots”. Aust. J. Agric. Resour. Econ. 2019, 63, 116–141. [Google Scholar] [CrossRef] [Green Version]
- Aubin, C.; Fougere, D.; Husson, E.; Ivaldi, M. Real-time pricing of electricity for residential customers: Econometric analysis of an experiment. J. Appl. Econom. 1995, 10, S171–S191. [Google Scholar] [CrossRef]
- Hearne, R.R.; Donoso, G. Water institutional reforms in Chile. Water Policy 2005, 7, 53–69. [Google Scholar] [CrossRef] [Green Version]
- Marshall, G.R.; Alexandra, J. Institutional Path Dependence and Environmental Water Recovery in Australia’s Murray-Darling Basin. Water Altern. 2016, 9, 679–703. [Google Scholar]
- Andreoni, J. Warm-glow versus cold-prickle: The effects of positive and negative framing on cooperation in experiments. Q. J. Econ. 1995, 110, 1–21. [Google Scholar] [CrossRef]
- Sapino, F.; Pérez-Blanco, C.D.; Gutiérrez-Martín, C.; García-Prats, A.; Pulido-Velazquez, M. Influence of crop-water production functions on the expected performance of water pricing policies in irrigated agriculture. Agric. Water Manag. 2022, 259, 107248. [Google Scholar] [CrossRef]
- Chebil, A.; Soula, R.; Souissi, A.; Bennouna, B. Efficiency, valuation, and pricing of irrigation water in northeastern Tunisia. Agric. Water Manag. 2022, 266, 107577. [Google Scholar] [CrossRef]
- EPA. Case Studies of Sustainable Water and Wastewater Pricing; Case studies EPA 816-R-05-007; USEPA: Washington, DC, USA, 2005. [Google Scholar]
- Beal, C.; Stewart, R.A. South East Queensland residential end use study: Final report. Urban Water Secur. Res. Alliance Tech. Rep. 2011, 47, 174. [Google Scholar]
- Fagan, B.E. A History of Water and Humankind; Bloomsbury Press: London, UK, 2011. [Google Scholar]
- Pahl-Wostl, C. Transitions towards adaptive management of water facing climate and global change. Water Resour. Manag. 2007, 21, 49–62. [Google Scholar] [CrossRef]
- Fuente, D.; Gatua, J.G.; Ikiara, M.; Kabubo-Mariara, J.; Mwaura, M.; Whittington, D. Water and sanitation service delivery, pricing, and the poor: An empirical estimate of subsidy incidence in Nairobi, Kenya. Water Resour. Res. 2016, 52, 4845–4862. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, H.; Carter, D. 150 The Finance of Local Public Goods at the Onset of Industrialization: Water in London 1582 to 1904. In Infrastructure Finance in Europe: Insights into the History of Water, Transport, and Telecommunications; Cassis, Y., De Luca, G., Florio, M., Eds.; Oxford University Press: Oxford, UK, 2016. [Google Scholar]
- Hellwig, M.; Polk, A. Do political links influence water prices? determinants of water prices in Germany. Util Policy 2021, 70, 101184. [Google Scholar] [CrossRef]
- Biggar, D.R.; Hesamzadeh, M.R. Welfare-maximising dispatch and pricing of water in a gravity-fed river network. Energy Econ. 2022, 108, 105710. [Google Scholar] [CrossRef]
- Kenney, D.S.; Goemans, C.; Klein, R.; Lowrey, J.; Reidy, K. Residential water demand management: Lessons from Aurora, Colorado. J. Am. Water Resour. Assoc. 2008, 44, 192–207. [Google Scholar] [CrossRef]
- Pluchinotta, I.; Kazakci, A.O.; Giordano, R.; Tsoukias, A. Design Theory for Generating Alternatives in Public Decision Making Processes. Group Decis. Negot. 2019, 28, 341–375. [Google Scholar] [CrossRef]
- Loaiciga, H.A.; Renehan, S. Municipal water use and water rates driven by severe drought: A case study. J. Am. Water Resour. Assoc. 1997, 33, 1313–1326. [Google Scholar] [CrossRef]
- Muller, M. Lessons from Cape Town’s drought. Nature 2018, 559, 174–176. [Google Scholar] [CrossRef] [Green Version]
- Agthe, D.E.; Billings, R.B. Equity, price elasticity, and household income under increasing block rates for water. Am. J. Econ. Sociol. 1987, 46, 273–286. [Google Scholar] [CrossRef]
- Leiva, B.; Van Houtven, G.; Vásquez, W.F.; Nájera, A. Valuing water service reliability and in-home water storage: A hedonic price model from Guatemala. Util. Policy 2023, 82, 101526. [Google Scholar] [CrossRef]
- Pronti, A.; Berbel, J. The impact of volumetric water tariffs in irrigated agriculture in Northern Italy. Environ. Impact Assess. Rev. 2023, 98, 106922. [Google Scholar] [CrossRef]
- Lamaddalena, N.; D’Arcangelo, G.; Billi, A.; Todorovic, M.; Hamdy, A.; Bogliotti, C.; Quarto, A. Participatory water management in Italy: Case study of the Consortium “Bonifica della Capitanata”. Options M’Ed. 2004, 48, 159–169. [Google Scholar]
- Passarella, G.; Barca, E.; Sollitto, D.; Masciale, R.; Bruno, D.E. Cross-Calibration of Two Independent Groundwater Balance Models and Evaluation of Unknown Terms: The Case of the Shallow Aquifer of “Tavoliere di Puglia” (South Italy). Water Resour. Manag. 2017, 31, 327–340. [Google Scholar] [CrossRef]
- Arbués, F.; Garcıa-Valiñas, M.Á.; Martınez-Espiñeira, R. Estimation of residential water demand: A state-of-the-art review. J. Socio-Econ. 2003, 32, 81–102. [Google Scholar] [CrossRef]
- Dalhuisen, J.M.; Florax, R.J.; De Groot, H.L.; Nijkamp, P. 2003. Price and income elasticities of residential water demand: A meta-analysis. Land Econ. 2003, 79, 292–308. [Google Scholar] [CrossRef]
- Brons, M.; Nijkamp, P.; Pels, E.; Rietveld, P. A meta-analysis of the price elasticity of gasoline demand. A SUR approach. Energy Econ. 2008, 30, 2105–2122. [Google Scholar] [CrossRef]
- Grafton, R.Q.; Horne, J. Water markets in the Murray-Darling Basin. Agric. Water Manag. 2014, 145, 61–71. [Google Scholar] [CrossRef]
- Dutta, G.; Mitra, K. A literature review on dynamic pricing of electricity. J. Oper. Res. Soc. 2017, 68, 1131–1145. [Google Scholar] [CrossRef] [Green Version]
- Briesch, R.A.; Krishnamurthi, L.; Mazumdar, T.; Raj, S.P. A comparative analysis of reference price models. J. Consum. Res. 1997, 24, 202–214. [Google Scholar] [CrossRef]
- Castledine, A.; Moeltner, K.; Price, M.K.; Stoddard, S. Free to choose: Promoting conservation by relaxing outdoor watering restriction. J. Econ. Behav. Organ. 2014, 107, 324–343. [Google Scholar] [CrossRef]
- Li, L.; Jeuland, M. Household water savings and response to dynamic incentives under nonlinear pricing. J. Environ. Econ. Manag. 2023, 119, 102811. [Google Scholar] [CrossRef]
- Marshall, A. Principles of Economics, 8th ed.; MacMillan and Company, Ltd.: London, UK, 1952. [Google Scholar]
- Molle, F.; Berkoff, J. Irrigation Water Pricing: The Gap Between Theory and Practice; CABI Publishing: Oxfordshire, UK, 2007. [Google Scholar]
- Katic, P.G.; Grafton, R.Q. Economic and spatial modelling of groundwater extraction. Hydrogeol. J. 2012, 20, 831–834. [Google Scholar] [CrossRef]
- Levidow, L.; Zaccaria, D.; Maia, R.; Vivas, E.; Todorovic, M.; Scardigno, A. Improving water-efficient irrigation: Prospects and difficulties of innovative practices. Agric. Water Manag. 2014, 146, 84–94. [Google Scholar] [CrossRef] [Green Version]
- Nauges, C.; Whittington, D. Evaluating the Performance of Alternative Municipal Water Tariff Designs: Quantifying the Tradeoffs between Equity, Economic Efficiency, and Cost Recovery. World Dev. 2017, 91, 125–143. [Google Scholar] [CrossRef] [Green Version]
- Cominola, A.; Giuliani, M.; Piga, D.; Castelletti, A.; Rizzoli, A.E. Benefits and challenges of using smart meters for advancing residential water demand modeling and management: A review. Environ. Modell. Softw. 2015, 72, 198–214. [Google Scholar] [CrossRef] [Green Version]
- Geudens, P. Dutch Drinking Water Statistics 2017; Association of Dutch Water Companies: Hague, The Netherlands, 2017. [Google Scholar]
- Iwafune, Y.; Kazuhiko, O.; Kobayashi, Y.; Suzuki, K.; Shimoda, Y. Aggregation model of various demand-side energy resources in the day-ahead electricity market and imbalance pricing system. Int. J. Elec. Power 2023, 147, 108875. [Google Scholar] [CrossRef]
Partners | Objective of Payoff Function | Objective of Utility Function | Coordinating Strategy |
---|---|---|---|
Local government | Lower water price when reclaimed water is included in the dual water supply system | Water safety | Equilibrium water price |
Suppliers | Small profit | Full use of local water supply capacity | |
Users | Lower water price | Ensure water supply quantity and quality |
No. | Supplier | User | |||
---|---|---|---|---|---|
Type | Amount | Type | Amount | Note | |
1 | Reservoir water | 8796 | Resident | 6528 | Including the total amount of 534 reclaimed water |
2 | River water | 8582 | Non-resident | 12,512 | |
3 | Reclaimed water | 2320 | Special | 658 | |
Total | 19,698 | Total | 19,698 |
Type | Domestic | Non-Domestic | Special | ||||
---|---|---|---|---|---|---|---|
Level 1 | Level 2 | Level 3 | Level 1 | Level 2 | Level 3 | ||
Water price | 3.15 | 4.25 | 7.55 | 5.3 | 7.95 | 10.6 | 7.5 |
No. | Source | Water Price (Yuan/m3) | Note | ||
---|---|---|---|---|---|
Fixed Cost | Transportation Price | Drainage and Environment Protect Price | |||
1 | Reservoir water | 0.20 | 3.18 | 8.75 | The environment protect price for reclaimed water equals to 0 |
2 | River water | 0.20 | 3.96 | 8.76 | |
3 | Reclaimed water | / | 5.06 | 4.52 |
Iterations | Final Water Price (Yuan/m3) | Water Price for Different Users (Yuan/m3) | ||||
---|---|---|---|---|---|---|
Domestic | Non-Domestic | Special | Local Government | |||
Round 1 | Reservoir water | 12 | 1.48 | 2.42 | 3.90 | 4.2 |
River water | 12 | 1.48 | 2.42 | 3.90 | 4.2 | |
Reclaimed water | 12 | 1.48 | 2.42 | 3.90 | 4.2 | |
Round 2 | Reservoir water | 16 | 1.88 | 3.08 | 4.96 | 6.08 |
River water | 12 | 1.41 | 2.31 | 2.96 | 4.56 | |
Reclaimed water | 12 | 1.41 | 2.31 | 3.72 | 4.56 | |
Round 3 | Reservoir water | 16 | 1.97 | 3.23 | 5.20 | 5.6 |
River water | 12 | 1.48 | 2.42 | 3.20 | 4.2 | |
Reclaimed water | 8 | 0.98 | 1.62 | 2.60 | 2.8 | |
... | ... | ... | ... | ... | ... | ... |
Round n − 1 | Reservoir water | 22 | 2.58 | 4.24 | 6.82 | 8.36 |
River water | 16 | 1.88 | 3.08 | 3.82 | 6.08 | |
Reclaimed water | 12 | 1.41 | 2.31 | 3.72 | 4.56 | |
Round n (n = 10) | Reservoir water | 29.4 | 3.74 | 6.14 | 9.88 | 9.64 |
River water | 20.6 | 2.62 | 4.30 | 5.47 | 6.75 | |
Reclaimed water | 14.7 | 1.87 | 3.06 | 4.93 | 4.81 |
Iterations | Multi-Sources | Reservoir | River | Reclaimed Water | In Total |
---|---|---|---|---|---|
Round 1 | Water resource allocated (104 m3) | 8796 | 0 | 0 | 8796 |
Water resource remaining (104 m3) | 0 | 8582 | 2320 | 10,902 | |
Profit (104 Yuan) | 52,082 | 0 | 0 | 52,082 | |
Round 2 | Water resource allocated (104 m3) | 8796 | 8582 | 0 | 17,378 |
Water resource remaining (104 m3) | 0 | 0 | 2320 | 2320 | |
Profit (104 Yuan) | 72,733 | 58,966 | 0 | 131,699 | |
Round 3 | Water resource allocated (104 m3) | 8796 | 0 | 2320 | 11,116 |
Water resource remaining (104 m3) | 0 | 8582 | 0 | 8582 | |
Profit (104 Yuan) | 70,115 | 0 | 9907 | 80,022 | |
... | ... | ... | ... | ... | ... |
Round n − 1 | Water resource allocated (104 m3) | 8796 | 8582 | 2320 | 19,698 |
Water resource remaining (104 m3) | 0 | 0 | 0 | 0 | |
Profit (104 Yuan) | 100,007 | 78,622 | 16,868 | 195,497 | |
Round n (n = 10) | Water resource allocated (104 m3) | 8796 | 8582 | 2320 | 19,698 |
Water resource remaining (104 m3) | 0 | 0 | 0 | 0 | |
Profit (104 Yuan) | 127,080 | 94,924 | 17,647 | 239,651 |
Iterations | Payment (104 Yuan/a) | ||||
---|---|---|---|---|---|
Domestic | Non-Domestic | Special | Local Government | In Total | |
Round 1 | 9644 | 5495 | 0 | 36,943 | 52,082 |
Round 2 | 12,265 | 26,820 | 0 | 92,614 | 131,699 |
Round 3 | 12,332 | 11,936 | 0 | 55,754 | 80,022 |
... | ... | ... | ... | ... | ... |
Round n − 1 | 16,864 | 39,892 | 2448 | 136,292 | 195,497 |
Round n (n = 10) | 23,457 | 55,564 | 6509 | 154,121 | 239,651 |
Multi-Sources | Payment of Different Water Users (Yuan/m3) | |||
---|---|---|---|---|
Domestic | Non-Domestic | Special | Local Government | |
Reservoir water | 3.74 | 6.14 | 9.89 | 9.66 |
River water | 2.62 | 4.30 | 5.48 | 6.76 |
Reclaimed water | 1.87 | 3.07 | 4.93 | 4.82 |
Types | The Case Includes Reclaimed Water | The Case Exclude Reclaimed Water | |||||
---|---|---|---|---|---|---|---|
In Total | Reservoir Water | River Water | Reclaimed Water | In Total | Reservoir Water | River Water | |
Total volume (104 m3) | 19,698 | 8796 | 8582 | 2320 | 19,698 | 9956 | 9742 |
Payment (104 Yuan) | 239,651 | 246,633 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Fu, L.; Peng, H.; Wang, J.; Hua, Y.; Gui, Z. Study on an Equilibrium Water Price System Based on Cooperative Game Technology. Water 2023, 15, 2354. https://doi.org/10.3390/w15132354
Wang S, Fu L, Peng H, Wang J, Hua Y, Gui Z. Study on an Equilibrium Water Price System Based on Cooperative Game Technology. Water. 2023; 15(13):2354. https://doi.org/10.3390/w15132354
Chicago/Turabian StyleWang, Shiwu, Lei Fu, Hongxi Peng, Junmin Wang, Yian Hua, and Zihan Gui. 2023. "Study on an Equilibrium Water Price System Based on Cooperative Game Technology" Water 15, no. 13: 2354. https://doi.org/10.3390/w15132354
APA StyleWang, S., Fu, L., Peng, H., Wang, J., Hua, Y., & Gui, Z. (2023). Study on an Equilibrium Water Price System Based on Cooperative Game Technology. Water, 15(13), 2354. https://doi.org/10.3390/w15132354